Thermoelastic Stress Analysis

  • Richard J. GreeneEmail author
  • Eann A. PattersonEmail author
  • Robert E. RowlandsEmail author
Part of the Springer Handbooks book series (SHB)


In this chapter an outline of the theoretical foundations for the experimental technique of thermoelastic stress analysis is presented, followed by a description of the equipment, test materials, and methods required to perform an analysis. Thermoelastic stress analysis is a technique by which maps of a linear combination of the in-plane surface stresses of a component are obtained by measuring the surface temperature changes induced by time-varying stress/strain distributions using a sensitive infrared detector. Experimental considerations relating to issues such as shielding from background radiation, edge effects, motion compensation, detector setup, calibration, and data interpretation are discussed. The potential of the technique is illustrated using a number of examples that involve isotropic as well as orthotropic materials, fracture mechanics, separation of component stresses, and vibration analysis. Applications of the method to situations involving residual stresses, elevated temperatures, and variable amplitude loading are also considered.


Residual Stress Stress Intensity Factor Reference Signal Stress Intensity Factor Orthotropic Material 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



charge-coupled device


direct current


finite element modeling


fast Fourier transform


multipoint overdeterministic method


polymethyl methacrylate


polyvinyl chloride


signal to noise


stress pattern analysis by thermal emissions


thermal evaluation for residual stress analysis


thermoelastic stress analysis


  1. 26.1.
    D.S. Mountain, J.M.B. Webber: Stress pattern analysis by thermal emission (SPATE), Proc. Soc. Photo Opt. Inst Eng., Vol. 164 (1978) pp. 189–196Google Scholar
  2. 26.2.
    T.G. Ryall, A.K. Wong: Design of a focal-plane array thermographic system for stress analysis, Exp. Mech. 35, 144–147 (1995)Google Scholar
  3. 26.3.
    A.K. Wong, T.G. Ryall: Performance of the FAST system for stress analysis, Exp. Mech. 35, 148–152 (1995)Google Scholar
  4. 26.4.
    W. Weber: Über die spezifische Wärme fester Körper insbesondere der Metalle, Ann. Phys. Chem. 96, 177–213 (1830)Google Scholar
  5. 26.5.
    W. Thomson (Lord Kelvin): On dynamical theory of heat, Trans. R. Soc. Edinburgh 20, 261–283 (1853)Google Scholar
  6. 26.6.
    K.T. Compton, D.B. Webster: Temperature changes accompanying the adiabatic compression of steel: verification of W. Thomsonʼs theory to a very high accuracy, Phys. Rev. 5, 159–166 (1915)Google Scholar
  7. 26.7.
    C. Zener: Internal friction in solids. I. Theory of internal friction in reeds, Phys. Rev. 52, 230–235 (1937)Google Scholar
  8. 26.8.
    C. Zener: Internal friction in solids. II. General theory of thermoelastic internal friction, Phys. Rev. 53, 90–99 (1938)Google Scholar
  9. 26.9.
    C. Zener: Internal friction in solids. IV. Relation between cold work and internal friction, Phys. Rev. 53, 582–586 (1938)Google Scholar
  10. 26.10.
    C. Zener: Internal friction in solids. V. General theory of microscopic eddy currents, Phys. Rev. 53, 1010–1013 (1938)Google Scholar
  11. 26.11.
    R. Rocca, M. Bever: The thermoelastic effect in iron and nickel (as a function of temperature), Trans. MME 188, 327–333 (1950)Google Scholar
  12. 26.12.
