Skip to main content

Experimental Methods in Biological Tissue Testing

  • Reference work entry
Springer Handbook of Experimental Solid Mechanics

Part of the book series: Springer Handbooks ((SHB))

Abstract

The current chapter on testing biological tissue is intended to serve as an introduction to the field of experimental biomechanics. The field is broad, encompassing the investigation of the material behavior of plant and animal tissue. We have chosen to focus on experimental methods used to test human tissue, primarily the connective tissues ligament, tendon, articular cartilage, bone, and skin. For each of these tissues, the chapter presents a brief overview of the structure–function relationship of the tissue and then discusses some of the common tests conducted on the tissue to obtain various material and mechanical properties of interest. The chapter also highlights some of the stark differences in testing biological tissues compared with engineering materials with which the reader may be more familiar.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 449.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 349.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ASTM:

American Society for Testing and Materials

CCD:

charge-coupled device

CDC:

Centers for Disease Control

FDA:

Food and Drug Administration

LED:

light-emitting diode

LVDT:

linear variable differential transformer

LVDT:

linear variable displacement transducer

PBS:

phosphate-buffered saline

PMMA:

polymethyl methacrylate

QLV:

quasilinear viscoelastic theory

VDA:

video dimension analysis

References

  1. A. Race, A.A. Amis: The mechanical properties of the two bundles of the human posterior cruciate ligament, J. Biomech. 27, 13–24 (1994)

    Article  Google Scholar 

  2. R.C. Haut, A.C. Powlison: The effects of test environment and cyclic stretching on the failure properties of human patellar tendons, J. Orthop. Res. 8, 532–540 (1990)

    Article  Google Scholar 

  3. D.L. Butler, M.D. Kay, D.C. Stouffer: Comparison of material properties in fascicle-bone units from human patellar tendon and knee ligaments, J. Biomech. 19, 425–432 (1986)

    Article  Google Scholar 

  4. D.G. Ellis: Cross-sectional area measurements for tendon specimens: a comparison of several methods, J. Biomech. 2, 175–186 (1969)

    Article  Google Scholar 

  5. D.L. Buttler, D.A. Hulse, M.D. Kay, E.S. Grood, P.K. Shires, R. DʼAmbrosia, H. Shoji: Biomechanics of cranial cruciate ligament reconstruction in the dog. II. Mechanical properties, Vet. Surg. 12, 113–118 (1983)

    Article  Google Scholar 

  6. B.N. Gupta, K.N. Subramanian, W.O. Brinker, A.N. Gupta: Tensile strength of canine cranial cruciate ligaments, Am. J. Vet. Res. 32, 183–190 (1971)

    Google Scholar 

  7. F. Iaconis, R. Steindler, G. Marinozzi: Measurements of cross-sectional area of collagen structures (knee ligaments) by means of an optical method, J. Biomech. 20, 1003–1010 (1987)

    Article  Google Scholar 

  8. T.Q. Lee, S.L. Woo: A new method for determining cross-sectional shape and area of soft tissues, J. Biomech. Eng. 110, 110–114 (1988)

    Article  Google Scholar 

  9. S.L. Woo, M.I. Danto, K.J. Ohland, T.Q. Lee, P.O. Newton: The use of a laser micrometer system to determine the cross-sectional shape and area of ligaments: a comparative study with two existing methods, J. Biomech. Eng. 112, 426–431 (1990)

    Article  Google Scholar 

  10. D.K. Moon, S.D. Abramowitch, S.L. Woo: The development and validation of a charge-coupled device laser reflectance system to measure the complex cross-sectional shape and area of soft tissues, J. Biomech. 39, 3071–3075 (2006)

    Article  Google Scholar 

  11. D.L. Butler: Kappa delta award paper. Anterior cruciate ligament: its normal response and replacement, J. Orthop. Res. 7, 910–921 (1989)

    Article  Google Scholar 

  12. D.L. Bartel, J.L. Marshall, R.A. Schieck, J.B. Wang: Surgical repositioning of the medial collateral ligament. An anatomical and mechanical analysis, J. Bone Joint Surg. Am. 59, 107–116 (1977)

    Google Scholar 

  13. C.J. Wang, P.S. Walker: The effects of flexion and rotation on the length patterns of the ligaments of the knee, J. Biomech. 6, 587–596 (1973)

    Article  Google Scholar 

  14. L.F. Warren, J.L. Marshall, F. Girgis: The prime static stabilizer of the medical side of the knee, J. Bone Joint Surg. 56A, 665–674 (1974)

