Skip to main content

QSAR Modeling and QSAR Based Virtual Screening , Complexity and Challenges of Modern

  • Reference work entry
  • 652 Accesses

Definition of the Subject

In the early days of Quantitative Structure Activity Relationship (QSAR) modeling the experimental datasets were relativelysmall and chemically congeneric and the techniques employed were relatively unsophisticated. Since then, the sizeand complexity of experimental datasets has increased dramatically, and so had the complexity and challenges ofdata analytical approaches. This chapter examines the strategy and the output of the modern QSAR modelingapproaches especially as applied to complex biomolecular datasets. We discuss a data‐analyticalmodeling workflow developedin our laboratory that incorporates modules for combinatorial QSAR model development (i. e., using allpossible binary combinations of available descriptor sets and statistical data modeling techniques), rigorousmodel validation, and virtual screening of available chemical databases to identify novel biologically activecompounds. Our approach places...

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   3,499.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

QSAR – quantitative structure activity relationships:

a method to predict biological activity from chemical structure

Combi-QSAR – combinatorial QSAR:

implies concurrent generation of QSAR models using all possible binary combinations of different descriptor types and model optimization techniques

QSAR modeling workflow:

a hierarchy of QSAR model development and validation protocols that should be followed to establish validated and externally predictive model

kNN – k nearest neighbors:

a pattern recognition approach used in deriving non‐linear QSAR models

Model validation:

a set of computational routines used to establish internal and external predictive power of QSAR models

Applicability domain:

restriction on the chemistry space occupied by compounds for which the prediction of their activity from training set QSAR model is considered reliable.

Bibliography

  1. Hansch C, Fujita T (1964) \( { \rho -\sigma -\pi } \) Analysis. A Method for the Correlation of Biological Activity andChemical Structure. J Amer Chem Soc 86:1616–1626

    Google Scholar 

  2. Hansch C, Leo A, Hoekman D (1995) Exploring QSAR: Hydrophobic, Electronic, andSteric Constants. American Chemical Society, Washington, DC

    Google Scholar 

  3. Verloop A, Hoogenstraaten W, Tipker J (1976) In: Ariens EJ (ed) Drug Design.Academic Press, New York, pp 165

    Google Scholar 

  4. PubChem (2008)http://pubchem.ncbi.nlm.nih.gov/

  5. Roth BL, Kroeze WK (2006) Screening the receptorome yields validated moleculartargets for drug discovery. Curr Pharm Des 12:1785–1795

    Google Scholar 

  6. NCI (2008)http://dtp.nci.nih.gov/docs/3d_database/structural_information/smiles_strings.html

  7. FDA (2008)http://www.fda.gov/cder/Offices/OPS_IO/

  8. NTP (2008)http://ntp.niehs.nih.gov/ntpweb/

  9. DSSTox (2008)http://www.epa.gov/nheerl/dsstox/About.html

  10. Oprea T, Tropsha A (2006) Target, Chemical and BioactivityDatabases – Integration is Key. Drug Discov Today 3:357–365

    Google Scholar 

  11. Tropsha A (2005) Application of Predictive QSAR Models to Database Mining. In:Oprea T (ed) Cheminformatics in Drug Discovery. Wiley, Darmstadt,pp 437–455

    Google Scholar 

  12. Tropsha A (2003) Recent Trends in Quantitative Structure‐ActivityRelationships. In: Abraham D (ed) Burger's Medicinal Chemistry and Drug Discovery. Wiley, New York, pp 49–77

    Google Scholar 

  13. Tropsha A (2006) Predictive QSAR (Quantitative Structure ActivityRelationships) Modeling. In: Martin YC (ed) Comprehensive Medicinal Chemistry II. Elsevier, Oxford,pp 113–126

    Google Scholar 

  14. Papa E, Villa F, Gramatica P (2005) Statistically validated QSARs, based ontheoretical descriptors, for modeling aquatic toxicity of organic chemicals in Pimephales promelas (fathead minnow). J Chem Inf Model45:1256–1266