    M.A. Biot: On anisotropic viscoelasticity, J. Appl. Phys. 25, 1385–1391 (1954)zbMATHGoogle Scholar
  13. 26.13.
    M.A. Biot: Plasticity and consolidation in a porous anisotropic solid, J. Appl. Phys. 26, 182–185 (1955)zbMATHMathSciNetGoogle Scholar
  14. 26.14.
    M.A. Biot: Irreversible thermodynamics with application to viscoelasticity, Phys. Rev. 97, 1463–1469 (1955)zbMATHMathSciNetGoogle Scholar
  15. 26.15.
    M.A. Biot: Thermoelasticity and irreversible thermodynamics, J. Appl. Phys. 27, 240–253 (1956)zbMATHMathSciNetGoogle Scholar
  16. 26.16.
    M.H. Belgen: Structural stress measurements with an infrared radiometer, ISA Trans. 6, 49–53 (1967)Google Scholar
  17. 26.17.
    M.H. Belgen: Infrared radiometric stress instrumentation application range study, NASA Rep. CR-I067 (1968)Google Scholar
  18. 26.18.
    R.T. Potter, L.J. Greaves: The application of thermoelastic stress analysis techniques to fibre composites, Proc. SPIE, Vol. 817 (1987) pp. 134–146Google Scholar
  19. 26.19.
    S. Machin, J.G. Sparrow, M.G. Stinson: Mean stress dependence of the thermoelastic constant, Strain 23, 27–30 (1987)Google Scholar
  20. 26.20.
    K. Wong, R. Jones, J.G. Sparrow: Thermoelastic constant or thermoelastic parameter, J. Phys. Chem. Solids 48(8), 749–753 (1987)Google Scholar
  21. 26.21.
    K. Wong, J.G. Sparrow, S.A. Dunn: On the revised theory of the thermoelasticity, J. Phys. Chem. Solids 49(4), 395–400 (1988)Google Scholar
  22. 26.22.
    K. Wong, S.A. Dunn, J.G. Sparrow: Residual stress measurement by means of the thermoelastic effect, Nature 332, 613–615 (1988)Google Scholar
  23. 26.23.
    N.F. Enke: Thermographic Stress Analysis of Isotropic Materials. Ph.D. Thesis (University of Wisconsin-Madison, Madison 1989)Google Scholar
  24. 26.24.
    N.F. Enke, B.I. Sandor: Cyclic plasticity analysis by differential infrared thermography, Proc. VI Int. Cong. Exp. Mech. (1988) pp. 836–842Google Scholar
  25. 26.25.
    S. Quinn, J.M. Dulieu-Barton, J.M. Langlands: Progress in thermoelastic residual stress measurement, Strain 40, 127–133 (2004)Google Scholar
  26. 26.26.
    T.G. Ryall, A.K. Wong: Determining stress components from thermoelastic data – a theoretical study, Mech. Mater. 7, 205–214 (1988)Google Scholar
  27. 26.27.
    P. Stanley: Stress separation from SPATE data for a rotationally symmetrical pressure vessel, Proc. SPIE, Vol. 108(4) (1989) pp. 72–83Google Scholar
  28. 26.28.
    Y.M. Huang, H. Abdel Mohsen, R.E. Rowlands: Determination of individual stresses thermoelastically, Exp. Mech. 30(1), 88–94 (1990)Google Scholar
  29. 26.29.
    Y.M. Huang, R.E. Rowlands, J.R. Lesniak: Simultaneous stress separation, smoothing of measured thermoelastic information, and enhanced boundary data, Exp. Mech. 30, 398–403 (1990)Google Scholar
  30. 26.30.
    W. Weldman, T.G. Ryall, R. Jones: On the determination of stress components in 3-D from thermoelastic data, Compos. Struct. 36, 553–557 (1990)Google Scholar
  31. 26.31.
    Y.M. Huang, R.E. Rowlands: Quantitative stress analysis based on the measured trace of the stress tensor, J. Strain Anal. Eng. Des. 26(1), 58–63 (1991)Google Scholar
  32. 26.32.
    S.A. Dunn: Separation of strain components in composite materials from thermoelastic temperature measurements, J. Appl. Mech. 59, 552–558 (1993)Google Scholar
  33. 26.33.
    J. Rauch, R.E. Rowlands: Determining reliable edge isopachic data from interior thermoelastic measurements, Exp. Mech. 35(2), 174–181 (1995)Google Scholar
  34. 26.34.