    Google Scholar 

  15. D.L. Butler, M.Y. Sheh, D.C. Stouffer, V.A. Samaranayake, M.S. Levy: Surface strain variation in human patellar tendon and knee cruciate ligaments, J. Biomech. Eng. 112, 38–45 (1990)

    Article  Google Scholar 

  16. Y. Cao, J.P. Vacanti, X. Ma, K.T. Paige, J. Upton, Z. Chowanski, B. Schloo, R. Langer, C.A. Vacanti: Generation of neo-tendon using synthetic polymers seeded with tenocytes, Transplant. Proc. 26, 3390–3392 (1994)

    Google Scholar 

  17. C.D. Harner, J.W. Xerogeanes, G.A. Livesay, G.J. Carlin, B.A. Smith, T. Kusayama, S. Kashiwaguchi, S.L. Woo: The human posterior cruciate ligament complex: an interdisciplinary study. Ligament morphology and biomechanical evaluation, Am. J. Sports Med. 23, 736–745 (1995)

    Article  Google Scholar 

  18. S.U. Scheffler, T.D. Clineff, C.D. Papageorgiou, R.E. Debski, C.B. Ma, S.L.Y. Woo: Structure and function of the healing medial collateral ligament in a goat model, Ann. Biomed. Eng. 29, 173–180 (2001)

    Article  Google Scholar 

  19. T.C. Lam, C.B. Frank, N.G. Shrive: Calibration characteristics of a video dimension analyser (VDA) system, J. Biomech. 25, 1227–1231 (1992)

    Article  Google Scholar 

  20. W.P. Smutz, M. Drexler, L.J. Berglund, E. Growney, K.N. An: Accuracy of a video strain measurement system, J. Biomech. 29, 813–817 (1996)

    Article  Google Scholar 

  21. S.L.Y. Woo: Mechanical properties of tendons and ligaments. I. Quasi-static and nonlinear viscoelastic properties, Biorheology 19, 385–396 (1982)

    Google Scholar 

  22. N.A. Sharkey, T.S. Smith, D.C. Lundmark: Freeze clamping musculo-tendinous junctions for in vitro simulation of joint mechanics, J. Biomech. 28, 631–635 (1995)

    Article  Google Scholar 

  23. T.L.H. Donahue, C. Gregersen, M.L. Hull, S.M. Howell: Comparison of viscoelastic, structural, and material properties of double-looped anterior cruciate ligament grafts made from bovine digital extensor and human hamstring tendons, J. Biomech. Eng. 123, 162–169 (2001)

    Article  Google Scholar 

  24. R.T. Burks, R.C. Haut, R.L. Lancaster: Biomechanical and histological observations of the dog patellar tendon after removal of its central one-third, Am. J. Sports Med. 18, 146–153 (1990)

    Article  Google Scholar 

  25. Y.C.B. Fung: Biorheology of soft tissues, Biorheology 10, 139–155 (1973)

    Google Scholar 

  26. J.A. Hannafin, S.P. Arnoczky, A. Hoonjan, P.A. Torzilli: Effect of stress deprivation and cyclic tensile loading on the material and morphologic properties of canine flexor digitorum profundus tendon: an in vitro study, J. Orthop. Res. 13, 907–914 (1995)

    Article  Google Scholar 

  27. A. Sverdlik, Y. Lanir: Time-dependent mechanical behavior of sheep digital tendons, including the effects of preconditioning, J. Biomech. Eng. 124, 78–84 (2002)

    Article  Google Scholar 

  28. Y.C. Fung: Biomechanics: Mechanical Properties of Living Tissues (Springer-Verlag, New York 1993)

    Google Scholar 

  29. S.L.Y. Woo, T.Q. Lee, M.A. Gomez, S. Sato, F.P. Field: Temperature dependent behavior of the canine medial collateral ligament, J. Biomech. Eng. 109, 68–71 (1987)

    Article  Google Scholar 

  30. D. Chimich, N. Shrive, C. Frank, L. Marchuk, R. Bray: Water content alters viscoelastic behaviour of the normal adolescent rabbit medial collateral ligament, J. Biomech. 25, 831–837 (1992)

    Article  Google Scholar 

  31. T.L. Haut, R.C. Haut: The state of tissue hydration determines the strain-rate-sensitive stiffness of human patellar tendon, J. Biomech. 30, 79–81 (1997)

    Article  Google Scholar 

  32. J.J. Crisco, D.C. Moore, R.D. McGovern: Strain-rate sensitivity of the rabbit MCL diminishes at traumatic loading rates, J. Biomech. 35, 1379–1385 (2002)