    Google Scholar 

  15. Tetko IV (2002) Neural network studies 4. Introduction to associative neuralnetworks. J Chem Inf Comput Sci 42:717–728

    Google Scholar 

  16. Zupan J, Novic M, Gasteiger J (1995) Neural Networks withCounter‐Propagation Learning‐Strategy Used for Modeling. Chemom Intell Lab Syst 27:175–187

    Google Scholar 

  17. Devillers J (1996) Strengths and Weaknesses of the back propagation neuralnetwork in QSAR and QSPR studies. In: Devillers J (ed) Genetic Algorithms in Molecular Modeling. Academic Press, London,pp 1–24

    Google Scholar 

  18. Engels MFM, Wouters L, Verbeeck R, Vanhoof G (2002) Outlier mining in highthroughput screening experiments. J Biomol Screen 7:341–351

    Google Scholar 

  19. Schuurmann G, Aptula AO, Kuhne R, Ebert RU (2003) Stepwise discriminationbetween four modes of toxic action of phenols in the Tetrahymena pyriformis assay. Chem Res Toxicol 16:974–987

    Google Scholar 

  20. Xue Y, Li H, Ung CY, Yap CW, Chen YZ (2006) Classification of a diverseset of Tetrahymena pyriformis toxicity chemical compounds from molecular descriptors by statistical learning methods. Chem Res Toxicol19:1030–1039

    Google Scholar 

  21. Breiman L, Friedman JH, Olshen RA, Stone CJ (1984) Classification andRegression Trees. Wadsworth, Co, Belmont

    Google Scholar 

  22. Deconinck E, Hancock T, Coomans D, Massart DL, Vander Heyden Y (2005)Classification of drugs in absorption classes using the classification and regression trees (CART) methodology. J Pharm Biomed Anal39:91–103

    Google Scholar 

  23. MOE (2008)http://www.chemcomp.com/fdept/prodinfo.htm#Cheminformatics

  24. Put R, Perrin C, Questier F, Coomans D, Massart DL, Vander Heyden YV (2003)Classification and regression tree analysis for molecular descriptor selection and retention prediction in chromatographic quantitativestructure‐retention relationship studies. J Chromatogr A 988:261–276

    Google Scholar 

  25. Breiman L (2001) Random forests. Mach Learn45:5–32

    MATH  Google Scholar 

  26. Svetnik V, Liaw A, Tong C, Culberson JC, Sheridan RP, Feuston BP (2003) Randomforest: A classification and regression tool for compound classification and QSAR modeling. J Chem Inf Comput Sci43:s1947–1958

    Google Scholar 

  27. Put R, Xu QS, Massart DL, Heyden YV (2004) Multivariate adaptive regressionsplines (MARS) in chromatographic quantitative structure‐retention relationship studies. J Chromatogr A1055:11–19

    Google Scholar 

  28. Friedman JH (1991) Multivariate Adaptive Regression Splines. Ann Stat19:1–67

    MATH  Google Scholar 

  29. Vapnik VN (1995) The Nature of Statistical Learning Theory. Springer, NewYork

    MATH  Google Scholar 

  30. Aires-de-Sousa J, Gasteiger J (2005) Prediction of enantiomeric excess ina combinatorial library of catalytic enantioselective reactions. J Comb Chem 7:298–301

    Google Scholar 

  31. Oloff S, Mailman RB, Tropsha A (2005) Application of validated QSAR models ofD1 dopaminergic antagonists for database mining. J Med Chem 48:7322–7332

    Google Scholar 

  32. Chohan KK, Paine SW, Waters NJ (2006) Quantitative structure activityrelationships in drug metabolism. Curr Top Med Chem 6:1569–1578

    Google Scholar 

  33. Manallack DT, Ellis DD, Livingstone DJ (1994) Analysis of linear and nonlinearQSAR data using neural networks. J Med Chem 37:3758–3767

    Google Scholar 

  34. Mosier PD, Jurs PC (2002) QSAR/QSPR studies using probabilistic neuralnetworks and generalized regression neural networks. J Chem Inf Comput Sci 42:1460–1470

