Skip to main content

Composites, Multifunctional

  • Reference work entry
Encyclopedia of Complexity and Systems Science

Definition of the Subject

A composite material is a combination of two or more monophase materials arranged into a single entity material (or “materialstructure”) to produce one or more particular properties that are superior to the same properties exhibited by the individual componentmaterials. Until recently, most composites were designed with a single function in mind, most commonly focusing on improving strength or durabilityof the material. Many high performance composites have been developed and are performing excellently in this respect. For example, carbon fiber reinforcedepoxy is now commonly used in many engineering applications. Carbon fibers have high theoretical strength and high stiffness, but are brittle andtherefore readily break if a very small flaw is initiated. By embedding the fiber in epoxy, which is relatively ductile (less flaw sensitive)compared to the carbon fiber, the composite structure combines the strength and stiffness of the carbon fibers with the...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 3,499.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Nafion® is a registeredtrademark of E.I. DuPont De Nemours & Co.

  2. 2.

    Flemion® is a registeredtrademark of Asahi Glass Group in Japan.

Abbreviations

Biocomposite:

Biological composite materials made through biological processes usually in living organisms. Biocomposites formed through biomineralization processes are referred to as biomineral composites

Biomimetics:

Also known as biomimicry, is the study of biological systems with the aim of applying the methods and processes in these systems to the design of engineering materials and systems to produce engineering devices and structures with superior or comparable functionalities.

Biomineralization:

Mineralization carried out through biological processes to convert organic materials to inorganic materials to form biominerals. Biomineral composites are composed of inorganic minerals formed through biomineralization processes by living organisms in organic matrices of proteins and polysaccharides.

Composite:

A combination of two or more monophase materials arranged into a material (or “material structure”) to produce one or more particular properties that are superior to the same properties exhibited by the individual component materials.

Multifunctionality:

This is the ability of a material or device to perform two or more functions simultaneously or consecutively.

Self healing:

The ability of a structure to repair damage without external intervention. For example, a small cut on a human skin will be repaired automatically by the body. Man-made structures with such ability are under early development.

Bibliography

Primary Literature

  1. Aizenberg J, Lambert G, Weiner S, Addadi L (2002) Factors involved in the formation of amorphous and crystalline calcium carbonate: A study of an ascidian skeleton. J Am Chem Soc 124:32–39

    Google Scholar 

  2. Aizenberg J, Weaver JC, Thanawala MS, Sundar VC, Morse DE, Fratzl P (2005) Skeleton of Euplectella sp.: Structural hierarchy from the nanoscale to the macroscale. Science 309:275–278

    ADS  Google Scholar 

  3. Akle BJ, Bennett MD, Leo DJ (2006) High‐strain ionomeric‐ionic liquid electroactive actuators. Sens Actuators A-Phys 126:173–181

    Google Scholar 

  4. Bagwell RM, McManaman JM, Wetherhold RC (2006) Short shaped copper fibers in an epoxy matrix: Their role in a multifunctional composite. Compos Sci Technol 66:522–530

    Google Scholar 

  5. Bandaru PR (2007) Electrical properties and applications of carbon nanotube structures. J Nanosci Nanotechnol 7:1239–1267

    Google Scholar 

  6. Barthelat F (2007) Biomimetics for next generation materials. Philos Trans R Soc A-Math Phys Eng Sci 365:2907–2919

    MathSciNet  ADS  Google Scholar 

  7. Barthelat F, Tang H, Zavattieri PD, Li CM, Espinosa HD (2007) On the mechanics of mother-of-pearl: A key feature in the material hierarchical structure. J Mech Phys Solids 55:306–337

    ADS  Google Scholar 

  8. Bennett MD, Leo DJ (2004) Ionic liquids as stable solvents for ionic polymer transducers. Sens Actuators: A‑Physical 115:79–90

    Google Scholar 

  9. Bennett MD, Leo DJ, Wilkes GL, Beyer FL, Pechar TW (2006) A model of charge transport and electromechanical transduction in ionic liquid‐swollen Nafion membranes. Polymer 47:6782–6796

    Google Scholar 

  10. Biddiss E, Chau T (2006) Electroactive polymeric sensors in hand prostheses: Bending response of an ionic polymer metal composite. Med Eng Phys 28:568–578

