Computer Vision

2014 Edition
| Editors: Katsushi Ikeuchi

Viscosity Solution

  • Fabio Camilli
  • Emmanuel Prados
Reference work entry
DOI: https://doi.org/10.1007/978-0-387-31439-6_686

Definition

Viscosity solution is a notion of weak solution for a class of partial differential equations of Hamilton-Jacobi type.

Background

A first-order partial differential equation of the type
$$H(x,u(x),Du(x))= 0 $$
This is a preview of subscription content, log in to check access.

References

  1. 1.
    Alvarez O, Tourin A (1996) Viscosity solutions of nonlinear integro-differential equations. Annales de l'institut Henri Poincaré (C) Analyse non linéaire 13(3): 293–317MathSciNetzbMATHGoogle Scholar
  2. 2.
    Arehart A, Vincent L, Kimia BB (1993) Mathematical morphology: the Hamilton-Jacobi connection. In: Proceedings of ICCV, Berlin. IEEE Computer Society, pp 215–219Google Scholar
  3. 3.
    Aubert G, Kornprobst P (2006) Mathematical problems in image processing: partial differential equations and the calculus of variations. Applied mathematical sciences. Springer, New York/SecaucusGoogle Scholar
  4. 4.
    Bardi M, Crandall MG, Evans LC, Soner HM, Souganidis PE (1997) Viscosity solutions and applications. Lecture notes in mathematics, vol 1660. Springer, Berlin. Lectures given at the 2nd C.I.M.E. Session held in Montecatini Terme, June 12–20, 1995. Dolcetta IC, Lions PL (eds). Fondazione C.I.M.E. (C.I.M.E. Foundation)Google Scholar
  5. 5.
    Bardi M, Capuzzo-Dolcetta I (1997) Optimal control and viscosity solutions of Hamilton-Jacobi-Bellman equations. Systems & control: foundations & applications. Birkhäuser, Boston. With appendices by Maurizio Falcone and Pierpaolo SoraviaGoogle Scholar
  6. 6.
    Barles G, Souganidis PE (1991) Convergence of approximation schemes for fully nonlinear second order equations. Asymptot Anal 4(3):271–283MathSciNetzbMATHGoogle Scholar
  7. 7.
    Barles G (1994) Solutions de viscosité des équations de Hamilton-Jacobi. Volume 17 of Mathématiques & Applications (Berlin) (Mathematics & Applications). Springer, ParisGoogle Scholar
  8. 8.
    Barles G, Imbert C (2008) Second-order elliptic integro-differential equations: viscosity solutions' theory revisited. Annales de l'Institut Henri Poincare (C) Non Linear Analysis 25(3):567–585MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Camilli F, Siconolfi A (1999) Maximal subsolutions for a class of degenerate Hamilton-Jacobi problems. Indiana Univ Math J 48(3):1111–1132MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Crandall MG, Ishii H, Lions PL (1992) User's guide to viscosity solutions of second order partial, differential equations. Bull Am Math Soc 27:1–67MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Crandall MG, Lions P-L (1983) Viscosity solutions of Hamilton-Jacobi equations. Trans Amer Math Soc 277(1):1–42MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Donnell LO, Haker S, Westin C-F (2002) New approaches to estimation of white matter connectivity in diffusion tensor mri: elliptic pdes and geodesics in a tensor-warped space. In: Dohi T, Kikinis R (eds) Medical image computing and computer-assisted intervention MICCAI 2002. Lecture notes in computer science, vol 2488. Springer, Berlin/Heidelberg, pp 459–466Google Scholar
  13. 13.
    Fleming WH, Soner HM (2006) Controlled Markov processes and viscosity solutions. Stochastic modelling and applied probability, 2nd edn., vol 25. Springer, New YorkGoogle Scholar
  14. 14.
    Kimia BB, Tannenbaum AR, Zucker SW (1994) Shapes, shocks, and deformations i: the components of two-dimensional shape and the reaction-diffusion space. Int J Comput Vis 15:189–224CrossRefGoogle Scholar
  15. 15.
    Lenglet C, Prados E, Pons J-P, Deriche R, Faugeras O (2009) Brain connectivity mapping using Riemannian geometry, control theory and PDEs. SIAM J Imaging Sci 2:285–322MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Lions P-L, Rouy E, Tourin A (1993) Shape-from-shading, viscosity solutions and edges. Numer Math 64(3): 323–353MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Osher S, Fedkiw R (2002) Level set methods and dynamic implicit surfaces. Applied Mathematics 153, Springer Verlag, New YorkGoogle Scholar
  18. 18.
    . Pechaud M (2009) Shortest paths calculations, and applications to medical imaging. PhD thesis, University of Paris DiderotGoogle Scholar
  19. 19.
    Prados E, Faugeras O (2005) Shape from shading: a well-posed problem? In: Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR'05), San Diego, California, vol II, pp 870–877. IEEEGoogle Scholar
  20. 20.
    Prados E, Faugeras O (2006) Shape from shading. In: Handbook of mathematical models in computer vision. Springer, New York, pp 375–388CrossRefGoogle Scholar
  21. 21.
    Sapiro G, Kimia BB, Kimmel R, Shaked D, Bruckstein AM (1993) Implementing continuous-scale morphology. Pattern Recognit 26(9):1363–1372CrossRefGoogle Scholar
  22. 22.
    Sethian JA (1999) Level set methods and fast marching methods: evolving interfaces in computational geometry, fluid mechanics, computer vision, and materials science. Cambridge University Press, CambridgeGoogle Scholar
  23. 23.
    Tari ZSG, Shah J, Pien H (1997) Extraction of shape skeletons from grayscale images. Comput Vis Image Underst 66:133–146CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Fabio Camilli
    • 1
  • Emmanuel Prados
    • 2
  1. 1.Dipartimento SBAI, “Sapienza”, Università di RomaRomeItaly
  2. 2.INRIA Rhône-AlpesMontbonnotFrance