Skip to main content

Modular Self-Reconfigurable Robots

  • Reference work entry
Encyclopedia of Complexity and Systems Science

Definition of the Subject

Modular self-reconfigurable (MSR) robots are robots composed of a large number of repeated modules that can rearrange their connectednessto form a large variety of structures. An MSR system can change its shape to suit the task, whether it is climbing through a hole, rolling likea hoop, or assembling a complex structure with many arms.

These systems have three promises:

Versatility:

The ability to reconfigure allows a robot to disassemble and/or reassemble itself to form morphologies that are well-suited for a variety of given tasks.

Robustness:

Since the system is composed of many repeated parts which can be rearranged during operation, faulty parts can be discarded and replaced with an identical module on-the-fly, leading to self-repair.

Low cost:

MSR systems can lower module costs since mass production of identical unit modules has an economic advantage that scales favorably. Also, a range of complex machines can be made from a set of modules saving the...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 3,499.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Bonding mechanism:

A mechanism that allows modules to attach to other modules. Self-reconfigurable modules have the ability to selectively make and break attachments to other modules.

Configuration:

The connectivity arrangement of modules in a system which describes which modules is physically attached and adjacent to which.

Configuration recognition:

The process of automatically determining a modular robot’s connectivity arrangement.

Decentralized control :

A control system in which the controller elements are not central in location (like the brain) but are distributed throughout the system with each component sub-system controlled by one or more controllers.

Enumeration algorithm:

A routine that counts and displays the number of unique, non-isomorphic configurations of a given modular robotic system.

Global bus:

Communication setup such that when one unit talks all other units can listen, as opposed to neighbor to neighbor communication in which communication occurs only between two units.

Isomorphic configurations :

Modular structures that have the same morphology but are arranged differently according to their module labels.

Morphology:

The form or structure of some entity, more specifically, the connectivity arrangement of modules in a system independent of module labels.

Reconfiguration algorithm :

A method that transforms a given robotic configuration to a desired configuration via a sequence of module detachments and reattachments.

Bibliography

Primary Literature

  1. Abrams A, Ghrist R (2004) State complexes for metamorphic robot systems. Int J Robot Res 23(7–8):809–824

    Google Scholar 

  2. Bhat P, Kuffner J, Goldstein S, Srinivasa S (2006) Hierarchical Motion Planning for Self-reconfigurable Modular Robots. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Beijing, October 2006. pp 886–891

    Google Scholar 

  3. Bishop J, Burden S, Klavins E, Kreisberg R, Malone W, Napp N, Nguyen T (2005) Self-organizing programmable parts. In: Proceedings of the 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), August 2005, pp 3684–3691

    Google Scholar 

  4. Butler Z, Kotay K, Rus D, Tomita K (2002) Generic decentralized control for a class of self-reconfigurable robots. In: Proceedings of the 2002 IEEE International Conference on Robotics & Automation (ICRA), Washington DC, May 2002, pp 809–816

    Google Scholar 

  5. Campbell J, Pillai P, Goldstein SC (2005) The robot is the tether: active, adaptive power routing modular robots with unary inter-robot connectors. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Edmonton Alberta, August 2005, pp 4108–4115

    Google Scholar 

  6. Castano A, Shen W-M, Will P (2000) CONRO: Towards Deployable Robots with Inter-Robots Metamorphic Capabilities. Autonom Robot 8(3):309–324

    Google Scholar 

  7. Chartrand G, Lesniak L (1986) Graphs and Digraphs. Wadsworth Publ Co, Belmont

    MATH  Google Scholar 

  8. Chen I, Burdick J (1993) Enumerating the Non-Isomorphic Assembly Configurations of Modular Robotic Systems. In: Proceedings of the IEEE/RSJ Int Conference on Intelligent Robots and Systems (IROS), Yokohama, July 1993, pp 1985–1992

    Google Scholar 

  9. Chiang CJ, Chirikjian G (2001) Modular Robot Motion Planning Using Similarity Metrics. Auton Robot 10(1):91–106

    MATH  Google Scholar 

  10. Chirikjian G (1994) Kinematics of a Metamorphic Robotic System. In: Proceedings of the 1994 IEEE International Conference on Robotics & Automation (ICRA), San Diego 1994, pp 449–55