    Article  Google Scholar 

  33. Y.C. Fung: Stress-strain-history relations of soft tissues in simple elongation. In: Biomechanics: Its Foundations and Objectives, ed. by Y.C. Fung, N. Perrone, M. Anliker (Prentice-Hall, Englewood Cliffs 1972)

    Google Scholar 

  34. T.S. Atkinson, R.C. Haut, N.J. Altiero: A poroelastic model that predicts some phenomenological responses of ligaments and tendons, J. Biomech. Eng. 119, 400–405 (1997)

    Article  Google Scholar 

  35. F.R. Noyes, J.L. DeLucas, P.J. Torvik: Biomechanics of anterior cruciate ligament failure: an analysis of strain-rate sensitivity and mechanisms of failure in primates, J. Bone Joint Surg. 56A, 236–253 (1974)

    Google Scholar 

  36. R.D. Crowninshield, M.H. Pope: The strength and failure characteristics of rat medial collateral ligaments, J. Trauma 16, 99–105 (1976)

    Article  Google Scholar 

  37. S.L.Y. Woo, R.E. Debski, J.D. Withrow, M.A. Januashek: Biomechanics of knee ligaments, AJSM 27(4), 533–543 (1999)

    Google Scholar 

  38. S.L.Y. Woo, M.A. Gomez, W.H. Akeson: The time and history-dependent viscoelastic properties of the canine medical collateral ligament, J. Biomech. Eng. 103, 293–298 (1981)

    Article  Google Scholar 

  39. S.D. Abramowitch, S.L. Woo: An improved method to analyze the stress relaxation of ligaments following a finite ramp time based on the quasi-linear viscoelastic theory, J. Biomech. Eng. 126, 92–97 (2004)

    Article  Google Scholar 

  40. R.C. Haut, R.W. Little: A constitutive equation for collagen fibers, J. Biomech. 5, 423–430 (1972)

    Article  Google Scholar 

  41. G.M. Thornton, A. Oliynyk, C.B. Frank, N.G. Shrive: Ligament creep cannot be predicted from stress relaxation at low stress: a biomechanical study of the rabbit medial collateral ligament, J. Orthop. Res. 15, 652–656 (1997)

    Article  Google Scholar 

  42. R.V. Hingorani, P.P. Provenzano, R.S. Lakes, A. Escarcega, R. Vanderby Jr.: Nonlinear viscoelasticity in rabbit medial collateral ligament, Ann. Biomed. Eng. 32, 306–312 (2004)

    Article  Google Scholar 

  43. W. Wilson, C.C. van Donkelaar, B. van Rietbergen, K. Ito, R. Huiskes: Stresses in the local collagen network of articular cartilage: a poroviscoelastic fibril-reinforced finite element study, J. Biomech. 37, 357–366 (2004)

    Article  Google Scholar 

  44. P. Bullough, J. Goodfellow: The significance of the fine structure of articular cartilage, J. Bone Joint Surg. Br. 50, 852–857 (1968)

    Google Scholar 

  45. A. Benninghoff: Form und Bau der Gelenkknorpel in ihren Beziehungen zur Funktion. II., Zeitschrift für Zellforschung und Mikroskopische Anatomie 2, 793 (1925)

    Article  Google Scholar 

  46. S. Akizuki, V.C. Mow, F. Muller, J.C. Pita, D.S. Howell, D.H. Manicourt: Tensile properties of human knee joint cartilage: I. influence of ionic conditions, weight bearing, and fibrillation on the tensile modulus, J. Orthop. Res. 4, 379–392 (1986)

    Article  Google Scholar 

  47. M. Charlebois, M.D. McKee, M.D. Buschmann: Nonlinear tensile properties of bovine articular cartilage and their variation with age and depth, J. Biomech. Eng. 126, 129–137 (2004)

    Article  Google Scholar 

  48. S.L.Y. Woo, P. Lubock, M.A. Gomez, G.F. Jemmott, S.C. Kuei, W.H. Akeson: Large deformation nonhomogeneous and directional properties of articular cartilage in uniaxial tension, J. Biomech. 12, 437–446 (1979)

    Article  Google Scholar 

  49. V. Roth, V.C. Mow: The intrinsic tensile behavior of the matrix of bovine articular cartilage and its variation with age, J. Bone Joint Surg. Am. 62, 1102–1117 (1980)

    Google Scholar 

  50. S.L.Y. Woo, P. Lubock, M.A. Gomez, G.F. Jemmott, S.C. Kuei, W.H. Akeson: Large deformation nonhomogeneous and directional properties of articular cartilage in uniaxial tension, J. Biomech. 12, 437–446 (1979)

