Encyclopedia of Complexity and Systems Science

2009 Edition
| Editors: Robert A. Meyers (Editor-in-Chief)

Mechanical Computing: The Computational Complexity of Physical Devices

  • John H. Reif
Reference work entry
DOI: https://doi.org/10.1007/978-0-387-30440-3_325

Definition of the Subject

Mechanical devices for computation appear to be largely displaced by the widespreaduse of microprocessor‐based computers that are pervading almost all aspects of our lives. Nevertheless, mechanical devices for computation are ofinterest for at least three reasons:


Historical: The use of mechanical devices for computation is of central importance in the historical study of technologies, with a history dating back thousands of years and with surprising applications even in relatively recent times.


Technical & Practical: The use of mechanical devices for computation persists and has not yet been completely displaced by widespread use of microprocessor‐based computers. Mechanical computers have found applications in various emerging technologies at the micro‐scale that combine mechanical functions with computational and control functions not feasible by purely electronic processing. Mechanical computers also have been demonstrated at the molecular scale,...

This is a preview of subscription content, log in to check access.



We sincerely thank Charles Bennett for his numerous suggestions and very important improvements to this survey. This work has been supportedby NSF grants CCF-0432038 and CCF-0523555.


  1. 1.
    Turing A (1937) On Computable Numbers, with an Application to theEntscheidungsproblem. Proc Lond Math Soc, Second Ser, London 42:230–265. Erratum in 43:544–546MathSciNetGoogle Scholar
  2. 2.
    Lewis HR, Christos PH (1997) Elements of the Theory of Computation, 2ndedn. Prentice Hall, Upper Saddle RiverGoogle Scholar
  3. 3.
    Landauer R (1961) Irreversibility and heat generation in the computingprocess. IBMJ Res Dev 5:183MathSciNetzbMATHGoogle Scholar
  4. 4.
    Bennett CH (1973) Logical reversibility of computation. IBM J Res Dev17(6):525–532zbMATHGoogle Scholar
  5. 5.
    Li M, Vitanyi P (1996) Reversibility and Adiabatic Computation: Trading Time andSpace for Energy. Proc Roy Soc Lond, Series A 452:769–789. Preprint quant-ph/9703022Google Scholar
  6. 6.
    Crescenzi P, Christos PH (1995) Reversible simulation of space‐boundedcomputations. Theor Comput Sci 143(1):159–165zbMATHGoogle Scholar
  7. 7.
    Wolfram S (1984) Universality and complexity in cellular automata. Phys D10:1–35MathSciNetGoogle Scholar
  8. 8.
    Blum L, Cucker F, Shub M, Smale S (1996) Complexity and Real Computation:A Manifesto. Int J Bifurc Chaos 6(1):3–26MathSciNetzbMATHGoogle Scholar
  9. 9.
    Feynman RP (1982) Simulating physics with computers. Int J Theor Phys21(6–7):467–488MathSciNetGoogle Scholar
  10. 10.
    Benioff P (1982) Quantum mechanical models of Turing machines that dissipateno energy. Phys Rev Lett 48:1581MathSciNetADSGoogle Scholar
  11. 11.
    Deutsch D (1985) Quantum theory, the Church–Turing principle and theuniversal quantum computer. Proc Roy Soc A 400:97–117MathSciNetADSzbMATHGoogle Scholar
  12. 12.
    Gruska J (1999) Quantum Computing. McGraw–Hill,MaidenheadGoogle Scholar
  13. 13.
    Nielsen M, Chuang I (2000) Quantum Computation and QuantumInformation. Cambridge University Press, CambridgezbMATHGoogle Scholar
  14. 14.
    Jaeger G (2006) Quantum Information: An Overview. Springer,BerlinGoogle Scholar
  15. 15.
    Reif JH (2007) Quantum Information Processing: Algorithms, Technologies andChallenges In: Eshaghian-Wilner MM (ed) Nano‐scale and Bio‐inspired Computing. Wiley, MaldenGoogle Scholar
  16. 16.