    Google Scholar 

  11. Fukuda T, Nakagawa S (1988) Dynamically reconfigurable robotic system, Robotics and Automation. In: Proceedings 1988 IEEE International Conference, Philadelphia, 24–29 Apr 1988, pp 1581–1586, vol 3

    Google Scholar 

  12. Gilpin K, Kotay K, Rus D (2007) Miche Modular Shape Formation by self-Disassembly. In: Proceedings of the 2007 IEEE International Conference on Robotics & Automation (ICRA). Rome, April 2007, pp 2241–2247

    Google Scholar 

  13. Jørgensen M, Østergaard E, Lund H (2004) Modular ATRON: modules for a self-reconfigurable robot. In: Proceedings of the 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), October 2004, pp 2068–2073

    Google Scholar 

  14. Kotay K, Rus D, Vona M, McGray C (1998) The Self-reconfigurable robotic molecule. In: Proceedings of the 1998 IEEE Intl. Conf. on Robotics and Automation (ICRA), May 1994, Leuven, Belgium, May 1998, pp 424–431

    Google Scholar 

  15. McKay B (1981) Practical graph isomorphism. Congressus Numerantium 30:45–87

    MathSciNet  Google Scholar 

  16. Moeckel R, Jaquier C, Drapel K, Dittrich E (2006) YaMoR and Bluemove – an autonomous modular robot with Bluetooth interface for exploring adaptive locomotion. Climbing and Walking. Springer, Berlin, pp 285–692

    Google Scholar 

  17. Murata S, Kurokawa H, Kokaji S (1994) Self-Assembling Machine. In: Proceedings of the 1994 IEEE International Conference on Robotics & Automation (ICRA), San Diego, May 1994, pp 441–448

    Google Scholar 

  18. Murata S, Yoshida E, Kamimura A, Kurokawa H, Tomita K, Kokaji S (2002) M-TRAN: Self-Reconfigurable Modular Robotic System. IEEE/ASME Trans Mechatron 7(4):431–41

    Google Scholar 

  19. Park M, Chitta S, Teichman A, Yim M (2008) Automatic Configuration Recognition in Modular Robots. Int J Robot Res 27(3–4):403–421

    Google Scholar 

  20. Rus D, Vona M (2000) A physical implementation of the self-reconfiguring crystallinerobot. In: Proceedings of the 2000 IEEE International Conference on Robotics & Automation (ICRA), San Francisco, April 2000, pp 1726–1733

    Google Scholar 

  21. Salemi B, Moll M, Shen W-M (2006) SUPERBOT: A Deployable, Multi-Functional, and Modular Self-Reconfigurable Robotic System. In: Proceedings of the 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Beijing, October 2006, pp 3636–3641

    Google Scholar 

  22. Sastra J, Chitta S, Yim M (2006) Dynamic Rolling for a modular loop robot. In: Proceedings of the International Symposium on Experimental Robotics, Rio de Janerio, July 2006

    Google Scholar 

  23. Shen W-M, Salemi B, Will P (2002) Hormone-inspired adaptive communication and distributed control for CONRO self-reconfigurable robots. IEEE Trans Robot Autom 18(5):700–712

    Google Scholar 

  24. Vassilvitskii S, Yim M, Suh J (2002) A complete, local and parallel reconfiguration algorithm for cube style modular robots. In: Proceedings of the 2002 IEEE International Conference on Robotics & Automation (ICRA), Washington DC, May 2002, pp 117–122

    Google Scholar 

  25. Walter J, Welch JL, Amato NM (2004) Distributed reconfiguration of metamorphic robot chains. Distrib Comput 17(2):171–189

    Google Scholar 

  26. White PJ, Kopanksi K, Lipson H (2004) Stochastic self-reconfigurable cellular robotics. In: Proceedings of the 2004 IEEE International Conference on Robotics & Automation (ICRA), New Orleans, April 2004, pp 2888–2893

    Google Scholar 

  27. Will P, Castano A (2001) Representing and Discovering the Configuration of Conro Robots. In: Proceedings of the 2001 IEEE International Conference on Robotics & Automation (ICRA), Seoul, May 2001, pp 3503–09