    S.T. Lin, R.E. Rowlands: Thermoelastic stress analysis of orthotropic composites, Exp. Mech. 35(3), 257–265 (1995)Google Scholar
  35. 26.35.
    P. Stanley, J.M. Dulieu-Smith: Devices for the experimental determination of individual stresses from thermoelastic data, J. Strain Anal. 31(1), 53–63 (1996)Google Scholar
  36. 26.36.
    Y. Murakami, M. Yoshimura: Determination of all stress components from measurements of the stress invariant by the thermoelastic stress methods, Int. J. Solids Struct. 34, 4449–4461 (1997)zbMATHGoogle Scholar
  37. 26.37.
    S.T. Lin, J.P. Miles, R.E. Rowlands: Image enhancement and stress separation of thermoelastically measured isopachic data under random loading, Exp. Mech. 37(3), 225–231 (1997)Google Scholar
  38. 26.38.
    B.J. Rauch, R.E. Rowlands: Filtering thermoelastically measured isopachic data, Exp. Mech. 37(4), 387–392 (1997)Google Scholar
  39. 26.39.
    K. Kishimot, H. Inque, H. Shinbo, T. Shibuyu: Inverse analysis related to stress separation in thermoelastic stress analysis, JSME Int. J. A 40(2), 108–116 (1997)Google Scholar
  40. 26.40.
    X.L. Gao, R.E. Rowlands: Hybrid method for stress analysis of finite three-dimensional elastic solids, Int. J. Solids Struct. 37, 2727–2751 (2000)zbMATHGoogle Scholar
  41. 26.41.
    B.J. Rauch, R.E. Rowlands: Stress separation of thermoelastically measured isopachics, Exp. Mech. 41(4), 358–367 (2001)Google Scholar
  42. 26.42.
    S. Barone, E.A. Patterson: An alternative finite-difference method for post-processing thermoelastic data using compatibility, J. Strain Anal. 33(6), 437–447 (1998)Google Scholar
  43. 26.43.
    S.T. Lin, R.E. Rowlands: Hybrid stress analysis, J. Opt. Lasers 32, 257–298 (1999)Google Scholar
  44. 26.44.
    J. Rhee, R.E. Rowlands: Thermoelastic-numerical hybrid stresses analysis of holes and cracks in composites, Exp. Mech. 39(4), 349–355 (1999)Google Scholar
  45. 26.45.
    Y.Y. Ni, R.E. Rowlands: Thermoelastically-measured isopachics and BEM for inverse stress analysis on and adjacent to loaded and traction-free boundaries, Session Honoring Prof. J.W. Dally, 14th US Nat. Cong. Theor. Appl. Mech. (Blacksburg 2002)Google Scholar
  46. 26.46.
    T. Sakagami, S. Kubo, Y. Fujinami, Y. Kojima: Application of experimental stress separation techniques by thermoelasticity and photoelasticity to fracture, Proc. ATEM03 (Nagoya 2003)Google Scholar
  47. 26.47.
    H. Inoue, Y. Hirokawa, K. Kishiimoto: Stress separation in thermoelastic stress analysis using nonlinearity of the thermoelastic effect, Proc. ATEM03 (Nagoya 2003)Google Scholar
  48. 26.48.
    S.J. Lin, R.E. Rowlands: Inverse thermoelastic hybrid methods for determining individual stresses in three-dimensional components, Proc. 12th Int. Conf. Exp. Mech. (Bari 2004)Google Scholar
  49. 26.49.
    B.E. Foust, R.E. Rowlands: Inverse stress analysis of diametrically-loaded disk by hybridizing thermoelasticity and Airy stress function, Proc. 12th Int. Conf. Exp. Mech. (Bari 2004)Google Scholar
  50. 26.50.
    P. Stanley, W.K. Chan: The application of thermoelastic stress analysis to composite materials, Proc. SEM Spring Conf. Exp. Mech. (Houston 1987) pp. 536–544Google Scholar
  51. 26.51.
    R.T. Potter: Stress analysis in laminated fibre composites by thermoelastic emission, Proc. 2nd Int. Conf. Stress Anal. Thermoelast. Tech. (London 1987)Google Scholar
  52. 26.52.
    M. Heller, S. Dunn, J.F. Williams, R. Jones: Thermomechanical analysis of composite specimens, Compos. Struct. 11(4), 309–324 (1988)Google Scholar