    Google Scholar 

  11. Bleay SM, Loader CB, Hawyes VJ, Humberstone L, Curtis PT (2001) A smart repair system for polymer matrix composites. Compos Pt A-Appl Sci Manuf 32:1767–1776

    Google Scholar 

  12. Brown EN, White SR, Sottos NR (2004) Microcapsule induced toughening in a self‐healing polymer composite. J Mater Sci 39:1703–1710

    ADS  Google Scholar 

  13. Brown EN, White SR, Sottos NR (2005) Retardation and repair of fatigue cracks in a microcapsule toughened epoxy composite – part 1: Manual infiltration. Compos Sci Technol 65:2466–2473

    Google Scholar 

  14. Brown EN, White SR, Sottos NR (2005) Retardation and repair of fatigue cracks in a microcapsule toughened epoxy composite – Part II: In situ self‐healing. Compos Sci Technol 65:2474–2480

    Google Scholar 

  15. Bruet BJF, Qi HJ, Boyce MC, Panas R, Tai K, Frick L, Ortiz C (2005) Nanoscale morphology and indentation of individual nacre tablets from the gastropod mollusc Trochus niloticus. J Mater Res 20:2400–2419

    ADS  Google Scholar 

  16. Bruet BJF, Qi HJ, Boyce MC, Panas R, Tai K, Frick L, Ortiz C (2005) Nanoscale morphology and indentation of individual nacre tablets from the gastropod mollusc Trochus niloticus (vol 20, Pg 2400, 2005). J Mater Res 20:3157–3157

    ADS  Google Scholar 

  17. Chang MC, Ikoma T, Kikuchi M, Tanaka J (2001) Preparation of a porous hydroxyapatite/collagen nanocomposite using glutaraldehyde as a cross‐linkage agent. J Mater Sci Lett 20:1199–1201

    Google Scholar 

  18. Chang MC, Ko CC, Douglas WH (2003) Conformational change of hydroxyapatite/gelatin nanocomposite by glutaraldehyde. Biomaterials 24:3087–3094

    Google Scholar 

  19. Chen J, Ramasubramaniam R, Xue C, Liu H (2006) A versatile, molecular engineering approach to simultaneously enhanced, multifunctional carbon‐nanotube‐polymer composites. Adv Functi Mater 16:114–119

    Google Scholar 

  20. Chen X, Cao G (2007) Review: Atomistic studies of mechanical properties of carbon nanotubes. J Theor Comput Nanosci 4:823–839

    Google Scholar 

  21. Chen X, Huang Y (2008) Nanomechanics modeling and simulation of carbon nanotubes. J Eng Mech 134:211–216

    Google Scholar 

  22. Chen X, Surani FB, Kong X, Punyamurtula VK, Qiao Y (2006) Energy absorption performance of a steel tube enhanced by a nanoporous material functionalized liquid. Appl Phys Lett 89:241918

    ADS  Google Scholar 

  23. Chen XX, Dam MA, Ono K, Mal A, Shen HB, Nutt SR, Sheran K, Wudl F (2002) A thermally re‐mendable cross‐linked polymeric material. Science 295:1698–1702

    ADS  Google Scholar 

  24. Chen XX, Wudl F, Mal AK, Shen HB, Nutt SR (2003) New thermally remendable highly cross‐linked polymeric materials. Macromolecules 36:1802–1807

    ADS  Google Scholar 

  25. Cheng L, Wang L, Karlsson AM (2008) Image analyses of two crustacean exoskeletons and implications of the exoskeletal microstructure on the mechanial behavior. J Mater Res (in press)

    Google Scholar 

  26. Choi H, Sofranko AC, Dionysiou DD (2006) Nanocrystalline TiO2 photocatalytic membranes with a hierarchical mesoporous multilayer structure: Synthesis, characterization, and multifunction. Adv Funct Mater 16:1067–1074

    Google Scholar 

  27. Chung DDL (2001) Electromagnetic interference shielding effectiveness of carbon materials. Carbon 39:279–285

    Google Scholar 

  28. Compere P, Goffinet G (1987) Ultrastructural shape and 3‑dimensional organization of the intracuticular canal systems in the mineralized cuticle of the green crab Carcinus–Maenas. Tissue Cell 19:839–857