    Google Scholar 

  35. Zheng W, Tropsha A (2000) Novel variable selection quantitativestructure–property relationship approach based on the k‑nearest‐neighborprinciple. J Chem Inf Comput Sci 40:185–194

    Google Scholar 

  36. Shen M, Beguin C, Golbraikh A, Stables JP, Kohn H, Tropsha A (2004)Application of predictive QSAR models to database mining: identification and experimental validation of novel anticonvulsant compounds. J Med Chem47:2356–2364

    Google Scholar 

  37. Cho SJ, Zheng W, Tropsha A (1998) Rational combinatorial library design2. Rational design of targeted combinatorial peptide libraries using chemical similarity probe and the inverse QSAR approaches. J Chem Inf Comput Sci38:259–268

    Google Scholar 

  38. Oloff S, Zhang S, Sukumar N, Breneman C, Tropsha A (2006) Chemometric analysisof ligand receptor complementarity: identifying Complementary Ligands Based on Receptor Information (CoLiBRI). J Chem Inf Model46:844–851

    Google Scholar 

  39. Kovatcheva A, Golbraikh A, Oloff S, Xiao YD, Zheng W, Wolschann P, BuchbauerG, Tropsha A (2004) Combinatorial QSAR of ambergris fragrance compounds. J Chem Inf Comput Sci 44:582–595

    Google Scholar 

  40. Yao XJ, Panaye A, Doucet JP, Zhang RS, Chen HF, Liu MC, Hu ZD, Fan BT (2004)Comparative study of QSAR/QSPR correlations using support vector machines, radial basis function neural networks, and multiple linear regression. J ChemInf Comput Sci 44:1257–1266

    Google Scholar 

  41. Zhang S, Golbraikh A, Oloff S, Kohn H, Tropsha AA (2006) Novel Automated LazyLearning QSAR (ALL-QSAR) Approach: Method Development, Applications, and Virtual Screening of Chemical Databases Using Validated ALL-QSAR Models. J ChemInf Model 46:1984–1995

    Google Scholar 

  42. Todeschini R, Consonni V (2000) Handbook of molecular descriptors. Wiley,Weinheim

    Google Scholar 

  43. MolconnZ (2008)http://www.edusoft-lc.com/molconn/

  44. Cramer RD III, Patterson DE, Bunce JD (1988) Comparative Molecular FieldAnalysis (CoMFA) 1. Effect of Shape on Binding of Steroids to Carrier Proteins. J Am Chem Soc 110:5959–5967

    Google Scholar 

  45. Klebe G, Abraham U, Mietzner T (1994) Molecular Similarity Indexes in AComparative‐Analysis (Comsia) of Drug Molecules to Correlate and Predict Their Biological‐Activity. J Med Chem37:4130–4146

    Google Scholar 

  46. Kubinyi H, Hamprecht FA, Mietzner T (1998) Three‐dimensionalquantitative similarity‐activity relationships (3D QSiAR) from SEAL similarity matrices. J Med Chem 41:2553–2564

    Google Scholar 

  47. Waller CL (2004) A comparative QSAR study using CoMFA, HQSAR, andFRED/SKEYS paradigms for estrogen receptor binding affinities of structurally diverse compounds. J Chem Inf Comput Sci44:758–765

    Google Scholar 

  48. Pastor M, Cruciani G, Mclay I, Pickett S, Clementi S (2000)GRid‐INdependent descriptors (GRIND): A novel class of alignment‐independent three‐dimensional molecular descriptors. J Med Chem43:3233–3243

    Google Scholar 

  49. Cruciani C, Crivori P, Carrupt PA, Testa B (2000) Molecular fields inquantitative structure‐permeation relationships: the VolSurf approach. J Mol Struct‐Theochem 503:17–30

    Google Scholar 

  50. Kier LB, Hall LH (1986) Molecular Connectivity in Structure‐ActivityAnalysis. Wiley, New York

    Google Scholar 

  51. Kier LB (1987) Inclusion of symmetry as a shape attribute in kappa-indexanalysis. Quant Struct‐Activit Relatsh 6:8–12