    Article  Google Scholar 

  51. N.O. Chahine, C.C.B. Wang, C.T. Hung, G.A. Ateshian: Anisotropic strain-dependent material properties of bovine articular cartilage in the transitional range from tension to compression, J. Biomech. 37, 1251–1261 (2004)

    Article  Google Scholar 

  52. A.K. Williamson, A.C. Chen, K. Masuda, R.L. Sah, E.J.M.A. Thonar: Tensile mechanical properties of bovine articular cartilage: variations with growth and relationships to collagen network components, J. Orthop. Res. 21, 872–880 (2003)

    Article  Google Scholar 

  53. V.C. Mow, S.C. Kuei, W.M. Lai, C.G. Armstrong: Biphasic creep and stress relaxation of articular cartilage in compression? Theory and experiments, J. Biomech. Eng. 102, 73–84 (1980)

    Article  Google Scholar 

  54. T.D. Brown, R.J. Singerman: Experimental determination of the linear biphasic constitutive coefficients of human fetal proximal femoral chondroepiphysis, J. Biomech. 19, 597–605 (1986)

    Article  Google Scholar 

  55. C.G. Armstrong, W.M. Lai, V.C. Mow: An analysis of the unconfined compression of articular cartilage, J. Biomech. Eng. 106, 165–173 (1984)

    Article  Google Scholar 

  56. V.C. Mow, W.C. Hayes: Basic Orthopaedic Biomechanics (Raven, New York 1991)

    Google Scholar 

  57. J.J. Garcia, N.J. Altiero, R.C. Haut: Estimation of in situ elastic properties of biphasic cartilage based on a transversely isotropic hypo-elastic model, J. Biomech. Eng. 122, 1–8 (2000)

    Article  Google Scholar 

  58. P.M. Bursac, T.W. Obitz, S.R. Eisenberg, D. Stamenovic: Confined and unconfined stress relaxation of cartilage: appropriateness of a transversely isotropic analysis, J. Biomech. 32, 1125–1130 (1999)

    Article  Google Scholar 

  59. M.A. Soltz, G.A. Ateshian: A conewise linear elasticity mixture model for the analysis of tension-compression nonlinearity in articular cartilage, J. Biomech. Eng. 122, 576–586 (2000)

    Article  Google Scholar 

  60. L.P. Li, J. Soulhat, M.D. Buschmann, A. Shirazi-Adl: Nonlinear analysis of cartilage in unconfined ramp compression using a fibril reinforced poroelastic model, Clin. Biomech. 14, 673–682 (1999)

    Article  Google Scholar 

  61. R.K. Korhonen, M.S. Laasanen, J. Toyras, J. Rieppo, J. Hirvonen, H.J. Helminen, J.S. Jurvelin: Comparison of the equilibrium response of articular cartilage in unconfined compression, confined compression and indentation, J. Biomech. 35, 903–909 (2002)

    Article  Google Scholar 

  62. L.P. Li, R.K. Korhonen, J. Iivarinen, J.S. Jurvelin, W. Herzog: Fluid pressure driven fibril reinforcement in creep and relaxation tests of articular cartilage, Med. Eng. Phys. 30(2), 182–189 (2007)

    Article  Google Scholar 

  63. R.C. Haut, T.M. Ide, C.E. De Camp: Mechanical responses of the rabbit patello-femoral joint to blunt impact, J. Biomech. Eng. 117, 402–408 (1995)

    Article  Google Scholar 

  64. W.C. Hayes, L.M. Keer, G. Herrmann, L.F. Mockros: A mathematical analysis for indentation tests of articular cartilage, J. Biomech. 5, 541–551 (1972)

    Article  Google Scholar 

  65. M. Zhang, Y.P. Zheng, A.F.T. Mak: Estimating the effective youngʼs modulus of soft tissues from indentation tests–nonlinear finite element analysis of effects of friction and large deformation, Med. Eng. Phys. 19, 512–517 (1997)

    Article  Google Scholar 

  66. J.R. Parsons, J. Black: The viscoelastic shear behavior of normal rabbit articular cartilage, J. Biomech. 10, 21–29 (1977)

    Article  Google Scholar 

  67. H. Jin, J.L. Lewis: Determination of poissonʼs ratio of articular cartilage by indentation using different-sized indenters, J. Biomech. Eng. 126, 138–145 (2004)

