Encyclopedia of Remote Sensing

2014 Edition
| Editors: Eni G. Njoku

Radiative Transfer, Solution Techniques

  • Rodolfo GuzziEmail author
Reference work entry
DOI: https://doi.org/10.1007/978-0-387-36699-9_151


  • A(ζ) Surface albedo

  • Am Sobolev’s scattering functions

  • B Source function

  • B1* m Source function from above

  • B* 1m Source function from below

  • Bm, Im, Isurm, pm, ym Fourier expansions

  • C±jp Coefficients for Discrete Ordinate Method

  • f = Kf + Ψ Neumann series

  • f+Adjoint RTE

  • g Heney-Greenstein parameter

  • g(t) Green’s function

  • kp Transport transition density

  • I Intensity

  • Isur Intensity function reflected by the underlying surface

  • I1 Single bottom light intensity

  • I1*m Sun intensity due to primary scattering from above

  • I*1m Sun illumination from below the atmosphere

  • Isur,1*m Direct solar photons reflected by underlying surface

  • L Current discretization

  • Lx Mathematics operator

  • M High signal frequency

  • P(r, ω, ω) Phase function used for Monte Carlo

  • Pi(cosγ) Legendre’s polynomials

  • Pim Associate Legendre’s polynomials

  • pdf Probability density function

  • r(η) Fresnel coefficient of mirror reflection

  • rsur Surface phase function

  • rn Random number generator

  • Ri,mm Sobolev’s polynomials

  • SIncident...

This is a preview of subscription content, log in to check access.