    Google Scholar 

  52. Kier LB, Hall LH (1999) Molecular Structure Description: TheElectrotopological State. Academic Press, New York

    Google Scholar 

  53. Brown RD, Martin YC (1998) An evaluation of structural descriptors andclustering methods for use in diversity selection. SAR QSAR Environ Res 8:23–39

    Google Scholar 

  54. Hoffman B, Cho SJ, Zheng W, Wyrick S, Nichols DE, Mailman RB, Tropsha A (1999)Quantitative structure‐activity relationship modeling of dopamine D(1) antagonists using comparative molecular field analysis, geneticalgorithms‐partial least‐squares, and K nearest neighbor methods. J Med Chem 42:3217–3226

    Google Scholar 

  55. Zhang Q, Muegge I (2006) Scaffold hopping through virtual screening using 2Dand 3D similarity descriptors: ranking, voting, and consensus scoring. J Med Chem 49:1536–1548

    Google Scholar 

  56. Cherkasov A (2005) ‘Inductive’ Descriptors. 10 Successful Years inQSAR. Curr Comp Aid Drug Des 1:21–42

    Google Scholar 

  57. Stinson SC (2001) Chiral pharmaceuticals. Chem Eng News79:79

    Google Scholar 

  58. Cho SJ, Tropsha A (1995) Cross‐validated R2‐guided regionselection for comparative molecular field analysis: a simple method to achieve consistent results. J Med Chem38:1060–1066

    Google Scholar 

  59. Carhart RE, Smith DH, Venkataraghavan R (1985) Atom pairs as molecularfeatures in structure‐activity studies: definition and applications. J Chem Inf Comput Sci 25:64–73

    Google Scholar 

  60. Schultz HP, Schultz EB, Schultz TP (1995) Topological Organic‐Chemistry9. Graph‐Theory and Molecular Topological Indexes of Stereoisomeric Organic‐Compounds. J Chem Inf Comput Sci35:864–870

    Google Scholar 

  61. Julian‐Ortiz JV, Alapont CD, Rios‐Santamarina I,Garcia‐Domenech R, Galvez J (1998) Prediction of properties of chiral compounds by molecular topology. J Mol Graphics Model16:14–18

    Google Scholar 

  62. Golbraikh A, Bonchev D, Tropsha A (2001) Novel chirality descriptors derivedfrom molecular topology. J Chem Inf Comput Sci 41:147–158

    Google Scholar 

  63. Golbraikh A, Tropsha A (2003) QSAR modeling using chirality descriptorsderived from molecular topology. J Chem Inf Comput Sci 43:144–154

    Google Scholar 

  64. Golbraikh A, Bonchev D, Tropsha A (2002) Novel ZE‐isomerism descriptorsderived from molecular topology and their application to QSAR analysis. J Chem Inf Comput Sci 42:769–787

    Google Scholar 

  65. Kovatcheva A, Golbraikh A, Oloff S, Feng J, Zheng W, Tropsha A (2005) QSARmodeling of datasets with enantioselective compounds using chirality sensitive molecular descriptors. SAR QSAR Environ Res16:93–102

    Google Scholar 

  66. Gunner OF, Hughes DW, Dumont LM (1991) An integrated approach tothree‐dimensional information management with MACCS-3D. J Chem Inf Comput Sci 31:408–414

    Google Scholar 

  67. Barnard JM, Downs GM (1995) Fingerprint Descriptor Package, 3.1. BarnardChemical Information Ltd, Scheffield

    Google Scholar 

  68. James CA, Weininger D (1995) Daylight Theory Manual. Daylight ChemicalInformation Systems, Aliso Viejo

    Google Scholar 

  69. Durant JL, Leland BA, Henry DR, Nourse JG (2002) Reoptimization of MDL keysfor use in drug discovery. J Chem Inf Comput Sci 42:1273–1280

    Google Scholar 

  70. Deshpande M, Kuramochi M, Karypis J (2002) FrequentSub‐Structure‐Based Approaches for Classifying Chemical Compounds. Proc of the 8th International Conference on Knowledge Discovery and DataMining, Edmonton