    Article  Google Scholar 

  68. J. Jurvelin, I. Kiviranta, J. Arokoski, M. Tammi, H.J. Helminen: Indentation study of the biochemical properties of articular cartilage in the canine knee, Eng. Med. 16, 15–22 (1987)

    Article  Google Scholar 

  69. D.H. Hoch, A.J. Grodzinsky, T.J. Koob, M.L. Albert, D.R. Eyre: Early changes in material properties of rabbit articular cartilage after meniscectomy, J. Orthop. Res. 1, 4–12 (1983)

    Article  Google Scholar 

  70. V.C. Mow, M.C. Gibbs, W.M. Lai, W.B. Zhu, K.A. Athanasiou: Biphasic indentation of articular cartilage – II. A numerical algorithm and an experimental study, J. Biomech. 22, 853–861 (1989)

    Article  Google Scholar 

  71. J.S. Jurvelin, T. Rasanen, P. Kolmonen, T. Lyyra: Comparison of optical, needle probe and ultrasonic techniques for the measurement of articular cartilage thickness, J. Biomech. 28, 231–235 (1995)

    Article  Google Scholar 

  72. J.K.F. Suh, I. Youn, F.H. Fu: An in situ calibration of an ultrasound transducer: a potential application for an ultrasonic indentation test of articular cartilage, J. Biomech. 34, 1347–1353 (2001)

    Article  Google Scholar 

  73. J. Toyras, T. Lyyra-Laitinen, M. Niinimaki, R. Lindgren, M.T. Nieminen, I. Kiviranta, J.S. Jurvelin: Estimation of the youngʼs modulus of articular cartilage using an arthroscopic indentation instrument and ultrasonic measurement of tissue thickness, J. Biomech. 34, 251–256 (2001)

    Article  Google Scholar 

  74. A.F. Mak, W.M. Lai, V.C. Mow: Biphasic indentation of articular cartilage – I. theoretical analysis, J. Biomech. 20, 703–714 (1987)

    Article  Google Scholar 

  75. K.A. Athanasiou, A. Agarwal, F.J. Dzida: Comparative study of the intrinsic mechanical properties of the human acetabular and femoral head cartilage, J. Orthop. Res. 12, 340–349 (1994)

    Article  Google Scholar 

  76. M.L. Roemhildt, K.M. Coughlin, G.D. Peura, B.C. Fleming, B.D. Beynnon: Material properties of articular cartilage in the rabbit tibial plateau, J. Biomech. 39, 2331–2337 (2006)

    Article  Google Scholar 

  77. R.K. Korhonen, M.S. Laasanen, J. Toyras, R. Lappalainen, H.J. Helminen, J.S. Jurvelin: Fibril reinforced poroelastic model predicts specifically mechanical behavior of normal, proteoglycan depleted and collagen degraded articular cartilage, J. Biomech. 36, 1373–1379 (2003)

    Article  Google Scholar 

  78. J.J. Garcia, D.H. Cortes: A nonlinear biphasic viscohyperelastic model for articular cartilage, J. Biomech. 39, 2991–2998 (2006)

    Article  Google Scholar 

  79. M.R. DiSilvestro, Q. Zhu, M. Wong, J.S. Jurvelin, J.K. Suh: Biphasic poroviscoelastic simulation of the unconfined compression of articular cartilage: I – simultaneous prediction of reaction force and lateral displacement, J. Biomech. Eng. 123, 191–197 (2001)

    Article  Google Scholar 

  80. B.B. Ngu, S.M. Belkoff, D.E. Gelb, S.C. Ludwig: A biomechanical comparison of sacral pedicle screw salvage techniques, Spine 31, E166–E168 (2006)

    Article  Google Scholar 

  81. G.P. Paremain, V.P. Novak, R.H. Jinnah, S.M. Belkoff: Biomechanical evaluation of tension band placement for the repair of olecranon fractures, Clin. Orthop. Relat. Res. 335, 325–330 (1997)

    Google Scholar 

  82. S.M. Belkoff, D.L. Millis, C.W. Probst: Biomechanical comparison of three internal fixations for treatment of slipped capital femoral epiphysis in immature dogs, Am. J. Vet. Res. 53, 2136–2140 (1992)

    Google Scholar 

  83. S.M. Belkoff, J.M. Mathis, L.E. Jasper: An ex vivo biomechanical comparison of hydroxyapatite and polymethylmethacrylate cements for use with vertebroplasty, Am. J. Neuroradiol. 23, 1647–1651 (2002)

