Skip to main content

Probability Distributions in Complex Systems

  • Reference work entry

Definition of the Subject

This core article for the Encyclopedia of Complexity and System Science (Springer Science) reviews briefly the concepts underlying complex systemsand probability distributions. The latter are often taken as the first quantitative characteristics of complex systems, allowing one to detect thepossible occurrence of regularities providing a step toward defining a classification of the different levels of organization (the“universality classes”). A rapid survey covers the Gaussian law, the power law and the stretched exponential distributions. Thefascination for power laws is then explained, starting from the statistical physics approach to critical phenomena, out-of‐equilibrium phasetransitions, self‐organized criticality, and ending with a large, but not exhaustive, list of mechanisms leading to power lawdistributions. A checklist for testing and qualifying a power law distribution from data is described in seven steps. This essay enlarges thedescription of...

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   3,499.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

Complex system:

A system with a large number of mutually interacting parts, often open to its environment, which self‐organizes its internal structure and its dynamics with novel and sometimes surprising macroscopic “emergent” properties.

Criticality (in physics):

A state in which spontaneous fluctuations of the order parameter occur at all scales, leading to diverging correlation length and susceptibility of the system to external influences.

Power law distribution:

A specific family of statistical distribution appearing as a straight line in a log-log plot; exhibits the property of scale invariance and therefore does not possess characteristic scales.

Self‐organized criticality:

Occurs when the system dynamics are attracted spontaneously, without any obvious need for parameter tuning to a critical state with infinite correlation length and power law statistics.

Stretched‐exponential distribution:

A specific family of sub‐exponential distribution interpolating smoothly between the exponential distribution and the power law family.

Bibliography

  1. Satinover JB, Sornette D (2007) “Illusion of Control” in Minorityand Parrondo Games. Eur Phys J B 60:369‐384

    MathSciNet  Google Scholar 

  2. Satinover JB, Sornette D (2007) Illusion of Control in a BrownianGame. Physica A 386:339‐344

    Google Scholar 

  3. Sornette D (2006) Critical Phenomena in Natural Sciences. Chaos, Fractals,Self‐organization and Disorder: Concepts and Tools, 2nd edn. Springer Series in Synergetics. Springer, Heidelberg

    Google Scholar 

  4. Feller W (1971) An Introduction to Probability Theory and its Applications, volII. John Wiley, New York

    MATH  Google Scholar 

  5. Ruelle D (2004) Conversations on Nonequilibrium Physics With anExtraterrestrial. Phys Today 57(5):48–53

    ADS  Google Scholar 

  6. Zajdenweber D (1976) Hasard et Prévision. Economica,Paris

    Google Scholar 

  7. Zajdenweber D (1997) Scale invariance in Economics and Finance. In: Dubrulle B,Graner F, Sornette D (eds) Scale Invariance and Beyond. EDP Sciences and Springer, Berlin, pp 185–194

    Google Scholar 

  8. Malcai O, Lidar DA, Biham O, Avnir D (1997) Scaling range and cutoffs inempirical fractals. Phys Rev E 56:2817–2828

    ADS  Google Scholar 

  9. Biham O, Malcai O, Lidar DA, Avnir D (1998) Is nature fractal? Response Sci279:785–786

    Google Scholar 

  10. Biham O, Malcai O, Lidar DA, Avnir D (1998) Fractality in nature. Response Sci279:1615–1616

    Google Scholar 

  11. Mandelbrot BB (1998) Is nature fractal? Sci279:783–784

    ADS  Google Scholar 

  12. Mandelbrot BB (1982) The fractal Geometry of Nature. Freeman WH, SanFrancisco

    MATH  Google Scholar 

  13. Aharony A, Feder J (eds) (1989) Fractals in Physics. Phys D38(1–3). North Holland, Amsterdam

    Google Scholar 

  14. Riste T, Sherrington D (eds) (1991) Spontaneous Formation of Space-TimeStructures and Criticality. Proc NATO ASI, Geilo, Norway. Kluwer, Dordrecht

    Google Scholar 

  15. Pisarenko VF, Sornette D (2003) Characterization of the frequency of extremeevents by the Generalized Pareto Distribution. Pure Appl Geophys 160(12):2343–2364