    Reif JH (1979) Complexity of the Mover’s Problem and Generalizations. 20thAnnual IEEE Symposium on Foundations of Computer Science, San Juan, Puerto Rico, October pp 421–427; (1987) In: Schwartz J (ed) Planning,Geometry and Complexity of Robot Motion. Ablex Pub Norwood, NJ, pp 267–281Google Scholar
  17. 17.
    Canny J (1988) Some algebraic and geometric computations in PSPACE In: Cole R(ed) Proceedings of the 20th Annual ACM Symposium on the Theory of Computing. ACM Press, Chicago, IL, pp 460–467Google Scholar
  18. 18.
    Schwartz JT, Sharir M (1983) On the piano movers problem: I the case ofa two‐dimensional rigid polygonal body moving amidst polygonal barriers. Comm Pure Appl Math 36:345–398MathSciNetzbMATHGoogle Scholar
  19. 19.
    Hopcroft JE, Schwartz JT, Sharir M (1984) On the Complexity of Motion Planningfor Multiple Independent Objects: PSPACE Hardness of the Warehouseman’s Problem. Int J Robot Res 3(4):76–88Google Scholar
  20. 20.
    Bennett CH (1982) The thermodynamics of computation –a review. Int J Theor Phys21(12):905–940. http://www.research.ibm.com/people/b/bennetc/bennettc1982666c3d53.pdf Google Scholar
  21. 21.
    Bennett CH (2003) Notes on Landauer’s principle, reversible computation, andMaxwell’s Demon. Stud History Philos Mod Phys 34:501–510. eprint physics/0210005:http://xxx.lanl.gov/abs/physics/0210005
  22. 22.
    Adamatzky A (ed) (2001) Collision‐based computing. Springer,LondonGoogle Scholar
  23. 23.
    Squier R, Steiglitz K (1994) Programmable parallel arithmetic in cellularautomata using a particle model. Complex Syst 8:311–323MathSciNetzbMATHGoogle Scholar
  24. 24.
    Fredkin E, Toffoli T (1982) Conservative logic. Int J Theor Phys21:219–253MathSciNetzbMATHGoogle Scholar
  25. 25.
    Adamatzky AI (1996) On the particle‐like waves in the discrete model ofexcitable medium. Neural Netw World 1:3–10Google Scholar
  26. 26.
    Adamatzky AI (1998) Universal dynamical computation in multidimensionalexcitable lattices. Int J Theor Phys 37:3069–3108MathSciNetzbMATHGoogle Scholar
  27. 27.
    Jakubowski MH, Steiglitz K, Squier R (1998) State transformations of collidingoptical solitons and possible application to computation in bulk media. Phys Rev E58:6752–6758ADSGoogle Scholar
  28. 28.
    Jakubowski MH, Steiglitz K, Squier R (2001) Computing with solitons:a review and prospectus, Collision‐based computing. Springer, London, pp 277–297Google Scholar
  29. 29.
    Feynman RP (1963) In: Feynman RP, Leighton RB, Sands M (eds) Ratchet and Pawl,The Feynman Lectures on Physics, vol 1, Chapter 46. Addison–Wesley, ReadingGoogle Scholar
  30. 30.
    Shapiro E (1999) A Mechanical Turing Machine: Blueprint fora Biomolecular Computer. Fifth International Meeting on DNA-Based Computers at the Massachusetts Institute of Technology, Proc DNA Based ComputersV. Cambridge, MA, pp 14–16Google Scholar
  31. 31.
    Reif JH, Sharir M (1994) Motion Planning in the Presence of MovingObstacles. 26th Annual IEEE Symposium on Foundations of Computer Science, Portland, OR, October 1985 pp 144–154; J ACM (JACM)41(4):764–790Google Scholar
  32. 32.
    Canny J, Reif JH (1987) New Lower Bound Techniques for Robot Motion PlanningProblems. 28th Annual IEEE Symposium on Foundations of Computer Science, Los Angeles, CA, October pp 49–60Google Scholar
  33. 33.
