Skip to main content

Definition of the Subject

Quantum bifurcations (QB) are qualitative phenomena occurring in quantum systems under the variation of some internal or external parameters. Inorder to make this definition a little more precise we add the additional requirement: The qualitative modification of the “behavior” ofa quantum system can be described as QB if it consists of the manifestation for the quantum system of the classical bifurcation presented inclassical dynamic systems which is the classical analog of the initial quantum system. Quantum bifurcations are typical elementary steps leading from thesimplest in some way effective Hamiltonian to more complicated ones underthe variation of external or internal parameters. As internal parameters one may consider the values of exact or approximate integrals of motion. Theconstruction of an effective Hamiltonian is typically based on theaveraging and/or reduction procedure which results in the appearance of “good” quantum...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

Classical limit:

The classical limit is the classical mechanical problem which can be constructed from a given quantum problem by some limiting procedure. During such a construction the classical limiting manifold should be defined which plays the role of classical phase space. As soon as quantum mechanics is more general than classical mechanics, going to the classical limit from a quantum problem is much more reasonable than discussing possible quantizations of classical theories [73].

Energy‐momentum map:

In classical mechanics for any problem which allows the existence of several integrals of motion (typically energy and other integrals often named as momenta) the Energy‐Momentum (EM) map gives the correspondence between the phase space of the initial problem and the space of values of all independent integrals of motion. The energy‐momentum map introduces the natural foliation of the classical phase space into common levels of values of energy and momenta [13,35]. The image of the EM map is the region of the space of possible values of integrals of motion which includes regular and critical values. The quantum analog of the image of the energy‐momentum map is the joint spectrum of mutually commuting quantum observables.

Joint spectrum:

For each quantum problem a maximal set of mutually commuting observables can be introduced [16]. A set of quantum wave functions which are mutual eigenfunctions of all these operators exists. Each such eigenfunction is characterized by eigenvalues of all mutually commuting operators. The representation of mutual eigenvalues of n commuting operators in the n‑dimensional space gives the geometrical visualization of the joint spectrum.

Monodromy :

In general, the monodromy characterizes the evolution of some object after it makes a close path around something. In classical Hamiltonian dynamics the Hamiltonian monodromy describes for completely integrable systems the evolution of the first homology group of the regular fiber of the energy‐momentum map after a close path in the regular part of the base space [13].

For a corresponding quantum problem the quantum monodromy describes the modification of the local structure of the joint spectrum after its propagation along a close path going through a regular region of the lattice.

Quantum bifurcation:

Qualitative modification of the joint spectrum of the mutually commuting observables under the variation of some external (or internal) parameters and associated in the classical limit with the classical bifurcation is named quantum bifurcation [59]. In other words the quantum bifurcation is the manifestation of the classical bifurcation presented in the classical dynamic system in the quantum version of the same system.

Quantum‐classical correspondence:

Starting from any quantum problem the natural question consists of defining the corresponding classical limit, i. e. the classical dynamic variables forming the classical phase space and the associated symplectic structure. Whereas in simplest quantum problems defined in terms of standard position and momentum operators with commutation relation \( { [q_i,p_j]= i \hbar\delta_{ij} } \), \( { [q_i,q_j] } {= [p_i,p_j] = 0 } \) (\( { i,j = 1\ldots n } \)) the classical limit phase space is the 2n‑dimensional Euclidean space with standard symplectic structure on it, the topology of the classical limit manifold in many other important for physical applications cases can be rather non‐trivial [73,87].

Quantum phase transition :

Qualitative modifications of the ground state of a quantum system occurring under the variation of some external parameters at zero temperature are named quantum phase transitions [65]. For finite particle systems the quantum phase transition can be considered as a quantum bifurcation [60].

Spontaneous symmetry breaking:

Qualitative modification of the system of quantum states caused by perturbation which has the same symmetry as the initial problem. Local symmetry of solutions decreases but the number of solutions increases. In the energy spectra of finite particle systems the spontaneous symmetry breaking produces an increase of the “quasidegeneracy”, i. e. formation of clusters of quasi‐degenerate levels whose multiplicity can be much higher than the dimension of the irreducible representations of the global symmetry group [51].

Symmetry breaking :

Qualitative changes in the properties (dynamical behavior, and in particular in the joint spectrum) of quantum systems which are due to modifications of the global symmetry of the problem caused by external (less symmetrical than original problem) perturbation can be described as symmetry breaking effects. Typical effects consist of splitting of degenerate energy levels classified initially according to irreducible representation of the initial symmetry group into less degenerate groups classified according to irreducible representation of the subgroup (the symmetry group of the perturbation) [47].