    Google Scholar 

  71. Golbraikh A, Tropsha A (2002) Beware of q2! J Mol Graph Model20:269–276

    Google Scholar 

  72. Tropsha A, Gramatica P, Gombar VK (2003) The Importance of Being Earnest:Validation is the Absolute Essential for Successful Application and Interpretation of QSPR Models. Quant Struct Act Relat Comb Sci22:69–77

    Google Scholar 

  73. Jorgensen WL, Tirado‐Rives J (2006) QSAR/QSPR and Proprietary Data. J Chem Inf Model 46:937

    Google Scholar 

  74. Novellino E, Fattorusso C, Greco G (1995) Use of Comparative Molecular FieldAnalysis and Cluster Analysis in Series Design. Pharm Acta Helv 70:149–154

    Google Scholar 

  75. Norinder U (1996) Single and Domain Made Variable Selection in 3D QSARapplications. J Chemomet 10:95–105

    Google Scholar 

  76. Tropsha A, Cho SJ (1998) Cross‐Validated R2‐Guided RegionSelection for CoMFA Studies. In: Kubinyi H, Folkers G, Martin YC (eds) 3D QSAR in Drug Design, 3rd edn. Kluwer, Dordrecht,pp 57–69

    Google Scholar 

  77. Golbraikh A, Tropsha A (2002) Predictive QSAR modeling based on diversitysampling of experimental datasets for the training and test set selection. J Comput Aided Mol Des 16:357–369

    ADS  Google Scholar 

  78. Golbraikh A, Shen M, Xiao Z, Xiao YD, Lee KH, Tropsha A (2003) Rationalselection of training and test sets for the development of validated QSAR models. J Comput Aided Mol Des 17:241–253

    ADS  Google Scholar 

  79. Deconinck E, Coomans D, Vander HY (2007) Exploration of linear modellingtechniques and their combination with multivariate adaptive regression splines to predict gastro‐intestinal absorption of drugs. J Pharm Biomed Anal43:119–130

    Google Scholar 

  80. Verma RP, Hansch C (2006) Cytotoxicity of organic compounds against ovariancancer cells: a quantitative structure‐activity relationship study. Mol Pharm 3:441–450

    Google Scholar 

  81. Pavan M, Netzeva TI, Worth AP (2006) Validation of a QSAR model for acutetoxicity. SAR QSAR Environ Res 17:147–171

    Google Scholar 

  82. Vracko M, Bandelj V, Barbieri P, Benfenati E, Chaudhry Q, Cronin M, DevillersJ, Gallegos A, Gini G, Gramatica P, Helma C, Mazzatorta P, Neagu D, Netzeva T, Pavan M, Patlewicz G, Randic M, Tsakovska I, Worth A (2006) Validation ofcounter propagation neural network models for predictive toxicology according to the OECD principles: a case study. SAR QSAR Environ Res17:265–284

    Google Scholar 

  83. Saliner AG, Netzeva TI, Worth AP (2006) Prediction of estrogenicity:validation of a classification model. SAR QSAR Environ Res 17:195–223

    Google Scholar 

  84. Roberts DW, Aptula AO, Patlewicz G (2006) Mechanistic applicability domainsfor non‐animal based prediction of toxicological endpoints. QSAR analysis of the schiff base applicability domain for skin sensitization. Chem ResToxicol 19:1228–1233

    Google Scholar 

  85. Estrada E, Patlewicz G (2004) On the usefulness of graph‐theoreticdescriptors in predicting theoretical parameters. Phototoxicity of polycyclic aromatic hydrocarbons (PAHs). Croat Chem Acta77:203–211

    Google Scholar 

  86. Moss GP, Cronin MTD (2002) Quantitative structure‐permeabilityrelationships for percutaneous absorption: re‐analysis of steroid data. Int J Pharm 238:105–109

    Google Scholar 

  87. Leo AJ, Hansch C (1999) Role of hydrophobic effects in mechanisticQSAR. Perspect Drug Discov Des 17:1–25

    Google Scholar 

  88. Zhang S, Golbraikh A, Tropsha A (2006) Development of quantitativestructure‐binding affinity relationship models based on novel geometrical chemical descriptors of the protein‐ligand interfaces. J Med Chem49:2713–2724