  53. 26.53.
    K. Kageyama, K. Ueki, M. Kikuchi: Thermoelastic technique applied to stress analysis of carbon fiber reinforced composite materials, Proc. 6th Int. Cong. Exp. Mech. (1980) pp. 931–936Google Scholar
  54. 26.54.
    D. Van Hemelrijck, F. Boulpaep, P. De Wilde, A. Cardon: Stress analysis of fibre reinforced composites by thermoelastic emission, Proc. ICCM9, Vol. VI (Madrid 1993) pp. 859–866Google Scholar
  55. 26.55.
    R.T. Potter, L.J. Greaves: The application of thermoelastic stress analysis techniques to fibre composites. In: Thermoelastic Stress Analysis, ed. by N. Harwood, W.M. Cummings (Adam Hilger, Bristol 1991) pp. 183–197Google Scholar
  56. 26.56.
    P. Stanley, C. Garpoch: Problems and progress in the characterisation and stress analysis of moulded fibre-reinforced composites: a thermoelastic approach, JSME Int. J. A 13(1), 296–304 (2000)Google Scholar
  57. 26.57.
    J.M. Dulieu-Smith, R.A. Shenoi, P.J.C.L. Read, S. Quinn, S.S.J. Moy: Thermoelastic stress analysis of a GRP tee joint, J. Appl. Compos. 4, 283–303 (1997)Google Scholar
  58. 26.58.
    A.K. Wong: A non-adiabatic thermoelastic theory and the use of SPATE on composite laminates, Proc. 9th Int. Conf. Exp. Mech. (Copenhagen 1990) pp. 20–24Google Scholar
  59. 26.59.
    S. Sugimoto, R.E. Rowlands, T. Ishikawa: A thermal conductivity analysis affecting thermoelastic stress measurement of laminated composites, Proc. Int. Conf. Compos. Mater. (ICCM-13) (Beijing 2001)Google Scholar
  60. 26.60.
    Z. Feng, D. Zhang, R.E. Rowlands, B.I. Sandor: Thermoelastic determination of the individual stresses in loaded composites, Exp. Mech. 32(2), 89–95 (1992)Google Scholar
  61. 26.61.
    C.E. Bakis, H.R. Yih, W.W. Stinchcomb, K.L. Reifsnider: Damage initiation and growth in notched laminates under reversed cyclic loading. In: Composite Materials: Fatigue and Fracture, ed. by P.A. Lagace (ASTM, Philadelphia 1989) pp. 66–83Google Scholar
  62. 26.62.
    C.E. Bakis, R.A. Simonds, L.W. Vick, W.W. Stinchcomb: Matrix toughness, long-term behavior, and damage tolerance of notched graphite fiber-reinforced composite material. In: Composite Materials: Testing and Design, Vol. 9, ed. by P. Garbo (American Society for Testing and Materials, Philadelphia 1990) pp. 349–370Google Scholar
  63. 26.63.
    T. Sakagami, K. Ogura: Thermographic NDT of the delamination defects in fibre reinforced plastics, Proc. ATEM 1993 (Kanazawa 1993) pp. 119–124Google Scholar
  64. 26.64.
    P.C. Cunningham, J.M. Dulieu-Barton, R.A. Shenoi: Damage location and identification using infra-red thermography and thermoelastic stress analysis, SPIE 4704, 93–103 (2002)Google Scholar
  65. 26.65.
    Y.M. Shkel, G.H. Kim, R.E. Rowlands: Analysis of functionally-graded composites fabricated by field aided micro-tailoring techniques, Proc. Int. Symp. Exp. Mech. (Taipei 2002)Google Scholar
  66. 26.66.
    J.S. Hawong, J. Suh, R.E. Rowlands: Measuring stress intensity factors in orthotropic composites using SPATE, Proc. Int. Conf. Struct. Fail. Prod. Liabil. Tech. Assur. (Vienna 1995)Google Scholar
  67. 26.67.
    S.T. Lin, Z. Feng, R.E. Rowlands: Thermoelastic determination of stress intensity factors in orthotropic composites using the J-Integral, Eng. Fract. Mech. 56(4), 579–592 (1997)Google Scholar
  68. 26.68.
    S.H. Ju, R.E. Rowlands: Mixed-mode fracture analysis of orthotropic composites, Int. J. Fract. Anal. 120, 601–621 (2003)Google Scholar