    Google Scholar 

  29. Cosemans P, Zhu X, Celis JP, Van Stappen M (2003) Development of low friction wear‐resistant coatings. Surf Coat Technol 174:416–420

    Google Scholar 

  30. Currey JD (1977) Mechanical‐properties of mother of pearl in tension. Proc Royal Soc London Ser B-Biol Sci 196:443–463

    ADS  Google Scholar 

  31. Currey JD (2005) Hierarchies in Biomineral Structures. Science 309:253–254

    Google Scholar 

  32. Darzens S, Karlsson AM (2004) On the microstructural development in platinum‐modified nickel‐aluminide bond coats. Surf Coat Technol 177:108–112

    Google Scholar 

  33. De Stasio G, Schmitt MA, Gellman SH (2005) Spectromicroscopy at the organic‐inorganic interface in biominerals. Am J Sci 305:673–686

    Google Scholar 

  34. Dispenza C, Leone M, Lo Presti C, Librizzi F, Spadaro G, Vetri V (2006) Optical properties of biocompatible polyaniline nano‐composites. J Non-Cryst Solids 352:3835–3840

    ADS  Google Scholar 

  35. Dresselhaus MS, Dresselhaus G, Eklund PC (1996) Science of fullerenes and carbon nanotubes. Academic Press, New York

    Google Scholar 

  36. Dry C (1996) Procedures developed for self‐repair of polymer matrix composite materials. Compos Struct 35:263–269

    Google Scholar 

  37. Erdemir A (2005) Review of engineered tribological interfaces for improved boundary lubrication. Tribol Int 38:249–256

    Google Scholar 

  38. Evans AG, Mumm DR, Hutchinson JW, Meier GH, Petit FS (2001) Mechanisms controlling the durability of thermal barrier coatings. Prog Mater Sci 46:505–553

    Google Scholar 

  39. Ferraris M, Montorsi M, Salvo M (2000) Class coating for Sicf-Sic composites for high‐temperature application. Acta Mater 48:4721–4724

    Google Scholar 

  40. Fincham AG (2007) Structural Biology of the Enamel Proteins. http://www.usc.edu/hsc/dental/Info/Research/9.html. Accessed 19 Sep 2007

  41. Ghosh P, Katti D, Katti K, Mohanty B, Verma D (2005) Mechanical properties of biological nanocomposite nacre: Multiscale modeling and experiments on nacre from Red Abalone. Mater Res Soc Symp Proc 898:7–12

    Google Scholar 

  42. Gilbert PUPA, Abrecht M, Frazer BH (2005) The organic‐mineral interface in biominerals. Rev Miner Geochem 59:157–185

    Google Scholar 

  43. Gooding JJ (2005) Nanostructuring electrodes with carbon nanotubes: A review on electrochemistry and applications for sensing. Electrochimica Acta 50:3049–3060

    Google Scholar 

  44. Guo QG, Song JR, Liu L, Zhang BJ (1999) Relationship between oxidation resistance and structure of B4c-Sic/C composites with self‐healing properties. Carbon 37:33–40

    Google Scholar 

  45. Han A, Chen X, Surani FB, Qiao Y (2008) Rate‐dependent infiltration of a viscous liquid in nanopores. Appl Phys Lett in press

    Google Scholar 

  46. Han A, Qiao YT (2007) Hermal effects on infiltration of a solubility- sensitive volume memory liquid. Phil Mag Lett 87:25–31

    ADS  Google Scholar 

  47. Heitner‐Wirguin C (1996) Recent advances in perfluorinated ionomer membranes: Structure, properties and applications. J Membr Sci 120:1–33

    Google Scholar 

  48. Hernandez E, Goze C, Bernier P, Rubio A (1998) Elastic properties of C and Bxcynz composite nanotubes. Phys Rev Lett 80:4502–4505

    ADS  Google Scholar 

  49. Hughes M, Shaffer MSP, Renouf AC, Singh C, Chen GZ, Fray J, Windle AH (2002) Electrochemical capacitance of nanocomposite films formed by coating aligned arrays of carbon nanotubes with polypyrrole. Adv Mater 14:382–385