    Canny J, Donald B, Reif JH, Xavier P (1993) On the Complexity of KinodynamicPlanning. 29th Annual IEEE Symposium on Foundations of Computer Science, White Plains, NY, October (1988) pp 306–316; Kinodynamic MotionPlanning. J ACM 40(5):1048–1066MathSciNetzbMATHGoogle Scholar
  34. 34.
    Reif JH, Wang H (1998) The Complexity of the Two DimensionalCurvature‐Constrained Shortest‐Path Problem. Third International Workshop on Algorithmic Foundations of Robotics (WAFR98). Peters AK Ltd,Houston, pp 49–57Google Scholar
  35. 35.
    Reif JH, Tygar D, Yoshida A (1994) The Computability and Complexity of OpticalBeam Tracing. 31st Annual IEEE Symposium on Foundations of Computer Science, St Louis, MO, October (1990) pp 106–114; The Computability andComplexity of Ray Tracing. Discrete Comput Geometry 11:265–287MathSciNetzbMATHGoogle Scholar
  36. 36.
    Tate SR, Reif JH (1993) The Complexity of N-body Simulation. Proceedings ofthe 20th Annual Colloquium on Automata, Languages and Programming (ICALP’93), Lund, pp 162–176Google Scholar
  37. 37.
    Reif JH, Sun Z (2003) The Computational Power of Frictional MechanicalSystems. Third International Workshop on Algorithmic Foundations of Robotics, (WAFR98). Peters AK Ltd, Houston, Texas, Mar 5–7 1998,pp 223–236; On Frictional Mechanical Systems and Their Computational Power. SIAM J Comput (SICOMP)32(6):1449–1474MathSciNetzbMATHGoogle Scholar
  38. 38.
    Moore C (1990) Undecidability and Unpredictability in Dynamical Systems. PhysRev Lett 64:2354–2357MathSciNetADSzbMATHGoogle Scholar
  39. 39.
    Moore C (1991) Generalized Shifts: Undecidability and Unpredictability inDynamical Systems. Nonlinearity 4:199–230MathSciNetADSzbMATHGoogle Scholar
  40. 40.
    Munakata T, Sinha S, Ditto WL (2002) Chaos Computing: Implementation ofFundamental Logical Gates by Chaotic Elements. IEEE Trans Circuits Syst-I Fundam Theory Appl 49(11):1629–1633Google Scholar
  41. 41.
    Sinha S, Ditto (1999) Computing with distributed chaos. Phys Rev E Stat PhysPlasmas Fluids Relat Interdiscip Top 60(1):363–77Google Scholar
  42. 42.
    Knott CG (ed) (1915) Napier tercentenary memorial volume. The Royal Society ofEdinburgh, Longmans, Green, LondonzbMATHGoogle Scholar
  43. 43.
    Hartree DR (1950) Calculating Instruments and Machines. Cambridge UniversityPress, CambridgezbMATHGoogle Scholar
  44. 44.
    Engineering Research Associates Staff (1950) High‐Speed ComputingDevices. McGraw–Hill, New YorkGoogle Scholar
  45. 45.
    Chase GC (1980) History of Mechanical Computing Machinery. Ann Hist Comput2(3):198–226MathSciNetzbMATHGoogle Scholar
  46. 46.
    Martin E (1992) The Calculating Machines. The MIT Press, Cambridge,MassachusettszbMATHGoogle Scholar
  47. 47.
    Davis M (2000) The Universal Computer: The Road from Leibniz toTuring. Norton, New YorkGoogle Scholar
  48. 48.
    Norman JM (ed) (2002) The Origins of Cyberspace: From Gutenberg to theInternet: a sourcebook on the history of information technology. Norman Publishing, NovatoGoogle Scholar
  49. 49.
    Horsburgh EM (ed) (1914) Modern Instruments and Methodsof Calculation: a Handbook of the Napier Tercentenary Exhibition, London, G Bell and Sons, Edinburgh, The Royal Society of Edinburgh, p 223. Reprinted 1982Google Scholar
  50. 50.
    Turck JAV (1921) Origin of Modern Calculating Machines. The Western Society ofEngineers, ChicagoGoogle Scholar
  51. 51.