    Google Scholar 

  28. Yim M (1994) Locomotion with a Unit Modular Reconfigurable Robot. Ph?D Thesis, Stanford University

    Google Scholar 

  29. Yim M (1994) New locomotion gaits, Robotics and Automation. In: Proceedings 1994 IEEE International Conference, San Diego, 8–13 May 1994. pp 2508–2514, vol 3

    Google Scholar 

  30. Yim M, Duff DG, Roufas KD (2000) PolyBot: a modular reconfigurable robot. In: Proceedings of the 2000 IEEE International Conference on Robotics & Automation (ICRA), San Francisco, April 2000, pp 514–520

    Google Scholar 

  31. Yim M, Duff DG, Zhang Y (2001) Closed-chain motion with large mechanical advantage. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Maui, October 2001

    Google Scholar 

  32. Yim M, Goldberg D, Casal A (2002) Connectivity Planning for Closed-Chain Reconfiguration. In: Proceedings of the SPIE Vol 4196, Sensor Fusion and Decentralized Control in Robotic Systems III, October 2002, pp 402–412

    Google Scholar 

  33. Yim M, Shen W-M, Salemi B, Rus D, Moll M, Lipson H, Klavins E, Chirikjian GS (2007) Modular Self-Reconfigurable Robot Systems: Grand Challenges of Robotics. IEEE Robot Autom Mag 14(1):43–52

    Google Scholar 

  34. Yim M, Shirmohammadi B, Sastra J (2007) Towards Self-reassembly After Explosion. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), October 2007, pp 2767–2772

    Google Scholar 

  35. Yim M, Zhang Y, Lamping J, Mao E (2001) Distributed control for 3D metamorphosis. Auton Robot 10(1):41–56

    MATH  Google Scholar 

Books and Reviews

  1. Butler Z, Fitch R, Rus D, Wang Y (2002) Distributed Goal Recognition Algorithms for Modular Robots. In: Proceedings of the 2002 IEEE International Conference on Robotics & Automation (ICRA), Washington DC, May 2002, pp 110–16

    Google Scholar 

  2. Fukuda T, Kawauchi Y (1988) Dynamically Reconfigurable Robotic System. In: Proceedings of the 1988 IEEE International Conference on Robotics & Automation (ICRA), Philadelphia, April 1988, pp 1581–86

    Google Scholar 

  3. Fukuda T, Nakagawa S, Kawauchi Y, Buss M (1989) Structure decision method for self organising robots based on cell structures-CEBOT Robotics and Automation, 1989. In: Proceedings of 1989 IEEE International Conference, Scottscale, 14–19 May 1989. vol 2. pp 695–700

    Google Scholar 

  4. Murata S, Yoshida E, Kamimura A, Kurokawa H, Tomita K, Kokaji S (2002) M-tran: self-reconfigurable modular robotic system. IEEE/ASME Trans Mechatron 7(4):431

    Google Scholar 

  5. Ostergaard EH (2004) Distributed control of the ATRON Self-Reconfigurable robot. Ph?D, Univ. of Southern Denmark

    Google Scholar 

  6. White P, Zykov V, Bongard J, Lipson H (2005) Three dimensional stochastic reconfiguration of modular robots. In: Proceedings of Robotics: Science and Systems. MIT, Cambridge

    Google Scholar 

  7. Yim M, Zhang Y, Duff D (2002) Modular Reconfigurable Robots, Machines that shift their shape to suit the task at hand. IEEE Spectr Mag 39(2):30–34

    Google Scholar 

  8. Zhang Y, Roufas K, Yim M (2001) Software Architecture for Modular Self-Reconfigurable Robots. In: IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems (IROS), Hawaii, October 2001

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag

About this entry

Cite this entry

Yim, M., White, P., Park, M., Sastra, J. (2009). Modular Self-Reconfigurable Robots. In: Meyers, R. (eds) Encyclopedia of Complexity and Systems Science. Springer, New York, NY. https://doi.org/10.1007/978-0-387-30440-3_334

Download citation

Publish with us

Policies and ethics