Skip to main content

Pressure and Equilibrium States in Ergodic Theory

  • Reference work entry
Encyclopedia of Complexity and Systems Science

Definition of the Subject

Gibbs and equilibrium states of one-dimensional lattice models in statistical physics play a prominent role in the statisticaltheory of chaotic dynamics. They first appear in the ergodictheory of certain differentiable dynamical systems, called “uniformly hyperbolic systems”, mainly Anosov and Axiom A diffeomorphisms (andflows). The central idea is to “code” the orbits of these systems into (infinite) symbolic sequences of symbols by following their history ona finite partition of their phase space. This defines a nice shift dynamical system called a subshift of finite type or a topologicalMarkov chain. Then the construction of their “natural” invariant measures and the study of their properties are carried out at the symboliclevel by constructing certain equilibrium states in the sense of statistical mechanics which turn out to be also Gibbs states. The study of uniformlyhyperbolic systems brought out several...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

Dynamical system:

In this article: a continuous transformation T of a compact metric space X. For each \( { x\in X } \), the transformation T generates a trajectory \( { (x,Tx,T^2x,\dots) } \).

Invariant measure:

In this article: a probability measure µ on X which is invariant under the transformation T, i.?e., for which \( { \langle f\circ T,\mu\rangle=\langle f,\mu\rangle } \) for each continuous \( { f\colon X\to\mathbb{R} } \). Here \( { \langle f,\mu\rangle } \) is a short-hand notation for \( { \int_X f\,\mathrm{d}\mu } \). The triple \( { (X,T,\mu) } \) is called a measure-preserving dynamical system.

Ergodic theory:

Ergodic theory is the mathematical theory of measure-preserving dynamical systems.

Entropy:

In this article: the maximal rate of information gain per time that can be achieved by coarse-grained observations on a measure-preserving dynamical system. This quantity is often denoted \( { h(\mu) } \).

Equilibrium state:

In general, a given dynamical system \( { T\colon X\to X } \) admits a huge number of invariant measures. Given some continuous \( { \phi \colon X\to\mathbb{R} } \) (“potential”), those invariant measures which maximize a functional of the form \( { F(\mu)=h(\mu)+\langle \phi,\mu\rangle } \) are called “equilibrium states” for ?.

Pressure:

The maximum of the functional \( { F(\mu) } \) is denoted by \( { P(\phi) } \) and called the “topological pressure” of ?, or simply the “pressure” of ?.

Gibbs state:

In many cases, equilibrium states have a local structure that is determined by the local properties of the potential ?. They are called “Gibbs states”.

Sinai–Ruelle–Bowen measure:

Special equilibrium or Gibbs states that describe the statistics of the attractor of certain smooth dynamical systems.

Bibliography

  1. Baladi V (2000) Positive transfer operators and decay of correlations. AdvancedSeries in Nonlinear Dynamics, vol 16. World Scientific, Singapore

    Google Scholar 

  2. Bowen R (1970) Markov partitions for Axiom A diffeomorphisms. AmerJ Math 92:725–747

    MathSciNet  ADS  MATH  Google Scholar 

  3. Bowen R (1974/1975) Some systems with unique equilibrium states. Math SystTheory 8:193–202

    Google Scholar 

  4. Bowen R (1974/75) Bernoulli equilibrium states forAxiom A diffeomorphisms. Math Syst Theory 8:289–294

    Google Scholar 

  5. Bowen R (1979) Hausdorff dimension of quasicircles. Inst Hautes Études SciPubl Math 50:11–25

    MathSciNet  MATH  Google Scholar 

  6. Bowen R (2008) Equilibrium states and the ergodic theory of Anosovdiffeomorphisms. Lecture Notes in Mathematics, vol 470, 2nd edn (1st edn 1975). Springer, Berlin

    Google Scholar 

  7. Bowen R, Ruelle D (1975) The ergodic theory of Axiom A flows. Invent Math29:181–202

    MathSciNet  ADS  MATH  Google Scholar 

  8. Brudno AA (1983) Entropy and the complexity of the trajectories ofa dynamical system. Trans Mosc Math Soc 2:127–151

    Google Scholar 

  9. Bruin H, Demers M, Melbourne I (2007) Existence and convergence properties ofphysical measures for certain dynamical systems with holes. Preprint