    Svoboda A (1948) Computing Mechanisms and Linkages. McGraw–Hill,ColumbusGoogle Scholar
  52. 52.
    Soroka WA (1954) Analog Methods in Computation andSimulation. McGraw–HillGoogle Scholar
  53. 53.
    Freeth T, Bitsakis Y, Moussas X, Seiradakis JH, Tselikas A, Mangou H,Zafeiropoulou M, Hadland R, Bate D, Ramsey A, Allen M, Crawley A, Hockley P, Malzbender T, Gelb D, Ambrisco W, Edmunds MG (2006) Decoding the ancientGreek astronomical calculator known as the Antikythera Mechanism. Nature 444:587–591ADSGoogle Scholar
  54. 54.
    de Morin H (1913) Les appariéls d’intégration: intégrateurs simples etcompasés, planimètres, intégromètres, intégraphes et courbes intégrales, analyse harmonique et analyseurs. Gauthier-Villars, Paris,pp 162–171Google Scholar
  55. 55.
    Thomson W (later known as Lord Kelvin) (1878) Harmonic Analyzer. Proc Roy SocLond 27:371–373zbMATHGoogle Scholar
  56. 56.
    Henrici (1894) Philos Mag 38:110zbMATHGoogle Scholar
  57. 57.
    Lord Kelvin (1878) Harmonic analyzer and synthesizer. Proc Roy Soc27:371Google Scholar
  58. 58.
    Miller D (1916) The Henrici harmonic analyzer and devices for extending andfacilitating its use. J Franklin Inst 181:51–81; 182:285–322Google Scholar
  59. 59.
    Fisher EG (1911) Tide‐predicting machine. Eng News66:69–73Google Scholar
  60. 60.
    Bush V (1931) The differential analyzer: A new machine for solvingdifferential equations. J Franklin Inst 212:447Google Scholar
  61. 61.
    Bernal JD (1964) The Structure of Liquids. Proc Roy Soc Lond Ser A 280,299ADSGoogle Scholar
  62. 62.
    Finney JL (1970) Random Packings and the Structure of Simple Liquids. I TheGeometry of Random Close Packing. Proc Royal Soc London, Ser A, Math Phys Sci 319(1539):479–493Google Scholar
  63. 63.
    Bragg L, Nye JF (1947) A dynamical model of a crystalstructure. Proc R Soc A 190:474–481ADSGoogle Scholar
  64. 64.
    Bragg L, Lomer WM (1948) A dynamical model of a crystal structureII. Proc R Soc A 196:171–181ADSGoogle Scholar
  65. 65.
    Corcoran SG, Colton RJ, Lilleodden ET, Gerberich WW (1997) Phys Rev B190:474Google Scholar
  66. 66.
    Adamatzky A, De Lacy BC, Asai T (2005) Reaction‐DiffusionComputers. Elsevier, AmsterdamGoogle Scholar
  67. 67.
    Adamatzky AI (1994) Constructing a discrete generalized Voronoi diagramin reaction‐diffusion media. Neural Netw World 6:635–643Google Scholar
  68. 68.
    da Vinci L (1493) Codex Madrid IGoogle Scholar
  69. 69.
    Napier J (1614) Mirifici logarithmorum cannonis descriptio (the description ofthe wonderful canon of logarithms). Hart, EdinburghGoogle Scholar
  70. 70.
    Oughtred W (1632) Circles of Proportion and the Horizontal Instrument. WilliamForster, LondonGoogle Scholar
  71. 71.
    Pascal E (1645) Lettre dédicatoire à Monseigneur le Chancelier sur le sujet dela machine nouvellement inventée par le sieur BP pour faire toutes sortes d’opérations d’arithmétique par un mouvement réglé sans plume ni jetons, suivied’un avis nécessaire à ceux qui auront curiosité de voir ladite machine et de s’en servirGoogle Scholar
  72. 72.
    Babbage C (1822) On Machinery for Calculating and Printing MathematicalTables. Edinburgh Philos J VII:274–281Google Scholar
  73. 73.