    Google Scholar 

  84. J.T. Campbell, L.C. Schon, B.G. Parks, Y. Wang, B.I. Berger: Mechanical comparison of biplanar proximal closing wedge osteotomy with plantar plate fixation versus crescentic osteotomy with screw fixation for the correction of metatarsus primus varus, Foot Ankle Int. 19, 293–299 (1998)

    Google Scholar 

  85. J.W. Smith, R. Walmsley: Factors affecting the elasticity of bone, J. Anat. 93, 503–523 (1959)

    Google Scholar 

  86. S.M. Belkoff, J.M. Mathis, L.E. Jasper, H. Deramond: The biomechanics of vertebroplasty: the effect of cement volume on mechanical behavior, Spine 26, 1537–1541 (2001)

    Article  Google Scholar 

  87. W.C. Hayes, S.J. Piazza, P.K. Zysset: Biomechanics of fracture risk prediction of the hip and spine by quantitative computed tomography, Radiol. Clin. North Am. 29, 1–18 (1991)

    Google Scholar 

  88. M.L. Frost, G.M. Blake, I. Fogelman: Can the who criteria for diagnosing osteoporosis be applied to calcaneal quantitative ultrasound?, Osteoporos. Int. 11, 321–330 (2000)

    Article  Google Scholar 

  89. J.L. Kuhn, S.A. Goldstein, M.J. Ciarelli, L.S. Matthews: The limitations of canine trabecular bone as a model for human: a biomechanical study, J. Biomech. 22, 95–107 (1989)

    Article  Google Scholar 

  90. D.J. Sartoris, F.G. Sommer, R. Marcus, P. Madvig: Bone mineral density in the femoral neck: quantitative assessment using dual-energy projection radiography, Am. J. Roentgenol. 144, 605–611 (1985)

    Google Scholar 

  91. D.T. Reilly, A.H. Burstein: The elastic and ultimate properties of compact bone tissue, J. Biomech. 8, 393–405 (1975)

    Article  Google Scholar 

  92. T.M. Wright, W.C. Hayes: Tensile testing of bone over a wide range of strain rates: effects of strain rate, microstructure and density, Med. Biol. Eng. 14, 671–680 (1976)

    Article  Google Scholar 

  93. Q. Kang, Y.H. An, R.J. Friedman: Effects of multiple freezing-thawing cycles on ultimate indentation load and stiffness of bovine cancellous bone, Am. J. Vet. Res. 58, 1171–1173 (1997)

    Google Scholar 

  94. F. Linde, H.C.F. Sorensen: The effect of different storage methods on the mechanical properties of trabecular bone, J. Biomech. 26, 1249–1252 (1993)

    Article  Google Scholar 

  95. W.W. Tomford, S.H. Doppelt, H.J. Mankin, G.E. Friedlaender: Bone bank procedures, Clin. Orthop. Relat. Res. 174, 15–21 (1983)

    Google Scholar 

  96. D.B. Brooks, A.H. Burstein, V.H. Frankel: The biomechanics of torsional fractures. The stress concentration effect of a drill hole, J. Bone Joint Surg. Am. 52, 507–514 (1970)

    Google Scholar 

  97. J.J. Elias, F.J. Frassica, E.Y. Chao: The open section effect in a long bone with a longitudinal defect - a theoretical modeling study, J. Biomech. 33, 1517–1522 (2000)

    Article  Google Scholar 

  98. R.J. McBroom, E.J. Cheal, W.C. Hayes: Strength reductions from metastatic cortical defects in long bones, J. Orthop. Res. 6, 369–378 (1988)

    Article  Google Scholar 

  99. A.A. White III, M.M. Panjabi, W.O. Southwick: The four biomechanical stages of fracture repair, J. Bone Joint Surg. 59A, 188–192 (1977)

    Google Scholar 

  100. C.T. Rubin, L.E. Lanyon: Regulation of bone formation by applied dynamic loads, J. Bone Joint Surg. Am. 66, 397–402 (1984)

    Google Scholar 

  101. M.E. Levenston, G.S. Beaupre, M.C. Van Der Meulen: Improved method for analysis of whole bone torsion tests, J. Bone Miner. Res. 9, 1459–1465 (1994)

    Article  Google Scholar 

  102. S.L. Salkeld, L.P. Patron, R.L. Barrack, S.D. Cook: The effect of osteogenic protein-1 on the healing of segmental bone defects treated with autograft or allograft bone, J. Bone Joint Surg. Am. 83, 803–816 (2001)

    Google Scholar 

  103. M.B. Henley, L.B. Bone, B. Parker: Operative management of intra-articular fractures of the distal humerus, J. Orthop. Trauma 1, 24–35 (1987)

