Skip to main content

Active Sensor (Eye) Movement Control

  • Reference work entry
  • First Online:
Computer Vision
  • 374 Accesses

Synonyms

Gaze control

Related Concepts

Evolution of Robotic Heads; Visual Servoing

Definition

Active sensors are those whose generalized viewpoint (such as sensor aperture, position, and orientation) is under computer control. Control is done so as to improve information gathering and processing.

Background

The generalized viewpoint [1] of a sensor is the vector of values of the parameters that are under the control of the observer and which affect the imaging process. Most often, these parameters will be the position and orientation of the image sensor, but may also include such parameters as the focal length, aperture width, and the nodal point to image plane distance, of the camera. The definition of generalized viewpoint can be extended to include illuminant degrees of freedom, such as the illuminant position, wavelength, intensity, spatial distribution (for structured light applications), and angular distribution (e.g., collimation) [2].

Changes in observer viewpoint are used in...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 649.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 899.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tarabanis K, Tsai RY, Allen PK (1991) Automated sensor planning for robotic vision tasks. In: Proceedings of the 1991 IEEE conference on robotics and automation, Sacramento, pp 76–82

    Google Scholar 

  2. Yi S, Haralick RM, Shapiro LG (1990) Automatic sensor and light source positioning for machine vision. In: Proceedings of the computer vision and pattern recognition conference (CVPR), Atlantic City, June 1990, pp 55–59

    Google Scholar 

  3. Kato R, Grantyn A, Dalezios Y, Moschovakis AK (2006) The local loop of the saccadic system closes downstream of the superior colliculus. Neuroscience 143(1):319–337

    Article  Google Scholar 

  4. Robinson DA (1968) The oculomotor control system: a review. Proc IEEE 56(6):1032–1049

    Article  Google Scholar 

  5. Rivlin E, Rotstein H (2000) Control of a camera for active vision: foveal vision, smooth tracking and saccade. Int J Comput Vis 39(2):81–96

    Article  MATH  Google Scholar 

  6. Brown C (1990) Gaze controls with interactions and delays. IEEE Trans Syst Man Cybern 20(1):518–527

    Article  Google Scholar 

  7. Sharkey PM, Murray DW (1996) Delays versus performance of visually guided systems. IEE Proc Control Theory Appl 143(5):436–447

    Article  MATH  Google Scholar 

  8. Clark JJ, Ferrier NJ (1992) Attentive visual servoing. In: Blake A, Yuille AL (eds) An introduction to active vision. MIT, Cambridge, pp 137–154

    Google Scholar 

  9. Swain MJ, Stricker MA (1993) Promising directions in active vision. Int J Comput Vis 11(2):109–126

    Article  Google Scholar 

  10. Arbel T, Ferrie FP (1999) Viewpoint selection by navigation through entropy maps. In: Proceedings of the seventh IEEE international conference on computer vision, Kerkyra, pp 248–254

    Google Scholar 

  11. Krotkov E, Bajcsy R (1988) Active vision for reliable ranging: cooperating, focus, stereo, and vergence. Int J Comput Vis 11(2):187–203

    Article  Google Scholar 

  12. Ferrier NJ, Clark JJ (1993) The Harvard binocular head. Int J Pattern Recognit Artif Intell 7(1):9–31

    Article  Google Scholar 

  13. Pahlavan K, Eklundh J-O (1993) Heads, eyes and head-eye systems. Int J Pattern Recognit Artif Intell 7(1):33–49

    Article  Google Scholar 

  14. Milios E, Jenkin M, Tsotsos J (1993) Design and performance of TRISH, a binocular robot head with torsional eye movements. Int J Pattern Recognit Artif Intell 7(1):51–68

    Article  Google Scholar 

  15. Coombs DJ, Brown CM (1993) Real-time binocular smooth pursuit. Int J Comput Vis 11(2):147–164

    Article  Google Scholar 

  16. Murray DW, Du F, McLauchlan PF, Reid ID, Sharkey PM, Brady M (1992) Design of stereo heads. In: Blake A, Yuille A (eds) Active vision. MIT, Cambridge, Massachusetts, USA, pp 155–172

    Google Scholar 

  17. Pretlove JRG, Parker GA (1993) The Surrey attentive robot vision system. Int J Pattern Recognit Artif Intell 7(1): 89–107

    Article  Google Scholar 

  18. Crowley JL, Bobet P, Mesrabi M (1993) Layered control of a binocular camera head. Int J Pattern Recognit Artif Intell 7(1):109–122

    Article  Google Scholar 

  19. Christensen HI (1993) A low-cost robot camera head. Int J Pattern Recognit Artif Intell 7(1):69–87

    Article  Google Scholar 

  20. Beira R, Lopes M, Praga M, Santos-Victor J, Bernardino A, Metta G, Becchi F, Saltaren R (2006) Design of the robot-cub (iCub) head. In: Proceedings of the 2006 IEEE international conference on robotics and automation, Orlando, Florida, USA, pp 94–100

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this entry

Cite this entry

Clark, J.J. (2014). Active Sensor (Eye) Movement Control. In: Ikeuchi, K. (eds) Computer Vision. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-31439-6_278

Download citation

Publish with us

Policies and ethics