    ADS  Google Scholar 

  16. Jessen AH, Mikosch T (2006) Regularly varying functions. Publ l'Inst Math,Nouvelle serie 79(93):1–23. Preprint http://www.math.ku.dk/%7Emikosch/Preprint/Anders/jessen_mikosch.pdf

  17. Laherrère J, Sornette D (1999) Stretched exponential distributions innature and economy: Fat tails with characteristic scales. Eur Phys J B 2:525–539

    Google Scholar 

  18. Malevergne Y, Pisarenko VF, Sornette D (2005) Empirical Distributions ofLog‐Returns: between the Stretched Exponential and the Power Law? Quant Fin 5(4):379–401

    Google Scholar 

  19. Malevergne Y, Sornette D (2006) Extreme Financial Risks (From Dependence toRisk Management). Springer, Heidelberg

    MATH  Google Scholar 

  20. Frisch U, Sornette D (1997) Extreme deviations and applications. J Phys I,France 7:1155–1171

    Google Scholar 

  21. Willekens E (1988) The structure of the class of subexponentialdistributions. Probab Theory Relat Fields 77:567–581

    MathSciNet  MATH  Google Scholar 

  22. Embrechts P, Klüppelberg CP, Mikosh T (1997) modeling ExtremalEvents. Springer, Berlin

    Google Scholar 

  23. Stuart A, Ord K (1994) Kendall's advances theory of statistics. John Wiley,New York

    Google Scholar 

  24. Bak P (1996) How Nature Works: the Science of Self‐organizedCriticality. Copernicus, New York

    MATH  Google Scholar 

  25. Sornette D (1994) Sweeping of an instability: an alternative toself‐organized criticality to get power laws without parameter tuning. J Phys I Fr 4:209–221

    Google Scholar 

  26. Sornette D (2002) Mechanism for Power laws withoutSelf‐Organization. Int J Mod Phys C 13(2):133–136

    ADS  Google Scholar 

  27. Newman MEJ (2005) Power laws, Pareto distributions and Zipf's law. ContempPhys 46:323–351

    ADS  Google Scholar 

  28. Wilson KG (1979) Problems in physics with many scales of length. Sci Am241:158–179

    Google Scholar 

  29. Stauffer D, Aharony A (1994) Introduction to Percolation Theory, 2ndedn. Taylor & Francis, London, Bristol, PA

    Google Scholar 

  30. Gabrielov A, Newman WI, Knopoff L (1994) Lattice models of Fracture:Sensitivity to the Local Dynamics. Phys Rev E 50:188–197

    ADS  Google Scholar 

  31. Jensen HJ (2000) Self‐Organized Criticality: Emergent ComplexBehavior. In: Physical and Biological Systems. Cambridge Lecture Notes in Physics, Cambridge University Press

    Google Scholar 

  32. Mitzenmacher M (2004) A brief history of generative models for power lawand lognormal distributions. Internet Math 1:226–251

    MathSciNet  MATH  Google Scholar 

  33. Simkin MV, Roychowdhury VP (2006) Re‐inventing Willis. Preprinthttp://arXiv.org/abs/physics/0601192

  34. Sethna JP (2006) Crackling Noise and Avalanches: Scaling, Critical Phenomena,and the Renormalization Group. Lecture notes for Les Houches summer school on Complex Systems, summer 2006

    Google Scholar 

  35. Redner S (2001) A Guide to First‐Passage Processes. CambridgeUniversity Press, New York

    MATH  Google Scholar 

  36. Zygadło R (2006) Flashing annihilation term of a logistic kinetic asa mechanism leading to Pareto distributions. Phys Rev E 77, 021130

    Google Scholar 

  37. Stauffer D, Sornette D (1999) Self‐Organized Percolation Model for StockMarket Fluctuations. Phys A 271(3–4):496–506

    Google Scholar 

  38. Kesten H (1973) Random difference equations and renewal theory for products ofrandom matrices. Acta Math 131:207–248

    MathSciNet  MATH  Google Scholar 

  39. Solomon S, Richmond P (2002) Stable power laws in variableeconomies. Lotka‐Volterra implies Pareto‐Zipf. Eur Phys J B 27:257–261

    ADS  Google Scholar 

  40. Saichev A, Malevergne A, Sornette D (2007) Zipf law from proportional growthwith birth-death processes (working paper)

