Skip to main content

Myelinating Cells in the Central Nervous System—Development, Aging, and Disease

  • Reference work entry
Handbook of Neurochemistry and Molecular Neurobiology

Abstract:

Many neurological diseases are caused by myelin deficiencies, which can be the result of both genetic and environmental factors. The myelin forming cell, oligodendrocyte (OL), is a major target for the known causes of white matter diseases. During development, oligodendrocytes pass through a series of cell phenotypes from undifferentiated stem cells to mature myelin-forming cells. The general idea that there might be different subclasses of oligodendrocyte derived from different precursor subtypes is an area of active debate. Can cells that are born of progenitors in the different parts of the embryo, under the influence of different positional signals and expressing different sets of patterning genes, ever converge on precisely the same phenotypic endpoint? The following sections will review literature about controversy over oligodendrocyte origins and degenerative process resulting in demyelination in the postnatal aging brain and Alzheimer's disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 249.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AD:

Alzheimer’s Disease

AEP:

anterior entopeduncular

APP:

amyloid precursor protein

bFGF:

basic fibroblast growth factor

CGE:

caudal ganglionic eminence

CNS:

central nervous system

Gsh2:

genomic screened homeobox 2

LGE:

lateral ganglionic eminence

MBP:

myelin basic protein

MGE:

medial ganglionic eminence

MNOP:

motor neuron–oligodendrocyte precursor

NEP:

neuroepithelial cells

NFT:

neurofibrillary tangles

Nrcam:

neuronal-adhesion molecules

NRG:

neuregulin

NRP:

neuron-restricted precursor

OL:

oligodendrocyte

OLP:

oligodendrocyte progenitor

PDGF:

platelet-derived growth factor

PDGFR∝:

platelet-derived growth factor receptor-∝

PLP:

proteolipid protein

PSA-NCAM:

polysialylated form of the neural cell adhesion molecule

SHH:

sonic hedgehog

SVZ:

subventricular zone

VZ:

ventricular zone

References

  • Bartzokis G. 2004. Age-related myelin breakdown: A developmental model of cognitive decline and Alzheimer’s disease. Neurobiol Aging 25(1): 5–18.

    Article  CAS  PubMed  Google Scholar 

  • Bartzokis G, Sultzer D, Lu PH, Nuechterlein KH, Mintz J, et al. 2004. Heterogeneous age-related breakdown of white matter structural integrity: Implications for cortical “disconnection” in aging and Alzheimer’s disease. Neurobiol Aging 25(7): 843–851.

    Article  CAS  PubMed  Google Scholar 

  • Braak H, Rub U, Schultz C, Del Tredici K. 2006. Vulnerability of cortical neurons to Alzheimer’s and Parkinson’s diseases. J Alzheimers Dis 9(3): 35–44.

    CAS  PubMed  Google Scholar 

  • Butt AM, Hamilton N, Hubbard P, Pugh M, Ibrahim M. 2005. Synantocytes: The fifth element. J Anat 207(6): 695–706.

    Article  PubMed  Google Scholar 

  • Butterfield DA. 2003. Amyloid beta-peptide [1–42]-associated free radical-induced oxidative stress and neurodegeneration in Alzheimer’s disease brain: Mechanisms and consequences. Curr Med Chem 10(24): 2651–2659.

    Article  CAS  PubMed  Google Scholar 

  • Cai J, Qi Y, Hu X, Tan M, Liu Z, et al. 2005. Generation of oligodendrocyte precursor cells from mouse dorsal spinal cord independent of Nkx6 regulation and Shh signaling. Neuron 45(1): 41–53.

    Article  CAS  PubMed  Google Scholar 

  • Chari DM, Blakemore WF. 2002. Efficient recolonisation of progenitor-depleted areas of the CNS by adult oligodendrocyte progenitor cells. Glia 37(4): 307–313.

    Article  PubMed  Google Scholar 

  • Demerens C, Stankoff B, Logak M, Anglade P, Allinquant B, et al. 1996. Induction of myelination in the central nervous system by electrical activity. Proc Natl Acad Sci USA 93(18): 9887–9892.

    Article  CAS  PubMed  Google Scholar 

  • Devaux J, Alcaraz G, Grinspan J, Bennett V, Joho R, et al. 2003. Kv3.1b is a novel component of CNS nodes. J Neurosci 23(11): 4509–4518.