    Article  Google Scholar 

  104. H.T. Aro, M.D. Markel, E.Y. Chao: Cortical bone reactions at the interface of external fixation half-pins under different loading conditions, J. Trauma 35, 776–785 (1993)

    Article  Google Scholar 

  105. L. Cristofolini, M. Viceconti, A. Cappello, A. Toni: Mechanical validation of whole bone composite femur models, J. Biomech. 29, 525–535 (1996)

    Article  Google Scholar 

  106. J.A. Szivek, M. Thomas, J.B. Benjamin: Characterization of a synthetic foam as a model for human cancellous bone, J. Appl. Biomater. 4, 269–272 (1993)

    Article  Google Scholar 

  107. J.A. Szivek, J.D. Thompson, J.B. Benjamin: Characterization of three formulations of a synthetic foam as models for a range of human cancellous bone types, J. Appl. Biomater. 6, 125–128 (1995)

    Article  Google Scholar 

  108. S. Uta: Development of synthetic bone models for the evaluation of fracture fixation devices, Nippon Seikeigeka Gakkai Zasshi 66, 1156–1164 (1992)

    Google Scholar 

  109. L. Cristofolini, M. Viceconti: Mechanical validation of whole bone composite tibia models, J. Biomech. 33, 279–288 (2000)

    Article  Google Scholar 

  110. L. Orienti, M. Fini, M. Rocca, G. Giavaresi, M. Guzzardella, A. Moroni, R. Giardino: Measurement of insertion torque of tapered external fixation pins: a comparison between two experimental models, J. Biomed. Mater Res. 48, 216–219 (1999)

    Article  Google Scholar 

  111. J.A. Szivek, R.L. Gealer: Comparison of the deformation response of synthetic and cadaveric femora during simulated one-legged stance, J. Appl. Biomater. 2, 277–280 (1991)

    Article  Google Scholar 

  112. T. Marqueen, J. Owen, G. Nicandri, J. Wayne, J. Carr: Comparison of the syndesmotic staple to the transsyndesmotic screw: a biomechanical study, Foot Ankle Int. 26, 224–230 (2005)

    Google Scholar 

  113. A.A. White III, M.M. Panjabi: Kinematics of the spine. In: Clinical Biomechanics of the Spine (JB Lippincott, Philadelphia 1990)

    Google Scholar 

  114. L.P. Maletsky, J. Sun, N.A. Morton: Accuracy of an optical active-marker system to track the relative motion of rigid bodies, J. Biomech. 40, 682–685 (2007)

    Article  Google Scholar 

  115. G. Ferrigno, A. Pedotti: ELITE: a digital dedicated hardware system for movement analysis via real-time tv signal processing, IEEE Trans. Biomed. Eng. 32, 943–950 (1985)

    Article  Google Scholar 

  116. C.G. Meskers, H. Fraterman, F.C. van der Helm, H.M. Vermeulen, P.M. Rozing: Calibration of the "Flock of Birds" electromagnetic tracking device and its application in shoulder motion studies, J. Biomech. 32, 629–633 (1999)

    Article  Google Scholar 

  117. A.E. Engin, R.D. Peindl, N. Berme, I. Kaleps: Kinematic and force data collection in biomechanics by means of sonic emitters–I: Kinematic data collection methodology, J. Biomech. Eng. 106, 204–211 (1984)

    Article  Google Scholar 

  118. T.M. Wright, W.C. Hayes: Strain gage application on compact bone, J. Biomech. 12, 471–475 (1979)

    Article  Google Scholar 

  119. B.K. Bay: Texture correlation: a method for the measurement of detailed strain distributions within trabecular bone, J. Orthop. Res. 13, 258–267 (1995)

    Article  Google Scholar 

  120. A. Rohlmann, F. Graichen, U. Weber, G. Bergmann: Volvo award winner in biomechanical studies. Monitoring in vivo implant loads with a telemeterized internal spinal fixation device, Spine 25, 2981–2986 (2000)

    Article  Google Scholar 

  121. G. Bergmann, F. Graichen, A. Rohlmann: Hip joint loading during walking and running, measured in two patients, J. Biomech. 26, 969–990 (1993)

    Article  Google Scholar 

  122. P.J. Atkinson, R.C. Haut: Subfracture insult to the human cadaver patellofemoral joint produces occult injury, J. Orthop. Res. 13, 936–944 (1995)