  69. 26.69.
    S.H. Ju, R.E. Rowlands: Thermoelastic determination of KI and KII in an orthotropic graphite epoxy composite, J. Compos. Mater. 37(22), 2011–2025 (2003)Google Scholar
  70. 26.70.
    K.Y. He, R.E. Rowlands: Determining stress intensity factors from far-field measured temperatures, Exp. Mech. 44(6), 555–561 (2004)Google Scholar
  71. 26.71.
    K.Y. He: Hybrid Stress and Fracture Analysis of Orthotropic Media. Ph.D. Thesis (University of Wisconsin-Madison, Madison 2000)Google Scholar
  72. 26.72.
    S.H. Ju, R.E. Rowlands: Thermoelastic determination of crack-tip coordinates in composites, Int. J. Solids Struct. 44, 4845–4859 (2007)zbMATHGoogle Scholar
  73. 26.73.
    R. El-Hajjar, R. Haj-Ali: A quantitative thermoelastic stress analysis method for pultruded composites, Compos. Sci. Technol. 63(7), 976–978 (2003)Google Scholar
  74. 26.74.
    R. Vanderby Jr., S.S. Kohles: Thermoelastic stress analysis in cortical bone, J. Biomech. Eng. 113, 418–422 (1991)Google Scholar
  75. 26.75.
    S. Mountain, G.P. Cooper: Thermal evaluation for residual stress analysis (TERSA) – a new technique for assessing residual stress, Proc. SPIE, Vol. 1084 (1989) pp. 103–110Google Scholar
  76. 26.76.
    N. Rajic, A.K. Wong, Y.C. Lam: A thermomechanical technique for measuring residual stress, Exp. Tech. 20, 25–27 (1996)Google Scholar
  77. 26.77.
    A.L. Gyekenyesi, G.Y. Baaklini: Thermoelastic stress analysis: the mean stress effect in metallic alloys, Proc. SPIE – Int. Soc. Opt. Eng., Vol. 3585 (1999) pp. 142–151Google Scholar
  78. 26.78.
    A.L. Gyekenyesi, G.Y. Baaklini: Thermoelastic stress analysis: an NDE tool for residual stress assessment of metallic alloys, J. Eng. Gas Turb. Power 124, 383–387 (2002)Google Scholar
  79. 26.79.
    G.P. Horn, T.J. Mackin, P. Kurath: Estimating the residual fatigue lifetimes of impact-damaged composites using thermoelastic stress analysis, Polym. Compos. 22(3), 420–431 (2001)Google Scholar
  80. 26.80.
    P. Stanley, W.K. Chan: The determination of stress intensity factors and crack-tip velocities from thermoelastic infrared emissions, Proc. Int. Conf. Fatigue Eng. Mater. Struct., Vol. I (Sheffield 1986) pp. 105–114Google Scholar
  81. 26.81.
    P. Stanley, W.K. Chan: Mode II crack studies using the SPATE technique, Proc. Int. Conf. Exp. Mech. (New Orleans 1986) pp. 916–923Google Scholar
  82. 26.82.
    G.P. Leaity, R.A. Smith: The use of SPATE to measure residual stresses and fatigue crack growth, Fatigue Fract. Eng. Mater. Struct. 12, 271–282 (1989)Google Scholar
  83. 26.83.
    P. Stanley, J.M. Dulieu-Smith: Determination of crack-tip parameters from thermoelastic data, Exp. Tech. 20(2), 21–23 (1996)Google Scholar
  84. 26.84.
    J.R. Lesniak, D.J. Bazile, B.R. Boyce, M.J. Zickel, K.E. Cramer, C.S. Welch: Stress intensity measurement via infra-red focal plane array, Proc. ASTM Non-tradit. Meth. Sensing Stress, Strain Damage Mater. Struct. (ASTM, Philadelphia 1996) pp. 271–282Google Scholar
  85. 26.85.
    T. Sakagami, S. Kubo, Y. Fujinami, Y. Kojima: Experimental stress separation technique using thermoelasticity and photoelasticity and its application to fracture mechanics, JSME Int. J. A 47(3), 298–304 (2004)Google Scholar
  86. 26.86.
    R.A. Tomlinson, A.D. Nurse, E.A. Patterson: On determining stress intensity factors for mixed mode cracks from thermoelastic data, Fatigue Fract. Eng. Mater. Struct. 20, 217–226 (1997)Google Scholar