Bibliography

  1. Arnold VI (1972) Modes and quasimodes. Funct Anal Appl 6:94–101

    Google Scholar 

  2. Arnold VI (1989) Mathematical methods of classical mechanics. Springer, New York

    Google Scholar 

  3. Arnold VI (1992) Catastrophe theory. Springer, Berlin

    Google Scholar 

  4. Arnold VI (1995) Remarks on eigenvalues and eigenvectors of Hermitian matrices, Berry phase, adiabatic connections and quantum Hall effect. Selecta Math New Ser 1:1–19

    MATH  Google Scholar 

  5. Arnold VI (2005) Arnold's problems. Springer, Berlin

    Google Scholar 

  6. Aubry S, Flach S, Kladko K, Olbrich E (1996) Manifestation of classical bifurcation in the spectrum of the integrable quantum dimer. Phys Rev Lett 76:1607–1610

    ADS  Google Scholar 

  7. Bolsinov AV, Fomenko AT (2004) Integrable Hamiltonian systems. Geometry topology classifications. Chapman and Hall/CRC, London

    Google Scholar 

  8. Brodersen S, Zhilinskií BI (1995) Transfer of clusters between the vibrational components of CF4. J Mol Spectrosc 169:1–17

    Google Scholar 

  9. Child MS (2000) In: Jensen P, Bunker PR (eds) Computational molecular spectroscopy, chapter 18. Wiley Interscience, Chichester

    Google Scholar 

  10. Child MS (2001) Quantum level structure and nonlinear classical dynamics. J Mol Spectrosc 210:157–165

    ADS  Google Scholar 

  11. Child MS, Weston T, Tennyson J (1999) Quantum monodromy in the spectrum of H2O and other systems. Mol Phys 96:371–379

    ADS  Google Scholar 

  12. Colin de Verdier Y, Vũ Ngoc S (2003) Singular Bohr–Sommerfeld rules for 2D integrable systems. Ann Ec Norm Sup 36:1–55

    Google Scholar 

  13. Cushman RS, Bates L (1997) Global aspects of classical integrable systems. Birkhäuser, Basel

    MATH  Google Scholar 

  14. Cushman RH, Duistermaat JJ (1988) The quantum mechanical spherical pendulum. Bull Am Math Soc 19:475–479

    MathSciNet  MATH  Google Scholar 

  15. Cushman RH, Sadovskií DA (2000) Monodromy in the hydrogen atom in crossed fields. Physica D 142:166–196

    Google Scholar 

  16. Dirac PAM (1982) The principles of quantum mechanics. Oxford University Press, Oxford

    Google Scholar 

  17. Duistermaat JJ (1980) On global action angle coordinates. Comm Pure Appl Math 33:687–706

    MathSciNet  MATH  Google Scholar 

  18. Duistermaat JJ (1998) The monodromy in the Hamiltonian Hopf bifurcation. Angew Z Math Phys 49:156–161

    MathSciNet  MATH  Google Scholar 

  19. Efstathiou K (2004) Metamorphoses of Hamiltonian systems with symmetry. Lecture Notes in Mathematics, vol 1864. Springer, Heidelberg

    Google Scholar 

  20. Efstathiou K, Cushman RH, Sadovskií DA (2004) Hamiltonian Hopf bifurcation of the hydrogen atom in crossed fields. Physica D 194:250–274

    Google Scholar 

  21. Efstathiou K, Cushman RH, Sadovskií DA (2007) Fractional monodromy in the \( { 1: -2 } \) resonance. Adv Math 209:241–273

    Google Scholar 

  22. Efstathiou K, Joyeux M, Sadovskií DA (2004) Global bending quantum number and the absence of monodromy in the HCN↔CNH molecule. Phys Rev A 69(3):032504-1–15

    Google Scholar 

  23. Efstathiou K, Sadovskií DA, Zhilinskií BI (2004) Analysis of rotation‐vibration relative equilibria on the example of a tetrahedral four atom molecule. SIAM J Dyn Syst 3:261–351

    Google Scholar 

  24. Efstathiou K, Sadovskií DA, Zhilinskií BI (2007) Classification of perturbations of the hydrogen atom by small static electric and magnetic fields. Proc Roy Soc Lond A 463:1771–1790