    Google Scholar 

  89. Kovatcheva A, Buchbauer G, Golbraikh A, Wolschann P (2003) QSAR modeling ofalpha‐campholenic derivatives with sandalwood odor. J Chem Inf Comput Sci 43:259–266

    Google Scholar 

  90. Shen M, Xiao Y, Golbraikh A, Gombar VK, Tropsha A (2003) Development andvalidation of k‑nearest‐neighbor QSPR models of metabolic stability of drug candidates. J Med Chem46:3013–3020

    Google Scholar 

  91. Shen M, LeTiran A, Xiao Y, Golbraikh A, Kohn H, Tropsha A (2002) Quantitativestructure‐activity relationship analysis of functionalized amino acid anticonvulsant agents using k nearest neighbor and simulated annealing PLSmethods. J Med Chem 45:2811–2823

    Google Scholar 

  92. Golbraikh A, Shen M, Xiao Z, Xiao YD, Lee KH, Tropsha A (2003) Rationalselection of training and test sets for the development of validated QSAR models. J Comput Aided Mol Des 17:241–253

    ADS  Google Scholar 

  93. Mandel J (1982) Use of the Singular Value Decomposition inRegression‐Analysis. Am Stat 36:15–24

    Google Scholar 

  94. Afantitis A, Melagraki G, Sarimveis H, Koutentis PA, Markopoulos J,Igglessi‐Markopoulou O (2006) A novel QSAR model for predicting induction of apoptosis by 4-aryl-4H-chromenes. Bioorg Med Chem14:6686–6694

    Google Scholar 

  95. Netzeva TI, Gallegos SA, Worth AP (2006) Comparison of the applicabilitydomain of a quantitative structure‐activity relationship for estrogenicity with a large chemical inventory. Environ Toxicol Chem25:1223–1230

    Google Scholar 

  96. Tong W, Xie Q, Hong H, Shi L, Fang H, Perkins R (2004) Assessment ofprediction confidence and domain extrapolation of two structure‐activity relationship models for predicting estrogen receptor bindingactivity. Environ Health Perspect 112:1249–1254

    Google Scholar 

  97. Helma C (2006) Lazy structure‐activity relationships (lazar) for theprediction of rodent carcinogenicity and Salmonella mutagenicity. Mol Divers 10:147–158

    Google Scholar 

  98. de Cerqueira LP, Golbraikh A, Oloff S, Xiao Y, Tropsha A (2006) CombinatorialQSAR Modeling of P‑Glycoprotein Substrates. J Chem Inf Model 46:1245–1254

    Google Scholar 

  99. Sachs L (1984) Handbook of statistics. Springer

    Google Scholar 

  100. Irwin JJ, Shoichet BK (2005) ZINC – a free database of commerciallyavailable compounds for virtual screening. J Chem Inf Model 45:177–182

    Google Scholar 

  101. Medina‐Franco JL, Golbraikh A, Oloff S, Castillo R, Tropsha A (2005)Quantitative structure‐activity relationship analysis of pyridinone HIV-1 reverse transcriptase inhibitors using the k nearest neighbor method andQSAR-based database mining. J Comput Aided Mol Des 19:229–242

    Google Scholar 

  102. Zhang S, Wei L, Bastow K, Zheng W, Brossi A, Lee KH, Tropsha A (2007)Antitumor Agents 252. Application of validated QSAR models to database mining: discovery of novel tylophorine derivatives as potential anticanceragents. J Comput Aided Mol Des 21:97–112

    ADS  Google Scholar 

  103. Hsieh JH, Wang XS, Teotico D,Golbraikh A, Tropsha A (2008) Differentiation of AmpC beta‐lactamase binders vs. decoys using classificationkNN QSAR modeling and application of the QSAR classifier to virtual screening. J Comput Aided MolDes

    Google Scholar 

  104. Tropsha A, Cho SJ, Zheng W (1999) New Tricks for an Old Dog: Development andApplication of Novel QSAR Methods for Rational Design of Combinatorial Chemical Libraries and Database Mining. In: Parrill AL, Reddy MR (eds) RationalDrug Design: Novel Methodology and Practical Applications. American Chemical Society, Washington DC, pp 198–211