    CAS  PubMed  Google Scholar 

  • Eshed Y, Feinberg K, Poliak S, Sabanay H, Sarig-Nadir O, et al. 2005. Gliomedin mediates Schwann cell-axon interaction and the molecular assembly of the nodes of Ranvier. Neuron 47(2): 215–229.

    Article  CAS  PubMed  Google Scholar 

  • Fogarty M, Richardson WD, Kessaris N. 2005. A subset of oligodendrocytes generated from radial glia in the dorsal spinal cord. Development 132(8): 1951–1959.

    Article  CAS  PubMed  Google Scholar 

  • Franklin RJ. 2002. Why does remyelination fail in multiple sclerosis? Nat Rev Neurosci 3(9): 705–714.

    Article  CAS  PubMed  Google Scholar 

  • Garrido JJ, Giraud P, Carlier E, Fernandes F, Moussif A, et al. 2003. A targeting motif involved in sodium channel clustering at the axonal initial segment. Science 300(5628): 2091–2094.

    Article  CAS  PubMed  Google Scholar 

  • Ishibashi T, Dakin KA, Stevens B, Lee PR, Kozlov SV, et al. 2006. Astrocytes promote myelination in response to electrical impulses. Neuron 49(6): 823–832.

    Article  CAS  PubMed  Google Scholar 

  • Ivanova A, Nakahira E, Kagawa T, Oba A, Wada T, et al. 2003. Evidence for a second wave of oligodendrogenesis in the postnatal cerebral cortex of the mouse. J Neurosci Res 73(5): 581–592.

    Article  CAS  PubMed  Google Scholar 

  • Kaplan MR, Cho MH, Ullian EM, Isom LL, Levinson SR, et al. 2001. Differential control of clustering of the sodium channels Na(v)1.2 and Na(v)1.6 at developing CNS nodes of Ranvier. Neuron 30(1): 105–119.

    Article  CAS  PubMed  Google Scholar 

  • Levison SW, Young GM, Goldman JE. 1999. Cycling cells in the adult rat neocortex preferentially generate oligodendroglia. J Neurosci Res 57(4): 435–446.

    Article  CAS  PubMed  Google Scholar 

  • Ligon KL, Fancy SP, Franklin RJ, Rowitch DH. 2006. Olig gene function in CNS development and disease. Glia 54(1): 1–10.

    Article  PubMed  Google Scholar 

  • Liu Y, Rao MS. 2004. Glial progenitors in the CNS and possible lineage relationships among them. Biol Cell 96(4): 279–290.

    Article  CAS  PubMed  Google Scholar 

  • Lu QR, Sun T, Zhu Z, Ma N, Garcia M, et al. 2002. Common developmental requirement for Olig function indicates a motor neuron/oligodendrocyte connection. Cell 109(1): 75–86.

    Article  CAS  PubMed  Google Scholar 

  • Marshall CA, Suzuki SO, Goldman JE. 2003. Gliogenic and neurogenic progenitors of the subventricular zone: Who are they, where did they come from, and where are they going? Glia 43(1): 52–61.

    Article  PubMed  Google Scholar 

  • Menn B, Garcia-Verdugo JM, Yaschine C, Gonzalez-Perez O, Rowitch D, et al. 2006. Origin of oligodendrocytes in the subventricular zone of the adult brain. J Neurosci 26(30): 7907–7918.

    Article  CAS  PubMed  Google Scholar 

  • Nave KA, Salzer JL. 2006. Axonal regulation of myelination by neuregulin 1. Curr Opin Neurobiol 16(5): 492–500.

    Article  CAS  PubMed  Google Scholar 

  • Noble M, Proschel C, Mayer-Proschel M. 2004. Getting a GR(i)P on oligodendrocyte development. Dev Biol 265(1): 33–52.

    Article  CAS  PubMed  Google Scholar 

  • Ogawa Y, Schafer DP, Horresh I, Bar V, Hales K, et al. 2006. Spectrins and ankyrinB constitute a specialized paranodal cytoskeleton. J Neurosci 26(19): 5230–5239.

    Article  CAS  PubMed  Google Scholar 

  • Orentas DM, Hayes JE, Dyer KL, Miller RH. 1999. Sonic hedgehog signaling is required during the appearance of spinal cord oligodendrocyte precursors. Development 126(11): 2419–2429.

    CAS  PubMed  Google Scholar 

  • Pfeiffer SE, Warrington AE, Bansal R. 1993. The oligodendrocyte and its many cellular processes. Trends Cell Biol 3(6): 191–197.

    Article  CAS  PubMed  Google Scholar 

  • Poliak S, Peles E. 2003. The local differentiation of myelinated axons at nodes of Ranvier. Nat Rev Neurosci 4(12): 968–980.