    Google Scholar 

  25. Ezra GS (1996) Periodic orbit analysis of molecular vibrational spectra: Spectral patterns and dynamical bifurcations in Fermi resonant systems. J Chem Phys 104:26–35

    ADS  Google Scholar 

  26. Faure F, Zhilinskií BI (2000) Topological Chern indices in molecular spectra. Phys Rev Lett 85:960–963

    Google Scholar 

  27. Faure F, Zhilinskií BI (2001) Topological properties of the Born–Oppenheimer approximation and implications for the exact spectrum. Lett Math Phys 55:219–238

    Google Scholar 

  28. Faure F, Zhilinskií BI (2002) Topologically coupled energy bands in molecules. Phys Lett A 302:242–252

    Google Scholar 

  29. Flach S, Willis CR (1998) Discrete breathers. Phys Rep 295:181–264

    MathSciNet  ADS  Google Scholar 

  30. Giacobbe A, Cushman RH, Sadovskií DA, Zhilinskií BI (2004) Monodromy of the quantum \( { 1:1:2 } \) resonant swing spring. J Math Phys 45:5076–5100

    Google Scholar 

  31. Gilmore R (1981) Catastrophe theory for scientists and engineers. Wiley, New York

    MATH  Google Scholar 

  32. Gilmore R, Kais S, Levine RD (1986) Quantum cusp. Phys Rev A 34:2442–2452

    MathSciNet  ADS  Google Scholar 

  33. Golubitsky M, Schaeffer DG (1984) Singularities and groups in bifurcation theory, vol 1. Springer, Berlin

    Google Scholar 

  34. Grondin L, Sadovskií DA, Zhilinskií BI (2002) Monodromy in systems with coupled angular momenta and rearrangement of bands in quantum spectra. Phys Rev A 142:012105-1–15

    Google Scholar 

  35. Guillemin V (1994) Moment maps and combinatorial invariants of Hamiltonian T n-spaces. Birkhäuser, Basel

    Google Scholar 

  36. Harter W (1988) Computer graphical and semiclassical approaches to molecular rotations and vibrations. Comput Phys Rep 8:319–394

    ADS  Google Scholar 

  37. Hines AP, McKenzie RH, Milburn GJ (2005) Quantum entanglement and fixed-point bifurcations. Phys Rev A 71:042303-1–9

    MathSciNet  ADS  Google Scholar 

  38. Hou X-W, Chen J-H, Hu B (2005) Entanglement and bifurcation in the integrable dimer. Phys Rev A 71:034302-1–4

    ADS  Google Scholar 

  39. Joyeux M, Farantos SC, Schinke R (2002) Highly excited motion in molecules: Saddle‐node bifurcations and their fingerprints in vibrational spectra. J Phys Chem A 106:5407–5421

    Google Scholar 

  40. Joyeux M, Grebenschikov S, Bredenbeck J, Schinke R, Farantos SC (2005) Intramolecular dynamics along isomerization and dissociation pathways. In: Toda M, Komatsuzaki T, Konishi T, Berry RS, Rice SA (eds) Geometric Structures of Phase Space in Multidimensional Chaos: A Special Volume of Advances in Chemical Physics, part A, vol 130. Wiley, pp 267–303

    Google Scholar 

  41. Joyeux M, Sadovskií DA, Tennyson J (2003) Monodromy of the LiNC/NCLi molecule. Chem Phys Lett 382:439–442

    Google Scholar 

  42. Joyeux M, Sugny D, Tyng V, Kellman ME, Ishikawa H, Field RW, Beck C, Schinke R (2000) Semiclassical study of the isomerization states of HCP. J Chem Phys 112:4162–4172

    ADS  Google Scholar 

  43. Kellman ME (1995) Algebraic models in spectroscopy. Annu Rev Phys Chem 46:395–422

    ADS  Google Scholar 

  44. Kellman ME, Lynch ED (1986) Fermi resonance phase space structure from experimental spectra. J Chem Phys 85:7216–7223

    ADS  Google Scholar 

  45. Kleman M (1983) Points, lines and walls. Wiley, Chichester

    Google Scholar 

  46. Kozin IN, Sadovskií DA, Zhilinskií BI (2005) Assigning vibrational polyads using relative equilibria: Application to ozone. Spectrochim Acta A 61:2867–2885