  1. Barker, H. W., Goldstein, R. K., and Stevens, D. E., 2003. Monte Carlo simulation of solar reflectances for cloudy atmospheres. Journal of the Atmospheric Sciences, 60(16), 1881–1894.CrossRefGoogle Scholar
  2. Battaglia, A., and Mantovani, S., 2005. Forward Monte Carlo computations of fully polarized microwave radiation in non isotropic media. Journal of Quantitative Spectroscopy and Radiative Transfer, 95, 285–308.CrossRefGoogle Scholar
  3. Berk, A., Bernstein, L. S., and Robertson, D. C., 1989. Modtran MODTRAN: A Moderate Resolution Model for LOWTRAN 7. Burlington: Spectral Sciences.Google Scholar
  4. Bohren, C. F., and Clotiaux, E. E., 2006. Fundamentals of Atmospheric Radiation. Weinheim: Wiley.CrossRefGoogle Scholar
  5. Chandrasekhar, S., 1960. Radiative Transfer. New York: Dover.Google Scholar
  6. Cornet, C., C-Labonnote, L., and Szczap, F., 2010. Three-dimensional polarized Monte Carlo atmospheric radiative transfer model (3DMCPOL): 3D effects on polarized visible reflectances of a cirrus cloud. Journal of Quantitative Spectroscopy and Radiative Transfer, 111, 174–186, doi:10.1016/j.jqsrt.2009.06.013.CrossRefGoogle Scholar
  7. De Haan, J. F., Bosma, P. B., and Hovenier, J. W., 1987. The adding method for multiple scattering calculations of polarized light. Astronomy and Astrophysics, 183, 371–391.Google Scholar
  8. Goody, R. M., and Yung, Y. L., 1989. Atmospheric Radiation Theoretical Basis. New York: Oxford University Press.Google Scholar
  9. IAMAP Radiation Commission, 1975. Standard Procedures to Compute Atmospheric Radiative Transfer in a Scattering Atmosphere. Boulder: NCAR, Vol. I.Google Scholar
  10. IAMAP Radiation Commission, 1980. Standard Procedures to Compute Atmospheric Radiative Transfer in a Scattering Atmosphere. Boulder: NCAR, Vol. II.Google Scholar
  11. Iwabuchi, H., 2006. Efficient Monte Carlo methods for radiative transfer modeling. Journal of the Atmospheric Sciences, 63(9), 2324–2339.CrossRefGoogle Scholar
  12. Kneizys, F. X., Shettle, E. P., Abreu, L. W., Chetwynd, J. H., and Anderson Lowtran, G. P., 1988. Users Guide to LOWTRAN 7. Hanscom AFB: Air Force Geophysics Lab.Google Scholar
  13. Kondratiev, K. Y., Kozoderov, V. V., and Smokty, O. I., 1992. Remote Sensing of the Earth from Space: Atmospheric Correction. Heidelberg: Springer.CrossRefGoogle Scholar
  14. Lenoble, J., 1985. Radiative Transfer in Scattering and Absorbing Atmospheres: Standard Computational Procedures. Hampton: Deepak Publishing, p. 300.Google Scholar
  15. Lenoble, J., 1993. Atmospheric Radiative Transfer. Hampton: Deepak Publishing, p. 532.Google Scholar
  16. Levoni, C., Cervino, M., Guzzi, R., and Torricella, F., 1997. Atmospheric aerosol optical properties: a data base of radiative characteristics for different component and classes. Applied Optics, 36, 8031–8041.CrossRefGoogle Scholar
  17. Levoni, C., Cattani, E., Cervino, M., Guzzi, R., and Di Nicolantonio, W., 2001. Effectiveness of the MS-method for computation of the intensity field reflected by a multilayer plane-parallel atmosphere: results from an accelerated yet accurate radiative transfer code. Journal of Quantitative Spectroscopy and Radiative Transfer, 4, 636–649.Google Scholar
  18. Liou, K. N., 1980. An Introduction to Atmospheric Radiation. New York: Academic.Google Scholar
  19. Liou, K. N., 1992. Radiation and Cloud Processes in the Atmosphere. New York: Oxford University Press.Google Scholar
  20. Marchuk, G., Mikhailov, G., Nazaraliev, M., Darbinjan, R., Kargin, B., and Elepov, B., 1980. The Monte Carlo Methods in Atmospheric Optics. Berlin: Springer, p. 208.CrossRefGoogle Scholar
  21. Marshak, A., and Davis, A. B. (eds.), 2005. 3D Radiative Transfer in Cloudy Atmospheres. Springer: Berlin, p. 686.Google Scholar
  22. Mayer, B., Emde, C., Buras, R., Hamann, U., and Kylling, A., 2005. LibRadTran: library for radiative transfer. http://www.libradtran.org/doku.php.
  23. Miskolczi, F., Rizzi, R., Guzzi, R., and Bonzagni, M., 1998. A new high resolution transmittance code and its application in the field of remote sensing. In Lenoble, J., and Geleyn, J. F., (eds.), International Radiation Symposium. Deepak Publishing: Hampton VA, USA.Google Scholar
  24. Nakajima, T., and Tanaka, M., 1981. Algorithms for radiative intensity calculations in moderate thick atmospheres using a truncation approximation. Journal of Quantitative Spectroscopy and Radiative Transfer, 40, 51–69.CrossRefGoogle Scholar
  25. O’Hirok, W., and Gautier, C., 1998. A three-dimensional radiative transfer model to investigate the solar radiation within a cloudy atmosphere. Part I: spatial effects. Journal of the Atmospheric Sciences, 55(12), 2162–2179.CrossRefGoogle Scholar
  26. Petty, G. W., 2006. A First Course in Atmospheric Radiation, 2nd edn. Madison: Sundog.Google Scholar
  27. Pincus, R., and Evans, K. F., 2009. Computational cost and accuracy in calculating three-dimensional radiative transfer: results for new implementations of Monte Carlo and SHDOM. Journal of the Atmospheric Sciences, 66(10), 3131–3314.CrossRefGoogle Scholar
  28. Preisendorfer, R., 1965. Radiative Transfer on Discrete Spaces. New York: Pergamon.Google Scholar
  29. Ricchiazzi, P., Shiren, Y., and Gautier, C., 2007. SBDART: a practical tool for plane-parallel radiative transfer in the earth’s atmosphere. Earth Space Research Group, Institute for Computational Earth System Science University of California, Santa Barbara, http://www.paulschou.com/tools/sbdart/.
  30. Sobolev, V., 1975. Light Scattering in Planetary Atmospheres. New York: Pergamon. 442p.Google Scholar
  31. Spurr, R. J., 2001. A General Discrete Ordinate Approach to the Calculation of Radiances and Analytical Weighting Functions with Applications to Atmospheric Remote Sensing. PhD thesis, Eindoven Tech. University.Google Scholar
  32. Stamnes, K., 1982. On the computation of angular distributions of radiation in planetary atmosphere. Journal of Quantitative Spectroscopy and Radiative Transfer, 28, 47–51.CrossRefGoogle Scholar
  33. Stamnes, K., and Swanson, R., 1981. A new look at the discrete ordinate method for radiative transfer calculation in anisotropically scattering atmosphere. Journal of the Atmospheric Sciences, 38, 387–399.CrossRefGoogle Scholar
  34. Stamnes, K., Tsay, S. C., Wiscombe, W. J., and Jayaweera, K., 1988. Numerical stable algorithm for discrete ordinate radiative transfer in multiple scattering and emitting layered media. Applied Optics, 27, 2502–2509.CrossRefGoogle Scholar
  35. Takara, E. E., and Ellingson, R. G., 1996. Scattering effects on longwave fluxes in broken cloud fields. Journal of the Atmospheric Sciences, 53(10), 1464–1476.CrossRefGoogle Scholar
  36. Takara, E. E., and Ellingson, R. G., 2000. Broken cloud field longwave-scattering effects. Journal of the Atmospheric Sciences, 57(9), 1298–1310.CrossRefGoogle Scholar
  37. Thomas, G. E., and Stamnes, K., 1999. Radiative Transfer in Atmosphere and Ocean. Cambridge: Cambridge University Press, p. 517.CrossRefGoogle Scholar
  38. Van De Hulst, H. C., 1980. Multiple Light Scattering. Tables, Formulas and Applications. New York: Academic.Google Scholar
  39. Verstraete, M. M., Pinty, B., and Dickinson, R. E., 1990. A physical model of the bidirectional reflectance of vegetation canopies. I – Theory II – inversion and validation. Journal of Geophysical Research, 95, 11755–11775. (ISSN 0148–0227), Research supported by ESA, CNRS, and NCAR.CrossRefGoogle Scholar
  40. World Climate Programme. 1982. WCP-43 Tropospheric aerosols: review and current data on physical and optical properties (computed by Harris, F. S., and Gerber, H. G.), WMO Geneve.Google Scholar
  41. Yanovithskij, E. G., 1997. Light Scattering in Inhomogeneous Atmosphere. Heidelberg: Springer.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Agenzia Spaziale Italiana ASIRomaJapan