    Google Scholar 

  10. Bruin H, Keller G (1998) Equilibrium states for S-unimodal maps. Ergodic Theory Dynam Syst 18(4):765–789

    MathSciNet  MATH  Google Scholar 

  11. Bruin H, Todd M (2007) Equilibrium states for potentials with \( { \text{sup } \varphi - \text{inf } \varphi < h_{top}(f) }\). Commun Math Phys doi:10.1007/s00220-0-008-0596-0

  12. Bruin H, Todd M (2007) Equilibrium states for interval maps: the potential\( { -t\log |Df| } \). Preprint

    Google Scholar 

  13. Buzzi J, Sarig O (2003) Uniqueness of equilibrium measures for countableMarkov shifts and multidimensional piecewise expanding maps. Ergod Theory Dynam Syst 23(5):1383–1400

    MathSciNet  MATH  Google Scholar 

  14. Chaitin GJ (1987) Information, randomness & incompleteness. Papers onalgorithmic information theory. World Scientific Series in Computer Science, vol 8. World Scientific, Singapore

    Google Scholar 

  15. Chernov N (2002) Invariant measures for hyperbolic dynamical systems. In:Handbook of Dynamical Systems, vol 1A. North-Holland, pp 321–407

    Google Scholar 

  16. Coelho Z, Parry W (1990) Central limit asymptotics for shifts of finitetype. Isr J Math 69(2):235–249

    MathSciNet  MATH  Google Scholar 

  17. Dobrushin RL (1968) The description of a random field by means ofconditional probabilities and conditions of its regularity. Theory Probab Appl 13:197–224

    Google Scholar 

  18. Dobrushin RL (1968) Gibbsian random fields for lattice systems with pairwiseinteractions. Funct Anal Appl 2:292–301

    MATH  Google Scholar 

  19. Dobrushin RL (1968) The problem of uniqueness of a Gibbsian random fieldand the problem of phase transitions. Funct Anal Appl 2:302–312

    MATH  Google Scholar 

  20. Dobrushin RL (1969) Gibbsian random fields. The general case. Funct Anal Appl3:22–28

    MATH  Google Scholar 

  21. Eizenberg A, Kifer Y, Weiss B (1994) Large deviations for \( { \mathbb{Z}^d } \)-actions. Comm Math Phys164(3):433–454

    MathSciNet  ADS  MATH  Google Scholar 

  22. Falconer K (2003) Fractal geometry. Mathematical foundations and applications,2nd edn. Wiley, San Francisco

    MATH  Google Scholar 

  23. Fisher ME, Felderhof BU (1970) Phase transition in one-dimensionalclusterinteraction fluids: IA. Thermodynamics, IB. Critical behavior. II. Simple logarithmic model. Ann Phys 58:177–280

    ADS  Google Scholar 

  24. Fiebig D, Fiebig U-R, Yuri M (2002) Pressure and equilibrium states forcountable state Markov shifts. Isr J Math 131:221–257

    MathSciNet  MATH  Google Scholar 

  25. Fisher ME (1967) The theory of condensation and the critical point. Physics3:255–283

    Google Scholar 

  26. Gallavotti G (1996) Chaotic hypothesis: Onsager reciprocity andfluctuation-dissipation theorem. J Stat Phys 84:899–925

    MathSciNet  ADS  MATH  Google Scholar 

  27. Gallavotti G, Cohen EGD (1995) Dynamical ensembles in stationarystates. J Stat Phys 80:931–970

    MathSciNet  ADS  MATH  Google Scholar 

  28. Gaspard P, Wang X-J (1988) Sporadicity: Between periodic and chaotic dynamicalbehaviors. In: Proceedings of the National Academy of Sciences USA, vol 85, pp 4591–4595

    Google Scholar 

  29. Georgii H-O (1988) Gibbs measures and phase transitions. In: de GruyterStudies in Mathematics, 9. de Gruyter, Berlin

    Google Scholar 

  30. Gurevich BM, Savchenko SV (1998) Thermodynamic formalism for symbolic Markovchains with a countable number of states. Russ Math Surv 53(2):245–344