  87. 26.87.
    F.A. Díaz, J.R. Yates, R.A. Tomlinson, E.A. Patterson: Measuring stress intensity factors during fatigue crack growth using thermoelasticity, Fatigue Fract. Eng. Mater. Struct. 27(7), 571–584 (2004)Google Scholar
  88. 26.88.
    F.A. Díaz, J.R. Yates, E.A. Patterson: Some improvements in the analysis of fatigue cracks using thermoelasticity, Int. J. Fatigue 26, 365–376 (2004)Google Scholar
  89. 26.89.
    J. McKelvie: Consideration of the surface temperature response to cyclic thermoelastic heat generation, Proc. SPIE, Vol. 731 (1987) pp. 44–53Google Scholar
  90. 26.90.
    A.K. MacKenzie: Effects of surface coating on infra-red measurements, Proc. SPIE, Vol. 1084 (1989) pp. 59–71Google Scholar
  91. 26.91.
    S. Offermann, J.L. Beaudoin, C. Bissieux, H. Frick: Thermoelastic stress analysis under non-adiabatic conditions, Exp. Mech. 37(4), 409–413 (1997)Google Scholar
  92. 26.92.
    S. Quinn, J.M. Dulieu-Barton: Identification of the sources of non-adiabatic behavior for practical thermoelastic stress analysis, J. Strain Anal. 37(1), 56–71 (2002)Google Scholar
  93. 26.93.
    J.R. Estrada Estrada, E.A. Patterson: Path dependency in thermoelastic stress analysis, Exp. Mech. 44(6), 567–573 (2004)Google Scholar
  94. 26.94.
    N. Harwood, W.M. Cummings: Thermoelastic Stress Analysis (Adam Hilger, Bristol 1991)Google Scholar
  95. 26.95.
    J.M. Dulieu-Barton, P. Stanley: Developments and applications of thermoelastic stress analysis, J. Strain Anal. 33(2), 93–104 (1998)Google Scholar
  96. 26.96.
    G. Pitarresi, E. Patterson: A review of general theory of thermoelastic stress analysis, J. Strain Anal. 38(5), 405–417 (2003)Google Scholar
  97. 26.97.
    J.M. Barton, P. Stanley: Reproducibility and reliability of the response from four SPATE systems, Exp. Mech. 37(4), 440–444 (1997)Google Scholar
  98. 26.98.
    J.R. Lesniak, B.R. Boyce: A high speed differential thermography camera, Proc. SEM Spring Conf. Exp. Mech. (Baltimore 1994) pp. 491–499Google Scholar
  99. 26.99.
    P. Potet: Design of thermal imaging systems with MCT-IRFPA: design rules and performances and application to Peltier cooled IRFPA camera, Proc. SPIE – Int. Soc. Opt. Eng., Vol. 2552(2) (1995) pp. 815–821Google Scholar
  100. 26.100.
    A. Rogalski: Infrared Photon Detectors (SPIE Optical Engineering Press, Bellingham 1995) pp. 363–Google Scholar
  101. 26.101.
    A. Rogalski: Infrared Photon Detectors (SPIE Optical Engineering Press, Bellingham 1995) pp. 377–Google Scholar
  102. 26.102.
    R.J. Keyes: Optical and Infrared Detectors, 2nd edn. (Springer, New York 1980)Google Scholar
  103. 26.103.
    D.M. Rowe: CRC Handbook of Thermoelectrics (CRC Press, Boca Raton 1995)Google Scholar
  104. 26.104.
    EG&G Princeton Applied Research: A Lock-In Primer (EG&G, Princeton 1986)Google Scholar
  105. 26.105.
    N. Harwood, W.M. Cummins: Applications of thermoelastic stress analysis, Strain 22(1), 7–12 (1986)Google Scholar
  106. 26.106.
    N. Harwood, W.M. Cummins: Calibration of the thermoelastic stress analysis technique under sinusoidal and random loading conditions, Strain 25(3), 101–108 (1989)Google Scholar
  107. 26.107.
    D.E. Oliver: Stress pattern analysis by thermal emission. In: Handbook of Experimental Mechanics, ed. by A.S. Kobayashi (Prentice-Hall, Englewood Cliffs 1986), 1st edn.Google Scholar
  108. 26.108.
    D. Van Hemelrijck, L. Schillemans, A.H. Cardon, A.K. Wong: The effects of motion on thermoelastic stress analysis, Compos. Struct. 18, 221–238 (1991)Google Scholar