    Google Scholar 

  50. Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58

    ADS  Google Scholar 

  51. Iroh JO, Zhu YR, Shah K, Levine K, Rajagopalan RR, Uyar T, Donley M, Mantz R, Johnson J, Voevodin NN, Balbyshev VN, Khramovb AN (2003) Electrochemical synthesis: A novel technique for processing multi‐functional coatings. Prog Org Coat 47:365–375

    Google Scholar 

  52. Katti K, Katti DR, Tang J, Pradhan S, Sarikaya M (2005) Modeling mechanical responses in a laminated biocomposite – Part II: Nonlinear responses and nuances of nanostructure. J Mater Sci 40:1749–1755

    ADS  Google Scholar 

  53. Kessler MR, Sottos NR, White SR (2003) Self‐healing structural composite materials. Compos Pt A-Appl Sci Manuf 34:743–753

    Google Scholar 

  54. Kroto HW, Heath JR, Obrien SC, Curl RF, Smalley RE (1985) C‑60 – Buckminsterfullerene. Nature 318:162–163

    ADS  Google Scholar 

  55. Kumar P, Nukala VV, Šimunović S (2005) Statistical physics models for nacre fracture simulation. Phys Rev E 72:041919

    Google Scholar 

  56. Lee MJ, Jung SH, Kim GS, Moon I, Lee S, Mun MS (2007) Actuation of the artificial muscle based on ionic polymer metal composite by electromyography (Emg) signals. J Intell Mater Syst Struct 18:165–170

    Google Scholar 

  57. Lee S, Kim KJ, Park IS (2007) Modeling and experiment of a muscle‐like linear actuator using an ionic polymer metal composite and its actuation characteristics. Smart Mater Struct 16:583–588

    MathSciNet  ADS  Google Scholar 

  58. Lee SM (1989) Dictionary of composite materials technology. Technomic Publishing Company Inc, Lancaster

    Google Scholar 

  59. Li XD, Xu ZH, Wang RZ (2006) In situ observation of nanograin rotation and deformation in nacre. Nano Lett 6:2301–2304

    ADS  Google Scholar 

  60. Lu JP (1997) Elastic properties of carbon nanotubes and nanoropes. Phys Rev Lett 79:1297–1300

    ADS  Google Scholar 

  61. Ma YF, Ali SR, Dodoo AS, He HX (2006) Enhanced sensitivity for biosensors: Multiple functions of DNA‐wrapped single‐walled carbon nanotubes in self-doped polyaniline nanocomposites. J Phys Chem B 110:16359–16365

    Google Scholar 

  62. Ma ZJ, Huang J, Sun J, Wang GN, Li CZ, Xie LP, Zhang RQ (2007) A novel extrapallial fluid protein controls the morphology of nacre lamellae in the pearl oyster, Pinctada Fucata. J Biol Chem 282:23253–23263

    Google Scholar 

  63. Mayer G (2005) Rigid biological systems as models for synthetic composites. Science 310:1144–1147

    ADS  Google Scholar 

  64. McGee T (2007) Biomimicry: Nacre inspires transparent strong as steel plastic. Science & Technology (biopolymer) http://www.treehugger.com/files/2007/10/plastic_steel.php. Accessed 1 Nov 2007

  65. Metzler RA, Abrecht M, Olabisi RM, Ariosa D, Johnson CJ, Frazer BH, Coppersmith SN, Gilbert PUPA (2007) Architecture of columnar nacre, and implications for its formation mechanism. Phys Rev Lett 98:268102

    ADS  Google Scholar 

  66. Miller RA (1984) Oxidation‐based model for thermal barrier coating life. J Am Ceram Soc 67:517–521

    Google Scholar 

  67. Mirfakhrai T, Madden JDW, Baughman RH (2007) Polymer artificial muscles. Mater Today 10:30–38

    Google Scholar 

  68. Motuku M, Vaidya UK, Janowski GM (1999) Parametric studies on self‐repairing approaches for resin infused composites subjected to low velocity impact. Smart Mater Struct 8:623–638

    ADS  Google Scholar 

  69. Mount AS, Wheeler AP, Paradkar RP, Snider D (2004) Hemocyte‐mediated shell mineralization in the eastern oyster. Science 304:297–300