    Google Scholar 

  47. Landau L, Lifschits EM (1981) Quantum mechanics, nonrelativistic theory. Elsevier, Amsterdam

    Google Scholar 

  48. Lu Z-M, Kellman ME (1997) Phase space structure of triatomic molecules. J Chem Phys 107:1–15

    ADS  Google Scholar 

  49. Marsden JE, Ratiu TS (1994) Introduction to mechanics and symmetry. Springer, New York

    MATH  Google Scholar 

  50. Mermin ND (1979) The topological theory of defects in ordered media. Rev Mod Phys 51:591–648

    MathSciNet  ADS  Google Scholar 

  51. Michel L (1980) Symmetry defects and broken symmetry, configurations, hidden symmetry. Rev Mod Phys 52:617–651

    ADS  Google Scholar 

  52. Michel L, Zhilinskií BI (2001) Symmetry, invariants, topology, vol I. Basic tools. Phys Rep 341:11–84

    Google Scholar 

  53. Michel L, Zhilinskií BI (2001) Symmetry, invariants, topology, vol III. Rydberg states of atoms and molecules. Basic group theoretical and topological analysis. Phys Rep 341:173–264

    Google Scholar 

  54. Montaldi J, Roberts R, Stewart I (1988) Periodic solutions near equilibria of symmetric Hamiltonian systems. Philos Trans Roy Soc Lond A 325:237–293

    MathSciNet  ADS  MATH  Google Scholar 

  55. Morse M (1925) Relation between the critical points of a real function of n independent variables. Trans Am Math Soc 27:345–396

    MathSciNet  MATH  Google Scholar 

  56. Nakahara M (1990) Geometry, topology and physics. IOP Publishing, Bristol

    MATH  Google Scholar 

  57. Nek͡horoshev NN (1972) Action‐angle variables and their generalizations. Trans Moscow Math Soc 26:180–198

    Google Scholar 

  58. Nek͡horoshev NN, Sadovskií DA, Zhilinskií BI (2006) Fractional Hamiltonian monodromy. Ann Henri Poincaré 7:1099–1211

    Google Scholar 

  59. Pavlichenkov I (1993) Bifurcations in quantum rotational spectra. Phys Rep 226:173–279

    ADS  Google Scholar 

  60. Pavlichenkov I (2006) Quantum bifurcations and quantum phase transitions in rotational spectra. Phys At Nucl 69:1008–1013

    Google Scholar 

  61. Pavlichenkov I, Zhilinskií BI (1988) Critical phenomena in rotational spectra. Ann Phys NY 184:1–32

    Google Scholar 

  62. Pavlov‐Verevkin VB, Sadovskií DA, Zhilinskií BI (1988) On the dynamical meaning of the diabolic points. Europhys Lett 6:573–578

    Google Scholar 

  63. Peters AD, Jaffe C, Gao J, Delos JB (1997) Quantum manifestations of bifurcations of closed orbits in the photodetachment cross section of H\( { ^- } \) in parallel fields. Phys Rev A 56:345–355

    ADS  Google Scholar 

  64. Pierre G, Sadovskií DA, Zhilinskií BI (1989) Organization of quantum bifurcations: Crossover of rovibrational bands in spherical top molecules. Europhys Lett 10:409–414

    Google Scholar 

  65. Sachdev S (1999) Quantum phase transitions. Cambridge University Press, Cambridge

    Google Scholar 

  66. Sadovskií DA, Fulton NG, Henderson JR, Tennyson J, Zhilinskií BI (1993) Nonlinear normal modes and local bending vibrations of H3+ and D3+. J Chem Phys 99(2):906–918

    Google Scholar 

  67. Sadovskií DA, Zhilinskií BI (1993) Group theoretical and topological analysis of localized vibration‐rotation states. Phys Rev A 47(4):2653–2671

    Google Scholar 

  68. Sadovskií DA, Zhilinskií BI (1999) Monodromy, diabolic points, and angular momentum coupling. Phys Lett A 256:235–244

    Google Scholar 

  69. Sadovskií DA, Zhilinskií BI (2006) Quantum monodromy, its generalizations and molecular manifestations. Mol Phys 104:2595–2615

    Google Scholar 

  70. Sadovskií DA, Zhilinskií BI (2007) Hamiltonian systems with detuned \( { 1:1:2 } \) resonance, manifestations of bidromy. Ann Phys NY 322:164–200

    Google Scholar 

  71. Sadovskií DA, Zhilinskií BI, Champion JP, Pierre G (1990) Manifestation of bifurcations and diabolic points in molecular energy spectra. J Chem Phys 92:1523–1537

    Google Scholar 

  72. Sadovskií DA, Zhilinskií BI, Michel L (1996) Collapse of the Zeeman structure of the hydrogen atom in an external electric field. Phys Rev A 53:4064–4047