    Google Scholar 

  41. Reed WJ, Hughes BD (2002) From Gene Families and Genera to Incomes andInternet File Sizes: Why Power Laws are so Common in Nature. Phys Rev E 66:067103

    ADS  Google Scholar 

  42. Cabrera JL, Milton JG (2004) Human stick balancing: Tuning Lévy flightsto improve balance control. Chaos 14(3):691–698

    MathSciNet  ADS  MATH  Google Scholar 

  43. Eurich CW, Pawelzik K (2005) Optimal Control Yields Power Law Behavior. IntConf Artif Neural Netw 2:365–370

    Google Scholar 

  44. Platt N, Spiegel EA, Tresser C (1993) On-off intermittency: A mechanismfor bursting. Phys Rev Lett 70:279–282

    ADS  Google Scholar 

  45. Heagy JF, Platt N, Hammel SM (1994) Characterization of on-offintermittency. Phys Rev E 49:1140–1150

    ADS  Google Scholar 

  46. Clauset A, Shalizi CR, Newman MEJ (2007) Power-law distributions in empiricaldata. Preprint http://arxiv.org/abs/0706.1062

  47. Gourieroux C, Monfort A (1994) Testing non-nested hypotheses. In: Engle RF,McFadden DL (eds) Handbook of Econometrics, Volume IV. Elsevier Science, pp 2583‐2637

    Google Scholar 

  48. Cardy JL (1988) Finite‐Size Scaling. North Holland,Amsterdam

    Google Scholar 

  49. Cranmer K (2001) Kernel estimation in high‐energy physics. Comput PhysCommun 136(3):198–207

    ADS  MATH  Google Scholar 

  50. Sornette D, Knopoff L, Kagan YY, Vanneste C (1996) Rank‐orderingstatistics of extreme events: application to the distribution of large earthquakes. J Geophys Res 101:13883–13893

    ADS  Google Scholar 

  51. Pacheco JF, Scholz C, Sykes L (1992) Changes in frequency‐sizerelationship from small to large earthquakes. Nature 355:71–73

    ADS  Google Scholar 

  52. Main I (2000) Apparent Breaks in Scaling in the Earthquake CumulativeFrequency‐magnitude Distribution: Fact or Artifact? Bull Seismol Soc Am 90:86–97

    Google Scholar 

  53. Gabaix X, Ibragimov R (2008) Rank‐1/2: A simple way to improve theOLS estimation on tail exponents. Work Paper NBER

    Google Scholar 

  54. Hill BM (1975) A simple general approach to inference about the tail ofa distribution. Ann Stat 3:1163–1174

    MATH  Google Scholar 

  55. Drees H, de Haan L, Resnick SI (2000) How to Make a Hill Plot. Ann Stat28(1):254–274

    MATH  Google Scholar 

  56. Resnik SI (1997) Discussion of the Danish Data on Large Fire InsuranceLosses. Astin Bull 27(1):139–152

    Google Scholar 

  57. Pisarenko VF, Sornette D, Rodkin M (2004) A new approach to characterizedeviations in the seismic energy distribution from the Gutenberg–Richter law. Comput Seism 35:138–159

    Google Scholar 

  58. Pisarenko VF, Sornette D (2006) New statistic for financial returndistributions: power law or exponential? Phys A 366:387–400

    Google Scholar 

  59. Lasocki S (2001) Quantitative evidences of complexity of magnitudedistribution in mining‐induced seismicity: Implications for hazard evaluation. 5th International Symposium on Rockbursts and Seismicity inMines. In: van Aswegen G, Durrheim RJ, Ortlepp WD (eds) Dynamic Rock Mass Response to Mining, Symp Ser, vol S27, S Afr Inst Min Metall, Johannesburg,pp 543–550

    Google Scholar 

  60. Lasocki S, Papadimitriou EE (2006) Magnitude distribution complexity revealedin seismicity from Greece. J Geophys Res B11309(111). doi:10.1029/2005JB003794

  61. Anderson PW (1972) More is different (Broken symmetry and the nature of thehierarchical structure of science). Science 177:393–396

    ADS  Google Scholar 

  62. Sornette D, Davis AB, Ide K, Vixie KR, Pisarenko VF, Kamm JR (2007) Algorithmfor Model Validation: Theory and Applications. Proc Nat Acad Sci USA 104(16):6562–6567