    ADS  Google Scholar 

  70. Naslain R (2004) Design, preparation and properties of non-oxide CMCS for application in engines and nuclear reactors: An overview. Compos Sci Technol 64:155–170

    Google Scholar 

  71. Naslain R, Guette A, Rebillat F, Pailler R, Langlais F, Bourrat X (2004) Boron‐bearing species in ceramic matrix composites for long-term aerospace applications. J Solid State Chem 177:449–456

    ADS  Google Scholar 

  72. Naslain RR, Pailler R, Bourrat X, Bertrand S, Heurtevent F, Dupel P, Lamouroux F (2001) Synthesis of highly tailored ceramic matrix composites by pressure‐pulsed CVI. Solid State Ion 141:541–548

    Google Scholar 

  73. Nassif N, Pinna N, Gehrke N, Antonietti M, Jager C, Colfen H (2005) Amorphous layer around aragonite platelets in nacre. Proc Natl Acad Sci USA 102:12653–12655

    ADS  Google Scholar 

  74. Nemat‐Nasser S, Li JY (2000) Electromechanical response of ionic polymer‐metal composites. J Appl Phys 87:3321–3331

    Google Scholar 

  75. Nemat‐Nasser S, Wu YX (2003) Comparative experimental study of ionic polymer‐metal composites with different backbone ionomers and in various cation forms. J Appl Phys 93:5255–5267

    Google Scholar 

  76. Nemat‐Nasser S, Wu YX (2006) Tailoring the actuation of ionic polymer‐metal composites. Smart Mater Struct 15:909–923

    Google Scholar 

  77. Neville AC (1975) Biology of the arthropod cuticle. Springer, Berlin

    Google Scholar 

  78. Ozyilmaz AT, Erbil A, Yazici B (2004) Investigation of corrosion behaviour of stainless steel coated with polyaniline via electrochemical impedance spectroscopy. Prog Org Coat 51:47–54

    Google Scholar 

  79. Padture NP, Gell M, Jordan EH (2002) Materials science – Thermal barrier coatings for gas‐turbine engine applications. Science 296:280–284

    ADS  Google Scholar 

  80. Pandey R, Hahn HT (1996) Designing with 4-step braided fabric composites. Compos Sci Technol 56:623–634

    Google Scholar 

  81. Pandey R, Hahn HT (1996) Visualization of 4-step braided fabric composites. Compos Sci Technol 56:161–170

    Google Scholar 

  82. Pang JWC, Bond IP (2005) ‘Bleeding Composites’ – Damage detection and self‐repair using a biomimetic approach. Compos Pt A-Appl Sci Manuf 36:183–188

    Google Scholar 

  83. Pang JWC, Bond IP (2005) A hollow fibre reinforced polymer composite encompassing self‐healing and enhanced damage visibility. Compos Sci Technol 65:1791–1799

    Google Scholar 

  84. Podsiadlo P, Liu ZQ, Paterson D, Messersmith PB, Kotov NA (2007) Fusion of seashell nacre and marine bioadhesive analogs: High‐strength nanocompoisite by layer-by-layer assembly of clay and L-3,4‑dihydroxyphenylaianine polymer. Adv Mater 19:949–955

    Google Scholar 

  85. Qi HJ, Bruet BJF, Palmer JS, Ortiz C, Boyce MC (2006) Micromechanics and macromechanics of the tensile deformation of nacre. In: Holzapfel GA, Ogden RW (eds) Mechanics of biological tissue. Springer, Berlin, pp 189–203

    Google Scholar 

  86. Qiao Y, Cao G, Chen X (2007) Effect of gas molecules on nanofluidic behaviors. J Am Chem Soc 129:2355–2359

    Google Scholar 

  87. Qiao Y, Punyamurtula VK, Han A (2007) Mechanoelectricity of a nanoporous monel – Electrolyte solution system. J Power Sources 164:931

    Google Scholar 

  88. Royal Society of Chemistry (RSC) (2006) Glass bones, education in chemistry. http://www.rsc.org/Education/EiC/issues/2006Nov/GlassBones.asp. Accessed 25 Sep 2007