  109. 26.109.
    J.M. Dulieu-Smith: Alternative calibration techniques for quantitative thermoelastic stress analysis, Strain 31(1), 9–16 (1995)Google Scholar
  110. 26.110.
    J.M. Dulieu-Barton, S. Quinn, C. Erye, P.R. Cunningham: Development of a temperature calibration device for thermoelastic stress analysis, Appl. Mech. Mater. 1,2, 197–204 (2004)Google Scholar
  111. 26.111.
    S.J. Lin, D.R. Matthys, R.E. Rowlands: Individual stresses in perforated plates by thermoelasticity and Airy functions, paper 186, Proc. SEM Conf. Exp. Appl. Mech. (Portland 2005)Google Scholar
  112. 26.112.
    S. Quinn, J. McCabe, S.J. Lin, R.E. Rowlands: Determining orthotropic thermoelastic coefficients from, and thermoelastic stress analysis of, diametrically loaded composite disk, paper 14822, Proc. ASME Int. Cong. (IMECE2006) (Chicago 2006)Google Scholar
  113. 26.113.
    X.P.V. Maldague: Theory and Practice of Infrared Technology for Non-Destructive Testing (Wiley, New York 2001)Google Scholar
  114. 26.114.
    P. Stanley, W.K. Chan: SPATE studies of plates and rings under in-plane loading, Exp. Mech. 1, 57–77 (1986)Google Scholar
  115. 26.115.
    P. Zhang, B.I. Sandor: Thermographic analysis of stress concentrations in a composite, Exp. Mech. 29, 121–125 (1989)Google Scholar
  116. 26.116.
    G. Pitarresi, M.S. Found, E.A. Patterson: An investigation of the influence of macroscopic heterogeneity on the thermoelastic response of fibre reinforced plastics, Compos. Sci. Tech. 65(2), 269–280 (2005)Google Scholar
  117. 26.117.
    R. Sanford, J.W. Dally: A general method for determining mixed-mode stress intensity factors from isochromatic fringe patterns, Eng. Fract. Mech. 11, 621–633 (1979)Google Scholar
  118. 26.118.
    N.I. Muskhelishvili: Some Basic Problems of the Mathematical Theory of Elasticity, 3rd edn. (Noordhoff, Groningen 1963)zbMATHGoogle Scholar
  119. 26.119.
    E.A. Patterson, F.A. Díaz, J.R. Yates: Observations on photo-emission and the process zone of a fatigue crack, J. ASTM Int. J. Test. Eval. 3(6) (2006), paper id JAI13222Google Scholar
  120. 26.120.
    R.J. Greene, E.A. Patterson: An integrated approach to the separation of principal surface stresses using combined thermo-photo-elasticity, Exp. Mech. 46(1), 19–29 (2006)Google Scholar
  121. 26.121.
    T.G. Ryall, P.M. Cox, N.F. Enke: On the determination of dynamic and static stress components from experimental thermoelastic data, Mech. Mater. 14, 47–57 (1992)Google Scholar
  122. 26.122.
    K. Hayabusa, H. Inque, K. Kishimoto, T. Shibuy: Improvement of accuracy of inverse analysis for stress separation in thermoelastic stress analysis, JSME Int. J. A 43(1), 305–313 (2000)Google Scholar
  123. 26.123.
    J.R. Lesniak: Thermoelastic data improvements, Proc. SEM Conf. Exp. Mech. (1993) pp. 721–728Google Scholar
  124. 26.124.
    S. Barone, E.A. Patterson: The development of simultaneous thermo- and photoelasticity for principal stress analysis, Strain 35(2), 57–66 (1999)Google Scholar
  125. 26.125.
    T. Sakagami, S. Kubo, Y. Fujinami, Y. Kojima: Experimental stress separation technique using thermoelasticity and photoelasticity and its application to fracture mechanics, JSME Int. J. A 47(3), 298–304 (2004)Google Scholar
  126. 26.126.
    S. Barone, E.A. Patterson: Full-field separation of principal stresses by combined thermo- and photoelasticity, Exp. Mech. 36(4), 318–324 (1996)Google Scholar