    Article  Google Scholar 

  123. S.J. Svoboda, K. McHale, S.M. Belkoff, K.S. Cohen, W.R. Klemme: The effects of tibial malrotation on the biomechanics of the tibiotalar joint, Foot Ankle Int. 23, 102–106 (2002)

    Google Scholar 

  124. L.A. Whitaker: Characteristics of skin of importance to the surgeon, Int. Surg. 57, 877–879 (1972)

    Google Scholar 

  125. I.A. Brown: A scanning electron microscope study of the effects of uniaxial tension on human skin, Br. J. Dermatol. 89, 383–393 (1973)

    Article  Google Scholar 

  126. B. Finlay: Scanning electron microscopy of the human dermis under uni-axial strain, Biomed. Eng. 4, 322–327 (1969)

    Google Scholar 

  127. R.M. Lavker, P.S. Zheng, G. Dong: Aged skin: A study by light, transmission electron, and scanning electron microscopy, J. Invest. Dermatol. 88, 44s–51s (1987)

    Article  Google Scholar 

  128. M.D. Ridge, V. Wright: Mechanical properties of skin: A bioengineering study of skin structure, J. Appl. Physiol. 21, 1602–1606 (1966)

    Google Scholar 

  129. M.D. Ridge, V. Wright: The directional effects of skin. A bio-engineering study of skin with particular reference to langerʼs lines, J. Invest. Dermatol. 46, 341–346 (1966)

    Google Scholar 

  130. J.F. Manschot, A.J. Brakkee: The measurement and modelling of the mechanical properties of human skin in vivo – I. The measurement, J. Biomech. 19, 511–515 (1986)

    Article  Google Scholar 

  131. B. Finlay: Dynamic mechanical testing of human skin ʼin vivoʼ, J. Biomech. 3, 557–568 (1970)

    Article  Google Scholar 

  132. R. Sanders: Torsional elasticity of human skin in vivo, Pflugers Arch. 342, 255–260 (1973)

    Article  Google Scholar 

  133. P.F.F. Wijn, A.J.M. Brakkee, G.J.M. Steinen, A.J.G. Vendrick: Mechanical properties of human skin in vivo for small deformatons: a comparison of uniaxial strain and torsion measurements. In: Bodsore Biomechanics (McMillan, London 1976) pp. 103–108

    Google Scholar 

  134. R. Grahame: A method for measuring human skin elasticity in vivo with observations of the effects of age, sex and pregnancy, Clin. Sci. 39, 223–229 (1970)

    Google Scholar 

  135. R. Grahame, P.J. Holt: The influence of ageing on the in vivo elasticity of human skin, Gerontologia 15, 121–139 (1969)

    Article  Google Scholar 

  136. L.H. Jansen, P.B. Rottier: Some mechanical properties of human abdominal skin measured on excised strips, Dermatologica 117, 65–83 (1958)

    Article  Google Scholar 

  137. T. Cook, H. Alexander, M. Cohen: Experimental method for determining the 2-dimensional mechanical properties of living human skin, Med. Biol. Eng. Comput. 15, 381–390 (1977)

    Article  Google Scholar 

  138. H. Alexander, T.H. Cook: Accounting for natural tension in the mechanical testing of human skin, J. Invest. Dermatol. 69, 310–314 (1977)

    Article  Google Scholar 

  139. S.M. Belkoff, R.C. Haut: A structural model used to evaluate the changing microstructure of maturing rat skin, J. Biomech. 24, 711–720 (1991)

    Article  Google Scholar 

  140. R.C. Haut: The effects of orientation and location on the strength of dorsal rat skin in high and low speed tensile failure experiments, J. Biomech. Eng. 111, 136–140 (1989)

    Article  Google Scholar 

  141. Y. Lanir, Y.C. Fung: Two-dimensional mechanical properties of rabbit skin. II. Experimental results, J. Biomech. 7, 171–182 (1974)

    Article  Google Scholar 

  142. A.E. Green, J.E. Adkins (Eds.): Large Elastic Deformations (Oxford Univ. Press, Oxford 1971)

    Google Scholar 

  143. R.W. Snyder, L.H. Lee: Experimental study of biological tissue subjected to pure shear, J. Biomech. 8, 415–419 (1975)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Stephen M. Belkoff Prof. or Roger C. Haut Prof. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag

About this entry

Cite this entry

Belkoff, S.M., Haut, R.C. (2008). Experimental Methods in Biological Tissue Testing. In: Sharpe, W. (eds) Springer Handbook of Experimental Solid Mechanics. Springer Handbooks. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-30877-7_31

Download citation

Publish with us

Policies and ethics