    ADS  Google Scholar 

  63. Geller RG, Jackson DD, Kagan YY, Mulargia F (1997) Earthquakes cannot bepredicted. Science 275(5306):1616–1617

    Google Scholar 

  64. Bak P, Paczuski M (1995) Complexity, contingency and criticality. Proc NatAcad Sci USA 92:6689–6696

    ADS  Google Scholar 

  65. Allègre CJ, Le Mouel JL, Provost A (1982) Scaling rules in rockfracture and possible implications for earthquake predictions. Nature 297:47–49

    Google Scholar 

  66. Keilis-Borok V (1990) The lithosphere of the Earth as a large nonlinearsystem. Geophys Monogr Ser 60:81–84

    Google Scholar 

  67. Sornette A, Sornette D (1990) Earthquake rupture as a critical point:Consequences for telluric precursors. Tectonophysics 179:327–334

    ADS  Google Scholar 

  68. Bowman DD, Ouillon G, Sammis CG, Sornette A, Sornette D (1996) Anobservational test of the critical earthquake concept. J Geophys Res 103:24359–24372

    ADS  Google Scholar 

  69. Sammis SG, Sornette D (2002) Positive Feedback, Memory and the Predictabilityof Earthquakes. Proc Nat Acad Sci USA (SUPP1) 99:2501–2508

    Google Scholar 

  70. Huang Y, Saleur H, Sammis CG, Sornette D (1998) Precursors, aftershocks,criticality and self‐organized criticality. Europhys Lett 41:43–48

    ADS  Google Scholar 

  71. National Institute of Standards and Technology (2007) Engineering StatisticalHandbook, National Institute of Standards and Technology. Preprinthttp://www.itl.nist.gov/div898/handbook/prc/section1/prc16.htm

  72. Pollock AA (1989) Acoustic Emission Inspection. In: Metal Handbook, 9th edn,vol 17, Nondestructive Evaluation and Quality Control. ASM International, pp 278–294

    Google Scholar 

  73. Omeltchenko A, Yu J, Kalia RK, Vashishta P (1997) Crack Front Propagation andFracture in a Graphite Sheet: a Molecular‐dynamics Study on Parallel Computers. Phys Rev Lett78:2148–2151

    ADS  Google Scholar 

  74. Fineberg J, Marder M (1999) Instability in Dynamic Fracture. Phys Rep313:2–108

    MathSciNet  ADS  Google Scholar 

  75. Lei X, Kusunose K, Rao MVMS, Nishizawa O, Sato T (2000) Quasi‐staticFault Growth and Cracking in Homogeneous Brittle Rock Under Triaxial Compression Using Acoustic Emission Monitoring. J Geophys Res105:6127–6139

    ADS  Google Scholar 

  76. Wesnousky SG (1994) The Gutenberg‐Richter or characteristic earthquakedistribution, which is it? Bull Seismol Soci Am 84(6):1940–1959

    Google Scholar 

  77. Wesnousky SG (1996) Reply to Yan Kagan's comment On: TheGutenberg‐Richter or characteristic earthquake distribution, which is it? Bull Seismol Soc Am 86(1A):286–291

    Google Scholar 

  78. Kagan YY (1993) Statistics of characteristic earthquakes. Bull SeismolSoc Am 83(1):7–24

    Google Scholar 

  79. Kagan YY (1996) Comment On: The Gutenberg–Richter or characteristicearthquake distribution, which is it? by Wesnousky SG. Bull Seismol Soc Am 86:274–285

    Google Scholar 

  80. Gil G, Sornette D (1996) Landau–Ginzburg theory of self‐organizedcriticality. Phys Rev Lett 76:3991–3994

    ADS  Google Scholar 

  81. Fisher DS, Dahmen K, Ramanathan S, Ben-Zion Y (1997) Statistics of Earthquakesin Simple Models of Heterogeneous Faults. Phys Rev Lett 78:4885–4888

    ADS  Google Scholar 

  82. Ben-Zion Y, Eneva M, Liu Y (2003) Large Earthquake Cycles And IntermittentCriticality On Heterogeneous Faults Due To Evolving Stress And Seismicity. J Geophys ResB6(108):2307. doi:10.1029/2002JB002121