    Google Scholar 

  105. Gussio R, Pattabiraman N, Kellogg GE, Zaharevitz DW (1998) Use of 3D QSARmethodology for data mining the National Cancer Institute Repository of Small Molecules: application to HIV-1 reverse transcriptase inhibition. Methods14:255–263

    Google Scholar 

  106. Tropsha A, Zheng W (2001) Identification of the descriptor pharmacophoresusing variable selection QSAR: applications to database mining. Curr Pharm Des 7:599–612

    Google Scholar 

  107. Hengstler JG, Foth H, Kahl R, Kramer PJ, Lilienblum W, Schulz T,Schweinfurth H (2006) The REACH concept and its impact on toxicological sciences. Toxicology 220:232–239

    Google Scholar 

  108. Richard AM (2006) Future of toxicology–predictive toxicology: Anexpanded view of: chemical toxicity. Chem Res Toxicol 19:1257–1262

    Google Scholar 

  109. Klopman G, Zhu H, Fuller MA, Saiakhov RD (2004) Searching for an enhancedpredictive tool for mutagenicity. SAR QSAR Environ Res 15:251–263

    Google Scholar 

  110. Richard AM, Benigni R (2002) AI and SAR approaches for predicting chemicalcarcinogenicity: Survey and status report. SAR QSAR Environ Res 13:1–19

    Google Scholar 

  111. Yang C, Benz RD, Cheeseman MA (2006) Landscape of current toxicity databasesand database standards. Curr Opin Drug Discov Dev 9:124–133

    Google Scholar 

  112. Zhu H, Tropsha A, Fourches D, Varnek A, Papa E, Gramatica P, Oberg T, Dao P,Cherkasov A, Tetko IV (2008) Combinatorial QSAR Modeling of Chemical Toxicants Tested against Tetrahymena pyriformis. J Chem Inf Model 48:766–784

    Google Scholar 

  113. Schultz TW, Netzeva TI (2004) Development and evaluation of QSARs forecotoxic endpoints: The benzene response‐surface model for Tetrahymena toxicity. In: Cronin MTD, Livingstone DJ (eds) Modeling Environmental Fateand Toxicity. CRC Press, Boca Raton, pp 265–284

    Google Scholar 

  114. Schultz TW (1999) Structure‐toxicity relationships for benzenesevaluated with Tetrahymena pyriformis. Chem Res Toxicol 12:1262–1267

    Google Scholar 

  115. Netzeva TI, Schultz TW (2005) QSARs for the aquatic toxicity of aromaticaldehydes from Tetrahymena data. Chemosphere 61:1632–1643

    Google Scholar 

  116. Schultz TW, Sinks GD, Miller LA (2001) Population growth impairment ofsulfur‐containing compounds to Tetrahymena pyriformis. Environ Toxicol 16:543–549

    Google Scholar 

  117. Schultz TW, Yarbrough JW, Woldemeskel M (2005) Toxicity to Tetrahymena andabiotic thiol reactivity of aromatic isothiocyanates. Cell Biol Toxicol 21:181–189

    Google Scholar 

  118. Aptula AO, Roberts DW, Cronin MTD, Schultz TW (2005)Chemistry‐toxicity relationships for the effects of Di-and trihydroxybenzenes to Tetrahymena pyriformis. Chem Res in Toxicol18:844–854

    Google Scholar 

  119. Schultz TW, Hewitt M, Netzeva TI, Cronin MTD (2007) Assessing applicabilitydomains of toxicological QSARs: Definition, confidence in predicted values, and the role of mechanisms of action. QSAR Comb Sci26:238–254

    Google Scholar 

  120. Netzeva TI, Schultz TW (2005) QSARs for the aquatic toxicity of aromaticaldehydes from Tetrahymena data. Chemosphere 61:1632–1643