  127. 26.127.
    T.G. Ryall, M. Heller, R. Jones: Determination of stress components from thermoelastic data without boundary conditions, J. Appl. Mech. 59, 841–847 (1992)Google Scholar
  128. 26.128.
    W. Weldman, T.G. Ryall, R. Jones: On the determination of stress components in 3-D from thermoelastic data, Compos. Struct. 36, 553–557 (1990)Google Scholar
  129. 26.129.
    A.L. Audenino, P.M. Calderale: Combined thermoelastic and photoelastic stress analysis of an automotive front suspension link, Int. J. Mater. Prod. Tech. 11(5,6), 345–356 (1996)Google Scholar
  130. 26.130.
    S. Barone, E.A. Patterson: Polymer coatings as a strain witness in thermoelasticity, J. Strain Anal. 33(3), 223–232 (1998)Google Scholar
  131. 26.131.
    G. Cloud: Mechanical-optical properties of polycarbonate resin and some relations with material structure, Exp. Mech. 9(11), 489–500 (1968)Google Scholar
  132. 26.132.
    C.S. Welch, M.J. Zickel: Thermal coating characterization using thermoelasticity, Prog. Quant. NDE 12, 1923–1930 (1993)Google Scholar
  133. 26.133.
    M.J. Zickel, C.S. Welch: Thermal coating characterization using thermoelasticity, II, Prog. Quant. NDE 13, 1849–1855 (1994)Google Scholar
  134. 26.134.
    S.R. Turner, N.G. Pollard: Application of SPATE to high frequency vibration measurement of aero engine components, 2nd Int. Conf. Stress Anal. Thermoelast. Tech. (1987) pp. 17–18Google Scholar
  135. 26.135.
    N.F. Enke: High Temperature Stress Analysis, Theory and Applications of Thermographic Stress Analysis, Workshop Notes ASTM Comm. Week (Atlanta 1988)Google Scholar
  136. 26.136.
    J.R. Lesniak, B. Bartel: Elevated-temperature TSA furnace design, Exp. Tech. 20(2), 10–13 (1996)Google Scholar
  137. 26.137.
    G.A. Hartman: Infrared Damage Detection System (IDDS) for real-time, small-scale damage monitoring, Proc. SEM Ann. Conf. Exp. Mech (Charlotte 2003), paper no. 112Google Scholar
  138. 26.138.
    M.A. Saad: Thermodynamics for Engineers (Prentice Hall, Englewood Cliffs 1966)Google Scholar
  139. 26.139.
    Y.C. Fung: Foundations of Solid Mechanics (Prentice Hall, Englewood Cliffs 1965)Google Scholar
  140. 26.140.
    K.S. Pitzer: Thermodynamics, 3rd edn. (McGraw-Hill, New York 1995)Google Scholar
  141. 26.141.
    J.P. Holman: Thermodynamics, 4th edn. (McGraw-Hill, New York 1988)Google Scholar
  142. 26.142.
    D.C. Look Jr., H.J. Sauer Jr.: Thermodynamics (Wadsworth, California 1982)Google Scholar
  143. 26.143.
    D.J. Johns: Thermal Stress Analysis (Pergamon, Oxford 1965)Google Scholar
  144. 26.144.
    F.P. Beer, E.R. Johnston Jr.: Mechanics of Materials, 2nd edn. (McGraw-Hill, New York 1992)Google Scholar
  145. 26.145.
    R.M. Jones: Mechanics of Composite Materials, 2nd edn. (Taylor and Francis, London 1999)Google Scholar
  146. 26.146.
    L.D. Landau, E.M. Lifshitz: Statistical Physics, Part I (Course of Theoretical Physics) (Butterworth Heinemann, Oxford 2002), english translation by J.B. Sykes, M.J. KearsleyGoogle Scholar
  147. 26.147.
    L.M. Haldorsen: Thermoelastic Stress Analysis System Developed for Industrial Applications. Ph.D. Thesis (Aalborg University, Aalborg 1998)Google Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringThe University of SheffieldSheffieldUK
  2. 2.Department of Mechanical EngineeringMichigan State UniversityEast LansingUSA
  3. 3.Department of Mechanical EngineeringUniversity of WisconsinMadisonUSA

Personalised recommendations