  83. Hillers G, Mai PM, Ben-Zion Y, Ampuero J-P (2007) Statistical Properties ofSeismicity Along Fault Zones at Different Evolutionary Stages. Geophys J Int 169:515–533

    ADS  Google Scholar 

  84. Zöller G, Ben-Zion Y, Holschneider M (2007) Estimating recurrence timesand seismic hazard of large earthquakes on an individual fault. Geophys J Int 170:1300–1310

    Google Scholar 

  85. Ben-Zion (2007) private communication

    Google Scholar 

  86. L'vov VS, Pomyalov A, Procaccia I (2001) Outliers, Extreme Events andMultiscaling. Phys Rev E 6305(5):6118, U158-U166

    Google Scholar 

  87. Johansen A, Sornette D (1998) Stock market crashes are outliers. Eur Phys J B1:141–143

    ADS  Google Scholar 

  88. Johansen A, Sornette D (2001) Large Stock Market Price Drawdowns AreOutliers. J Risk 4(2):69–110. http://arXiv.org/abs/cond-mat/0010050

  89. Johansen A, Sornette D (2007) Shocks, Crash and Bubbles in FinancialMarkets. In press, In: Brussels Economic Review on Non‐linear Financial Analysis 149–2/Summer 2007. Preprinthttp://arXiv.org/abs/cond-mat/0210509

  90. Gopikrishnan P, Meyer M, Amaral LAN, Stanley HE (1998) Inverse cubic law forthe distribution of stock price variations. Eur Phys J B 3:139–140

    ADS  Google Scholar 

  91. Sornette D (2003) Why Stock Markets Crash, Critical Events in ComplexFinancial Systems. Princeton University Press, Princeton, NJ

    MATH  Google Scholar 

  92. Zipf GK (1949) Human behavior and the principle ofleast‐effort. Addison‐Wesley, Cambridge, MA

    Google Scholar 

  93. Karplus WJ (1992) The Heavens are Falling: The Scientific Prediction ofCatastrophes in Our Time. Plenum, New York

    Google Scholar 

  94. Hubert PJ (2003) Robust Statistics. Wiley‐Interscience, NewYork

    Google Scholar 

  95. van der Vaart AW, Gill R, Ripley BD, Ross S, Silverman B, Stein M (2000)Asymptotic Statistics. Cambridge University Press, Cambridge

    Google Scholar 

  96. Wilcox RR (2004) Introduction to Robust Estimation and Hypothesis Testing, 2ndedn. Academic Press, Boston

    Google Scholar 

  97. Joe H (1997) Multivariate models and dependence concepts. Chapman & Hall,London

    MATH  Google Scholar 

  98. Nelsen RB (1998) An Introduction to Copulas, Lectures Notes in statistic139. Springer, New York

    Google Scholar 

  99. Hamilton JD (1989) A New Approach to the Economic Analysis ofNon‐stationary Time Series and the Business Cycle. Econometrica 57:357–384

    MathSciNet  MATH  Google Scholar 

  100. Engle RF, Hendry DF, J Richard F (1983) Exogeneity. Econometrica51:277–304

    MathSciNet  MATH  Google Scholar 

  101. Ericsson N, Irons JS (1994) Testing exogeneity, Advanced Texts inEconometrics. Oxford University Press, Oxford

    Google Scholar 

  102. Sornette D (2002) Predictability of catastrophic events: material rupture,earthquakes, turbulence, financial crashes and human birth. Proc Nat Acad Sci USA 99(SUPP1):2522–2529

    ADS  Google Scholar 

  103. Sornette D (2005) Endogenous versus exogenous origins of crises, in themonograph entitled: Extreme Events in Nature and Society. In: Albeverio S, Jentsch V, Kantz H (eds) Series: The Frontiers Collection. Springer, Heidelberg(e-print at http://arxiv.org/abs/physics/0412026)

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag

About this entry

Cite this entry

Sornette, D. (2009). Probability Distributions in Complex Systems. In: Meyers, R. (eds) Encyclopedia of Complexity and Systems Science. Springer, New York, NY. https://doi.org/10.1007/978-0-387-30440-3_418

Download citation

Publish with us

Policies and ethics