    Babbage C (1822) Observations on the application of machinery to thecomputation of mathematical tables. Memoirs of the Astronomical Society 1:311–314 Google Scholar
  74. 74.
    Babbage C (1826) On a Method of expressing by Signs the Action ofMachinery. Philosophical Trans Royal Soc London 116(III):250–265ADSGoogle Scholar
  75. 75.
    Ludgate P (1909) On a proposed analytical engine. Sci Proc Roy Dublin Soc12:77–91Google Scholar
  76. 76.
    Lindgren M (1990) Glory and Failure: Difference Engines of Johann Muller,Charles Babbage and Georg and Edvard Scheutz. MIT Press, CambridgeGoogle Scholar
  77. 77.
    Swade D (1991) Charles Babbage and His Calculating Engines. Michigan StateUniversity Press, East LensingGoogle Scholar
  78. 78.
    Lovelace A (1843) Sketch of the analytical engine invented by CharlesBabbage. Translation of: Sketch of the Analytical Engine by Menabrea LF with Ada’s notes and extensive commentary. Esq Sci Mem3:666–731Google Scholar
  79. 79.
    Cohen BI, Welch GW (1999) Makin’ Numbers: Howard Aiken and the Computer. MITPress, CambridgeGoogle Scholar
  80. 80.
    Boole G (1847) Mathematical Analysis ofLogic. PamphletGoogle Scholar
  81. 81.
    Boole G (1854) An Investigation of the Laws of Thought, on Which are Foundedthe Mathematical Theories of Logic and Probabilities. Macmillan, CambridgeGoogle Scholar
  82. 82.
    Shannon C (1938) A Symbolic Analysis of Relay and SwitchingCircuits. Trans Am Inst Electr Eng 57:713–719Google Scholar
  83. 83.
    Jevons SW (1870) On the Mechanical Performance of Logical Inference. PhilosTrans Roy Soc, Part II 160:497–518Google Scholar
  84. 84.
    Jevons SW (1873) The Principles of Science. A Treatise on Logic andScientific Method. Macmillan, LondonGoogle Scholar
  85. 85.
    Hamer D, Sullivan G, Weierud F (1998) Enigma Variations: an Extended Family ofMachines. Cryptologia 22(3):211–229Google Scholar
  86. 86.
    Lehmer DH (1928) The mechanical combination of linear forms. Am Math Mon35:114–121MathSciNetzbMATHGoogle Scholar
  87. 87.
    Shamir A (1999) Method and apparatus for factoring large numbers withoptoelectronic devices. patent 475920, awarded 08/05/2003Google Scholar
  88. 88.
    Shamir A (1999) Factoring large numbers with the TWINKLE device. CryptographicHardware and Embedded Systems (CHES) 1999. LNCS, vol 1717. Springer, New York, pp 2–12Google Scholar
  89. 89.
    Lenstra AK, Shamir A (2000) Analysis and optimization of the TWINKLE factoringDevice. Proc Eurocrypt 2000. LNCS, vol 1807. Springer, pp 35–52Google Scholar
  90. 90.
    Madou MJ (2002) Fundamentals of Microfabrication: The Science ofMiniaturization, 2nd edn. CRC Press, Boca RatonGoogle Scholar
  91. 91.
    Plummer D, Dalton LJ, Peter F (1999) The recodable locking device. Commun ACM42(7):83–87Google Scholar
  92. 92.
    Wang H (1963) Dominoes and the AEA Case of the Decision Problem. In: J Fox(ed) Mathematical Theory of Automata. Polytechnic Press, Brooklyn, pp 23–55Google Scholar
  93. 93.
    Branko GS, Shepard GC (1987) Tilings and Patterns. H Freeman,Gordonsville. Chapter 11Google Scholar
  94. 94.
    Berger R (1966) The Undecidability of the Domino Problem. Mem Am Math Soc66:1–72Google Scholar
  95. 95.
    Lewis HR, Papadimitriou CH (1981) Elements of the Theory ofComputation. Prentice-Hall, Upper Saddle River, pp 296–300, 345–348zbMATHGoogle Scholar
  96. 96.