    MathSciNet  MATH  Google Scholar 

  31. Hofbauer F (1977) Examples for the nonuniqueness of the equilibrium state.Trans Amer Math Soc 228:223–241

    MathSciNet  MATH  Google Scholar 

  32. Israel R (1979) Convexity in the theory of lattice gases. Princeton Series inPhysics. Princeton University Press

    Google Scholar 

  33. Jakobson M, Swiatek (2002) One-dimensional maps. In: Handbookof Dynamical Systems, vol 1A. North-Holland, Amsterdam, pp 321–407

    Google Scholar 

  34. Jaynes ET (1989) Papers on probability, statistics and statisticalphysics. Kluwer, Dordrecht

    MATH  Google Scholar 

  35. Jiang D, Qian M, Qian M-P (2000) Entropy production and information gain inAxiom A systems. Commun Math Phys 214:389–409

    MathSciNet  ADS  MATH  Google Scholar 

  36. Katok A (2007) Fifty years of entropy in dynamics: 1958–2007. J ModDyn 1(4):545–596

    MathSciNet  MATH  Google Scholar 

  37. Katok A, Hasselblatt B (1995) Introduction to the modern theory of dynamicalsystems. Encyclopaedia of Mathematics and its Applications, vol 54. Cambridge University Press, Cambridge

    Google Scholar 

  38. Keller G (1998) Equilibrium states in ergodic theory. In: London MathematicalSociety Student Texts, vol 42. Cambridge University Press, Cambridge

    Google Scholar 

  39. Kifer Y (1990) Large deviations in dynamical systems and stochastic processes.Trans Amer Math Soc 321:505–524

    MathSciNet  MATH  Google Scholar 

  40. Kolmogorov AN (1983) Combinatorial foundations of information theory and thecalculus of probabilities. Uspekhi Mat Nauk 38:27–36

    MathSciNet  Google Scholar 

  41. Lanford OE, Ruelle D (1969) Observables at infinity and states with shortrange correlations in statistical mechanics. Commun Math Phys 13:194–215

    MathSciNet  ADS  Google Scholar 

  42. Lewis JT, Pfister C-E (1995) Thermodynamic probability theory: some aspects oflarge deviations. Russ Math Surv 50:279–317

    MathSciNet  MATH  Google Scholar 

  43. Lind D, Marcus B (1995) An introduction to symbolic dynamics andcoding. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  44. Misiurewicz M (1976) A short proof of the variational principle fora \( { \mathbb{Z}_{+}^{N} } \) action ona compact space. In: International Conference on Dynamical Systems in Mathematical Physics (Rennes, 1975), Astérisque, No. 40, Soc Math France,pp 147–157

    Google Scholar 

  45. Moulin-Ollagnier J (1985) Ergodic Theory and Statistical Mechanics. In:Lecture Notes in Mathematics, vol 1115. Springer, Berlin

    Google Scholar 

  46. Pesin Y (1997) Dimension theory in dynamical systems. Contemporary views andapplications. University of Chicago Press, Chicago

    Google Scholar 

  47. Pesin Y, Senti S (2008) Equilibrium Measures for Maps with InducingSchemes. J Mod Dyn 2(3):1–31

    MathSciNet  Google Scholar 

  48. Pesin Y, Weiss (1997) The multifractal analysis of Gibbs measures: motivation,mathematical foundation, and examples. Chaos 7(1):89–106

    MathSciNet  ADS  MATH  Google Scholar 

  49. Pollicott M (2000) Rates of mixing for potentials of summable variation.Trans Amer Math Soc 352(2):843–853

    MathSciNet  MATH  Google Scholar 

  50. Pomeau Y, Manneville P (1980) Intermittent transition to turbulence indissipative dynamical systems. Comm Math Phys 74(2):189–197

    MathSciNet  ADS  Google Scholar 

  51. Rondoni L, Mejía-Monasterio C (2007) Fluctuations in nonequilibriumstatistical mechanics: models, mathematical theory, physical mechanisms. Nonlinearity 20(10):R1–R37