    Google Scholar 

  73. Simon B (1980) The classical limit of quantum partition functions. Commun Math Phys 71:247–276

    ADS  MATH  Google Scholar 

  74. Somma R, Ortiz G, Barnum H, Knill E, Viola L (2004) Nature and measure of entanglement in quantum phase transitions. Phys Rev A 70:042311-1–21

    MathSciNet  ADS  Google Scholar 

  75. Symington M (2003) Four dimensions from two in symplectic topology. In: Athens GA (ed) Topology and geometry of manifolds. Proc Symp Pure Math, vol 71. AMS, Providence, pp 153–208

    Google Scholar 

  76. Tyng V, Kellman ME (2006) Bending dynamics of acetylene: New modes born in bifurcations of normal modes. J Phys Chem B 119:18859–18871

    Google Scholar 

  77. Uwano Y (1999) A quantum saddle‐node bifurcation in a resonant perturbed oscillator with four parameters. Rep Math Phys 44:267–274

    MathSciNet  ADS  MATH  Google Scholar 

  78. Uzer T (1990) Zeeman effect as an asymmetric top. Phys Rev A 42:5787–5790

    ADS  Google Scholar 

  79. Van der Meer JC (1985) The Hamiltonian Hopf bifurcation. Lect Notes Math, vol 1160. Springer, New York

    Google Scholar 

  80. Vũ Ngoc S (1999) Quantum monodromy in integrable systems. Comm Math Phys 203:465–479

    Google Scholar 

  81. Vũ Ngoc S (2007) Moment polytopes for symplectic manifolds with monodromy. Adv Math 208:909–934

    Google Scholar 

  82. Waalkens H, Dullin HR (2001) Quantum monodromy in prolate ellipsoidal billiards. Ann Phys NY 295:81–112

    MathSciNet  ADS  Google Scholar 

  83. Wang J, Kais S (2004) Scaling of entanglement at a quantum phase transition for a two‐dimensional array of quantum dots. Phys Rev A 70:022301-1-4

    ADS  Google Scholar 

  84. Weyl H (1952) Symmetry. Princeton University Press, Princeton

    MATH  Google Scholar 

  85. Winnewisser M, Winnewisser B, Medvedev I, De Lucia FC, Ross SC, Bates LM (2006) The hidden kernel of molecular quasi‐linearity: Quantum monodromy. J Mol Struct V 798:1–26

    ADS  Google Scholar 

  86. Xiao L, Kellman ME (1990) Catastrophe map classification of the generalized normal‐local transition in Fermi resonance spectra. J Chem Phys 93:5805–5820

    MathSciNet  ADS  Google Scholar 

  87. Zhang W-M, Feng DH, Gilmore R (1990) Coherent states: Theory and some applications. Rev Mod Phys 62:867–927

    MathSciNet  ADS  Google Scholar 

  88. Zhilinskií BI (1996) Topological and symmetry features of intramolecular dynamics through high resolution molecular spectroscopy. Spectrochim Acta A 52:881–900

    Google Scholar 

  89. Zhilinskií BI (2001) Symmetry, invariants, and topology, vol II. Symmetry, invariants, and topology in molecular models. Phys Rep 341:85–171

    Google Scholar 

  90. Zhilinskií BI (2006) Hamiltonian monodromy as lattice defect. In: Monastyrsky M (ed) Topology in condensed matter. Springer series in solid state sciences, vol 150. Springer, Berlin, pp 165–186

    Google Scholar 

  91. Zhilinskií BI, Kozin I, Petrov S (1999) Correlation between asymmetric and spherical top: Imperfect quantum bifurcations. Spectrochim Acta A 55:1471–1484

    Google Scholar 

  92. Zhilinskií BI, Pavlichenkov IM (1988) Critical phenomenon in the rotational spectra of water molecule. Opt Spectrosc 64:688–690

    Google Scholar 

  93. Zhilinskií BI, Petrov SV (1996) Nonlocal bifurcation in the rotational dynamics of an isotope‐substituted A2A\( { _2^* } \) molecule. Opt Spectrosc 81:672–676

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag

About this entry

Cite this entry

Zhilinskií, B. (2009). Quantum Bifurcations. In: Meyers, R. (eds) Encyclopedia of Complexity and Systems Science. Springer, New York, NY. https://doi.org/10.1007/978-0-387-30440-3_425

Download citation

Publish with us

Policies and ethics