    Google Scholar 

  121. Schultz TW, Yarbrough JW, Woldemeskel M (2005) Toxicity to Tetrahymena andabiotic thiol reactivity of aromatic isothiocyanates. Cell Biol Toxicol 21:181–189

    Google Scholar 

  122. Schultz TW, Sinks GD, Miller LA (2001) Population growth impairment ofsulfur‐containing compounds to Tetrahymena pyriformis. Environ Toxicol 16:543–549

    Google Scholar 

  123. Aptula AO, Roberts DW, Cronin MTD, Schultz TW (2005)Chemistry‐toxicity relationships for the effects of Di-and trihydroxybenzenes to Tetrahymena pyriformis. Chem Res Toxicol18:844–854

    Google Scholar 

  124. Schultz TW, Hewitt M, Netzeva TI, Cronin MTD (2007) Assessing applicabilitydomains of toxicological QSARs: Definition, confidence in predicted values, and the role of mechanisms of action. QSAR Comb Sci26:238–254

    Google Scholar 

  125. Schultz TW, Hewitt M, Netzeva TI, Cronin MTD (2007) Assessing applicabilitydomains of toxicological QSARs: Definition, confidence in predicted values, and the role of mechanisms of action. QSAR Comb Sci26:238–254

    Google Scholar 

  126. Schultz TW, Hewitt M, Netzeva TI, Cronin MTD (2007) Assessing applicabilitydomains of toxicological QSARs: Definition, confidence in predicted values, and the role of mechanisms of action. QSAR Comb Sci26:238–254

    Google Scholar 

  127. Aptula AO, Roberts DW, Cronin MTD, Schultz TW (2005)Chemistry‐toxicity relationships for the effects of Di-and trihydroxybenzenes to Tetrahymena pyriformis. Chem Res Toxicol18:844–854

    Google Scholar 

  128. Netzeva TI, Schultz TW (2005) QSARs for the aquatic toxicity of aromaticaldehydes from Tetrahymena data. Chemosphere 61:1632–1643

    Google Scholar 

  129. Schultz TW, Yarbrough JW, Woldemeskel M (2005) Toxicity to Tetrahymena andabiotic thiol reactivity of aromatic isothiocyanates. Cell Biol Toxicol 21:181–189

    Google Scholar 

  130. Schultz TW, Sinks GD, Miller LA (2001) Population growth impairment ofsulfur‐containing compounds to Tetrahymena pyriformis. Environ Toxicol 16:543–549

    Google Scholar 

  131. Gramatica P (2007) Principles of QSAR models validation: internal andexternal. QSAR Comb Sci 26:694–701

    Google Scholar 

  132. Schultz TW (1999) Structure‐toxicity relationships for benzenesevaluated with Tetrahymena pyriformis. Chem Res Toxicol 12:1262–1267

    Google Scholar 

  133. Yang C, Richard AM, Cross KP (2006) The Art of Data Mining the Minefields ofToxicity Databases to Link Chemistry to Biology. Curr Comput‐Aided Drug Des 2:135–150

    Google Scholar 

  134. Maggiora GM (2006) On outliers and activity cliffs–why QSAR oftendisappoints. J Chem Inf Model 46:1535

    Google Scholar 

  135. Stouch TR, Kenyon JR, Johnson SR, Chen XQ, Doweyko A, Li Y (2003) In silicoADME/Tox: why models fail. J Comput Aided Mol Des 17:83–92

    ADS  Google Scholar 

  136. Austin CP, Brady LS, Insel TR, Collins FS (2004) NIH Molecular LibrariesInitiative. Science 306:1138–1139

    Google Scholar 

Download references

Acknowledgments

The studies described in this review were supported in parts by the National Institutes of Health's Cheminformatics Center planning grantP20‐RR20751 and the research grants R01GM066940 and R21GM076059.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag

About this entry

Cite this entry

Tropsha, A. (2009). QSAR Modeling and QSAR Based Virtual Screening , Complexity and Challenges of Modern. In: Meyers, R. (eds) Encyclopedia of Complexity and Systems Science. Springer, New York, NY. https://doi.org/10.1007/978-0-387-30440-3_422

Download citation

Publish with us

Policies and ethics