    Winfree E (1998) Simulations of Computing by Self‐Assembly. In:Proceedings of the Fourth Annual Meeting on DNA Based Computers, held at the University of Pennsylvania. pp 16–19Google Scholar
  97. 97.
    Xia Y, Whitesides GM (1998) Soft Lithography. Annu Rev Mater Sci28:153–184ADSGoogle Scholar
  98. 98.
    Rothemund PWK (2000) Using lateral capillary forces to compute byself‐assembly. Proc Nat Acad Sci (USA) 97:984–989ADSGoogle Scholar
  99. 99.
    Seeman NC (2004) Nanotechnology and the Double Helix. Sci Am290(6):64–75Google Scholar
  100. 100.
    Reif JH, LaBean TH (2007) Nanostructures and Autonomous Devices Assembledfrom DNA In: Eshaghian-Wilner MM (ed) Nano‐scale and Bio‐inspired Computing. Wiley, MaldenGoogle Scholar
  101. 101.
    Adleman LM (1994) Molecular computation of solutions to combinatorialproblems. Science 266(11):1021–1024ADSGoogle Scholar
  102. 102.
    Adleman L (1998) Computing with DNA. Sci Am279(2):34–41Google Scholar
  103. 103.
    Winfree E, Liu F, Wenzler LA, Seeman NC (1998) Design andSelf‐Assembly of Two‐Dimensional DNA Crystals. Nature 394:539–544ADSGoogle Scholar
  104. 104.
    Yan H, LaBean TH, Feng L, Reif JH (2003) Directed Nucleation Assembly ofBarcode Patterned DNA Lattices. PNAS 100(14):8103–8108ADSGoogle Scholar
  105. 105.
    Rothemund PWK (2006) Folding DNA to create nanoscale shapes andpatterns. Nature 440:297–302ADSGoogle Scholar
  106. 106.
    Mao C, LaBean TH, Reif JH, Seeman (2000) Logical Computation UsingAlgorithmic Self‐Assembly of DNA Triple‐Crossover Molecules. Nature 407:493–495ADSGoogle Scholar
  107. 107.
    Yan H, Feng L, LaBean TH, Reif J (2003) DNA Nanotubes, Parallel MolecularComputations of Pairwise Exclusive-Or (XOR) Using DNA String Tile Self‐Assembly. J Am Chem Soc (JACS)125(47):14246–14247Google Scholar
  108. 108.
    Rothemund PWK, Papadakis N, Winfree E (2004) Algorithmic Self‐Assemblyof DNA Sierpinski Triangles. PLoS Biology 2(12), e424.doi:10.1371/journal.pbio.0020424Google Scholar
  109. 109.
    Yin P, Yan H, Daniel XG, Turberfield AJ, Reif JH (2004)A Unidirectional DNA Walker Moving Autonomously Along a Linear Track. Angew Chem [Int Ed] 43(37):4906–4911Google Scholar
  110. 110.
    Reif JH, Sahu S (2008) Autonomous Programmable DNA Nanorobotic Devices UsingDNAzymes, John H. Reif and Sudher Sahu. In: Garzon M, Yan H (eds) Autonomous Programmable DNA Nanorobotic Devices Using DNAzymes, 13th InternationalMeeting on DNA Computing (DNA 13). Lecture Notes for Computer Science (LNCS). Springer, Berlin. To appear in special Journal Issue on Self-Assembly,Theoretical Computer Science (TCS)Google Scholar
  111. 111.
    Reif JH, LaBean TH (2007) Autonomous Programmable Biomolecular Devices UsingSelf‐Assembled DNA Nanostructures. Comm ACM (CACM) 50(9):46–53. Extended version:http://www.cs.duke.edu/%7Ereif/paper/AutonomousDNA/AutonomousDNA.pdf
  112. 112.
    Bath J, Turberfield AJ (2007) DNA nanomachines. Nat Nanotechnol2:275–284ADSGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • John H. Reif
    • 1
  1. 1.Department of Computer ScienceDuke UniversityDurhamUSA