  89. Sadeghipour K, Salomon R, Neogi S (1992) Development of a novel electrochimically active membrane and “smart” material based vibration sensor/damper. Smart Mater Struct 1:172–179

    ADS  Google Scholar 

  90. Sainz R, Benito AM, Martinez MT, Galindo JF, Sotres J, Baro AM, Corraze B, Chauvet O, Dalton AB, Baughman RH, Maser WK (2005) A soluble and highly functional polyaniline‐carbon nanotube composite. Nanotechnology 16:S150–S154

    ADS  Google Scholar 

  91. Sarikaya M, Fong H, Sunderland N, Flinn BD, Mayer G, Mescher A, Gaino E (2001) Biomimetic model of a sponge‐spicular optical fiber – Mechanical properties and structure. J Mater Res 6:1420–1428

    ADS  Google Scholar 

  92. Sarikaya M, Liu J, Aksay IA (1995) Nacre: Properties, crystallography, morphology and formation. In: Sarikaya M, Aksay IA (eds) Biomimetics design and processing of materials. American Institute of Physics, New York pp 34–90

    Google Scholar 

  93. Sathiyanarayanan S, Devi S, Venkatachari G (2006) Corrosion protection of stainless steel by electropolymerised pani coating. Prog Org Coat 56:114–119

    Google Scholar 

  94. Shahinpoor M, Kim KJ (2000) The effect of surface‐electrode resistance on the performance of ionic polymer‐metal composite (IPMIC) artificial muscles. Smart Mater Struct 9:543–551

    ADS  Google Scholar 

  95. Shahinpoor M, Kim KJ (2001) Ionic polymer‐metal composites: I. fundamentals. Smart Mater Struct 10:819–833

    ADS  Google Scholar 

  96. Shi J, Darzens S, Karlsson AM (2005) Aspects of the morphological evolution in thermal barrier coatings and the intrinsic thermal mismatch therein. Mater Sci Eng A‑Struct Mater Prop Microstruct Processing 392:301–312

    Google Scholar 

  97. Sierakowski RL, Telitchev IY, Zhupanska OI (2008) On the impact response of electrified carbon fiber polymer matrix composites: Effects of electric current intensity and duration. Compos Sci Technol 68:639–649

    Google Scholar 

  98. Snyder DR, Sierakowski RL, Chenette ER, Aus JW (2001) Preliminary assessment of electro‐termo‐magnetically loaded composite panel impact resistance/crack propagation with high speed digital laser photography. 24th international congress on high-speed photography and photonics. Proc SPIE 4183:488–513

    ADS  Google Scholar 

  99. Stiger M, Yanar N, Topping M, Pettit F, Meier G (1999) Thermal barrier coatings for the 21st century. Z Metallkunde 90:1069–1078

    Google Scholar 

  100. Strangman TE (1985) Thermal barrier coatings for turbine airfoils. Thin Solid Films 127:93–105

    ADS  Google Scholar 

  101. Strumpler R, Glatz‐Reichenbach J (1999) Conducting polymer composites. J Electroceram 3:329–346

    Google Scholar 

  102. Tan CK, Blackwood DJ (2003) Corrosion protection by multilayered conducting polymer coatings. Corros Sci 45:545–557

    Google Scholar 

  103. Tang ZY, Kotov NA, Magonov S, Ozturk B (2003) Nanostructured artificial nacre. Nat Mater 2:413–418

    ADS  Google Scholar 

  104. Therriault D, White SR, Lewis JA (2003) Chaotic mixing in three‐dimensional microvascular networks fabricated by direct‐write assembly. Nat Mater 2:265–271

    ADS  Google Scholar 

  105. Thostenson ET, Chou TW (2006) Processing‐structure‐multi‐functional property relationship in carbon nanotube/epoxy composites. Carbon 44:3022–3029

    Google Scholar 

  106. Thostenson ET, Ren ZF, Chou TW (2001) Advances in the science and technology of carbon nanotubes and their composites: A review. Compos Sci Technol 61:1899–1912

    Google Scholar 

  107. Toohey KS, Sottos NR, Lewis JA, Moore JS, White SR (2007) Self‐healing materials with microvascular networks. Nat Mater 6:581–585