    Google Scholar 

  52. Ruelle D (1968) Statistical mechanics of a one-dimensional latticegas. Commun Math Phys 9:267–278

    MathSciNet  ADS  MATH  Google Scholar 

  53. Ruelle D (1973) Statistical mechanics on a compact set with\( { \mathbb{Z}^\nu } \) action satisfyingexpansiveness and specification. Trans Amer Math Soc 185:237–251

    MathSciNet  Google Scholar 

  54. Ruelle D (1976) A measure associated with Axiom A attractors. AmerJ Math 98:619–654

    MathSciNet  MATH  Google Scholar 

  55. Ruelle D (1982) Repellers for real analytic maps. Ergod Theory Dyn Syst2(1):99–107

    MathSciNet  MATH  Google Scholar 

  56. Ruelle D (1996) Positivity of entropy production in nonequilibrium statisticalmechanics. J Stat Phys 85:1–23

    MathSciNet  ADS  MATH  Google Scholar 

  57. Ruelle D (1998) Smooth dynamics and new theoretical ideas in nonequilibriumstatistical mechanics. J Stat Phys 95:393–468

    MathSciNet  ADS  Google Scholar 

  58. Ruelle D (2004) Thermodynamic formalism: The mathematical structures ofequilibrium statistical mechanics. Second edition. Cambridge Mathematical Library. Cambridge University Press, Cambridge

    Google Scholar 

  59. Ruelle D (2003) Extending the definition of entropy to nonequilibrium steadystates. Proc Nat Acad Sc 100(6):3054–3058

    MathSciNet  ADS  MATH  Google Scholar 

  60. Sarig O (1999) Thermodynamic formalism for countable Markov shifts. ErgodTheory Dyn Syst 19(6):1565–1593

    MathSciNet  MATH  Google Scholar 

  61. Sarig O (2001) Phase transitions for countable Markov shifts. Comm Math Phys217(3):555–577

    MathSciNet  ADS  MATH  Google Scholar 

  62. Sarig O (2003) Existence of Gibbs measures for countable Markov shifts. ProcAmer Math Soc 131(6):1751–1758

    MathSciNet  MATH  Google Scholar 

  63. Seneta E (2006) Non-negative matrices and Markov chains. In: SpringerSeries in Statistics. Springer

    Google Scholar 

  64. Sinai Ja G (1968) Markov partitions and C-diffeomorphisms. Funct AnalAppl 2:61–82

    Google Scholar 

  65. Sinai Ja G (1972) Gibbs measures in ergodic theory. Russ Math Surv27(4):21–69

    ADS  Google Scholar 

  66. Thaler M (1980) Estimates of the invariant densities of endomorphisms withindifferent fixed points. Isr J Math 37(4):303–314

    MathSciNet  MATH  Google Scholar 

  67. Walters P (1975) Ruelle's operator theorem and g-measures. Trans Amer Math Soc 214:375–387

    MathSciNet  MATH  Google Scholar 

  68. Walters P (1992) Differentiability properties of the pressure ofa continuous transformation on a compact metric space. J Lond Math Soc (2) 46(3):471–481

    MathSciNet  Google Scholar 

  69. Wang X-J (1989) Statistical physics of temporal intermittency. Phys Rev A40(11):6647–6661

    ADS  Google Scholar 

  70. Young L-S (1990) Large deviations in dynamical systems. Trans Amer Math Soc318:525–543

    MathSciNet  MATH  Google Scholar 

  71. Young L-S (2002) What are SRB measures, and which dynamical systems have them?Dedicated to David Ruelle and Yasha Sinai on the occasion of their 65th birthdays. J Statist Phys108(5–6):733–754

    MathSciNet  MATH  Google Scholar 

  72. Zinsmeister M (2000) Thermodynamic formalism and holomorphic dynamicalsystems. SMF/AMS Texts and Monographs, 2. American Mathematical Society

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag

About this entry

Cite this entry

Chazottes, JR., Keller, G. (2009). Pressure and Equilibrium States in Ergodic Theory . In: Meyers, R. (eds) Encyclopedia of Complexity and Systems Science. Springer, New York, NY. https://doi.org/10.1007/978-0-387-30440-3_414

Download citation

Publish with us

Policies and ethics