    Article  CAS  PubMed  Google Scholar 

  • Pringle NP, Yu WP, Guthrie S, Roelink H, Lumsden A, et al. 1996. Determination of neuroepithelial cell fate: Induction of the oligodendrocyte lineage by ventral midline cells and sonic hedgehog. Dev Biol 177(1): 30–42.

    Article  CAS  PubMed  Google Scholar 

  • Richardson WD, Kessaris N, Pringle N. 2006. Oligodendrocyte wars. Nat Rev Neurosci 7(1): 11–18.

    Article  CAS  PubMed  Google Scholar 

  • Roher AE, Weiss N, Kokjohn TA, Kuo YM, Kalback W, et al. 2002. Increased A beta peptides and reduced cholesterol and myelin proteins characterize white matter degeneration in Alzheimer's disease. Biochemistry 41(37): 11080–11090.

    Article  CAS  PubMed  Google Scholar 

  • Sherman DL, Brophy PJ. 2005. Mechanisms of axon ensheathment and myelin growth. Nat Rev Neurosci 6(9): 683–690.

    Article  CAS  PubMed  Google Scholar 

  • Simons M, Trajkovic K. 2006. Neuron-glia communication in the control of oligodendrocyte function and myelin biogenesis. J Cell Sci 119(Pt 21): 4381–4389.

    Article  CAS  PubMed  Google Scholar 

  • Spassky N, Olivier C, Cobos I, LeBras B, Goujet-Zalc C, et al. 2001. The early steps of oligodendrogenesis: Insights from the study of the plp lineage in the brain of chicks and rodents. Dev Neurosci 23(4–5): 318–326.

    Article  CAS  PubMed  Google Scholar 

  • Stevens B, Porta S, Haak LL, Gallo V, Fields RD. 2002. Adenosine: A neuron-glial transmitter promoting myelination in the CNS in response to action potentials. Neuron 36(5): 855–868.

    Article  CAS  PubMed  Google Scholar 

  • Takebayashi H, Nabeshima Y, Yoshida S, Chisaka O, Ikenaka K, et al. 2002. The basic helix-loop-helix factor olig2 is essential for the development of motoneuron and oligodendrocyte lineages. Curr Biol 12(13): 1157–1163.

    Article  CAS  PubMed  Google Scholar 

  • Taveggia C, Zanazzi G, Petrylak A, Yano H, Rosenbluth J, et al. 2005. Neuregulin-1 type III determines the ensheathment fate of axons. Neuron 47(5): 681–694.

    Article  CAS  PubMed  Google Scholar 

  • Tekki-Kessaris N, Woodruff R, Hall AC, Gaffield W, Kimura S, et al. 2001. Hedgehog-dependent oligodendrocyte lineage specification in the telencephalon. Development 128(13): 2545–2554.

    CAS  PubMed  Google Scholar 

  • Vallstedt A, Klos JM, Ericson J. 2005. Multiple dorsoventral origins of oligodendrocyte generation in the spinal cord and hindbrain. Neuron 45(1): 55–67.

    Article  CAS  PubMed  Google Scholar 

  • Ventura RE, Goldman JE. 2006. Telencephalic oligodendrocytes battle it out. Nat Neurosci 9(2): 153–154.

    Article  CAS  PubMed  Google Scholar 

  • Xu J, Chen S, Ahmed SH, Chen H, Ku G, et al. 2001. Amyloid-beta peptides are cytotoxic to oligodendrocytes. J Neurosci 21(1): RC118.

    CAS  PubMed  Google Scholar 

  • Yu FH, Westenbroek RE, Silos-Santiago I, McCormick KA, Lawson D, et al. 2003. Sodium channel beta4, a new disulfide-linked auxiliary subunit with similarity to beta2. J Neurosci 23(20): 7577–7585.

    CAS  PubMed  Google Scholar 

  • Zhou Q, Anderson DJ. 2002. The bHLH transcription factors OLIG2 and OLIG1 couple neuronal and glial subtype specification. Cell 109(1): 61–73.

    Article  CAS  PubMed  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this entry

Cite this entry

Neman, J., de Vellis, J. (2008). Myelinating Cells in the Central Nervous System—Development, Aging, and Disease. In: Lajtha, A., Perez-Polo, J.R., Rossner, S. (eds) Handbook of Neurochemistry and Molecular Neurobiology. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-32671-9_3

Download citation

Publish with us

Policies and ethics