    Google Scholar 

  108. University of the Western Cape UWC (2007) Bone, internet BioEd project. http://www.botany.uwc.ac.za/sci_ed/grade10/mammal/bone.htm. Accessed 26 Sep 2007

  109. Veedu VP, Cao AY, Li XS, Ma KG, Soldano C, Kar S, Ajayan PM, Ghasemi‐Nejhad MN (2006) Multifunctional composites using reinforced laminae with carbon‐nanotube forests. Nat Mater 5:457–462

    Google Scholar 

  110. Veprek S, Veprek‐Heijman MGJ, Karvankova P, Prochazka J (2005) Different approaches to superhard coatings and nanocomposites. Thin Solid Films 476:1–29

    Google Scholar 

  111. Wan YZ, Lian JJ, Huang Y, He F, Wang YL, Jiang HJ, Xin JY (2007) Preparation and characterization of three‐dimensional braided carbon/kevlar/epoxy hybrid composites. J Mater Sci 42:1343–1350

    ADS  Google Scholar 

  112. Wang J, Xu CY, Taya M, Kuga Y (2006) Mechanical stability optimization of flemion‐based composite artificial muscles by use of proper solvent. J Mater Res 21:2018–2022

    ADS  Google Scholar 

  113. Wang LP, Zhang JY, Zeng ZX, Lin YM, Hu LT, Xue QJ (2006) Fabrication of a nanocrystalline Ni-Co/Coo functionally graded layer with excellent electrochemical corrosion and tribological performance. Nanotechnology 17:4614–4623

    ADS  Google Scholar 

  114. Weiland LM, Leo DJ (2005) Computational analysis of ionic polymer cluster energetics. J Appl Phys 97:10

    Google Scholar 

  115. White SR, Sottos NR, Geubelle PH, Moore JS, Kessler MR, Sriram SR, Brown EN, Viswanathan S (2001) Autonomic healing of polymer composites. Nature 409:794–797

    ADS  Google Scholar 

  116. Wilt FH (2005) Developmental biology meets materials science: Morphogenesis of biomineralized structures. Dev Biol 280:15–25

    Google Scholar 

  117. Wood RJK (2007) Tribo‐corrosion of coatings: A review. J Phys D-Appl Phys 40:5502–5521

    ADS  Google Scholar 

  118. Wright P (1998) Influence of cyclic strain on life of a PVD TBC. Mater Sci Eng A 245:191–200

    Google Scholar 

  119. Wu XQ, Li JL, Shenoi RA (2006) Measurement of braided preform permeability. Compos Sci Technol 66:3064–3069

    Google Scholar 

  120. Zako M, Takano N (1999) Intelligent material systems using epoxy particles to repair microcracks and delamination damage in GFRP. J Intell Mater Syst Struct 10:836–841

    Google Scholar 

  121. Zhupanska OI, Sierakowski RL (2007) Effects of an electromagnetic field on the mechanical response of composites. J Composite Mater 41:633–652

    ADS  Google Scholar 

Books and Reviews

  1. Bar-Cohen Y (2006) Biomimetics: Biologically inspired technologies. CRC Press Taylor and Francis Group LLC, New York

    Google Scholar 

  2. Currey J (1984) The mechanical adaptations of bones. Princeton University Press, Princeton

    Google Scholar 

  3. Forest Products Laboratory (1999) Wood handbook – Wood as an engineering material. Gen Tech Rep FPL–GTR–113. US Department of Agriculture, Forest Service, Forest Products Laboratory, Madison

    Google Scholar 

  4. Lowenstam HA, Weiner S (1989) On biomineralization. Oxford University Press, New York

    Google Scholar 

  5. Mann S (2001) Biomineralization. Oxford University Press, New York

    Google Scholar 

  6. Wainwright SA, Biggs WD, Currey JD, Gosline JM (1976) Mechanical design in organisms. Wiley, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag

About this entry

Cite this entry

Karlsson, A.M., Adeoye, M.O. (2009). Composites, Multifunctional. In: Meyers, R. (eds) Encyclopedia of Complexity and Systems Science. Springer, New York, NY. https://doi.org/10.1007/978-0-387-30440-3_86

Download citation

Publish with us

Policies and ethics