Skip to main content

Artificial Chemistry

  • Reference work entry
  • 219 Accesses

Definition of the Subject

Artificial chemistries are chemical‐like systems or abstract models of chemical processes. They are studied in order to illuminate andunderstand fundamental principles of chemical systems as well as to exploit the chemical metaphor as a design principle for information processingsystems in fields like chemical computing or nonlinear optimization.

An artificial chemistry (AC) is usuallya formal (and, more seldom, a physical) system that consists of objects called molecules, which interact according to rules calledreactions. Compared to conventional chemical models, artificial chemistries are more abstract in the sense that there is usually not a one-to-onemapping between the molecules (and reactions) of the artificial chemistry to real molecules (and reactions). An artificial chemistry aims at capturing thelogic of chemistry rather than trying to explain a particular chemical system. More formally, an artificial chemistry can be...

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   3,499.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    For general reaction systems, this definition has to be refined. When Acontains species that are part of the inflow, like a and b inFig. 1, but which are not produced in a catalytic way, we might want them to be part of anautocatalytic set. Assume, for example, the set \( { A = \{ a , b, aa, ba \} }\) from Fig. 1, where aa catalyzes theproduction of aa and ba, while using up “substrate” a and b, which are not catalytically produced.

Abbreviations

Molecular species:

A molecular species is an abstract class denoting an ensemble of identical molecules. Equivalently the terms “species”, “compound”, or just “molecule” are used; in some specific context also the terms “substrate” or “metabolite”.

Molecule:

A molecule is a concrete instance of a molecular species. Molecules are those entities of an artificial chemistry that react. Note that sometimes the term “molecule” is used equivalently to molecular species.

Reaction network:

A set of molecular species together with a set of reaction rules. Formally, a reaction network is equivalent to a Petri network. A reaction network describes the stoichiometric structure of a reaction system.

Order of a reaction:

The order of a reaction is the sum of the exponents of concentrations in the kinetic rate law (if given). Note that an order can be fractional. If only the stoichiometric coefficients of the reaction rule are given (Eq. (1)), the order is the sum of the coefficients of the left-hand side species. When assuming mass‐action kinetics, both definitions are equivalent.

Autocatalytic set:

A (self‐maintaining) set where each molecule is produced catalytically by molecules from that set. Note that an autocatalytic may produce molecules not present in that set.

Closure:

A set of molecules A is closed, if no combination of molecules from A can react to form a molecule outside A. Note that the term “closure” has been also used to denote the catalytical closure of an autocatalytic set.

Self‐maintaining:

A set of molecules is called self‐maintaining, if it is able to maintain all its constituents. In a purely autocatalytic system under flow condition, this means that every molecule can be catalytically produced by at least one reaction among molecule from the set.

(Chemical) Organization:

A closed and self‐maintaining set of molecules.

Multiset:

A multiset is like a set but where elements can appear more than once; that is, each element has a multiplicity, e. g., \( { \{a, a, b, c, c, c \} } \).

Bibliography

Primary Literature

  1. Adami C, Brown CT (1994) Evolutionary learning in the 2D artificial life system avida. In: Brooks RA, Maes P (eds) Prof artificial life IV. MIT Press, Cambridge, pp 377–381. ISBN 0-262-52190-3

    Google Scholar 

  2. Adleman LM (1994) Molecular computation of solutions to combinatorical problems. Science 266:1021

    ADS  Google Scholar 

  3. Bagley RJ, Farmer JD (1992) Spontaneous emergence of a metabolism. In: Langton CG, Taylor C, Farmer JD, Rasmussen S (eds) Artificial life II. Addison‐Wesley, Redwood City, pp 93–140. ISBN 0-201-52570-4

    Google Scholar 

  4. Banâtre J-P, Métayer DL (1986) A new computational model and its discipline of programming. Technical Report RR-0566. INRIA, Rennes

    Google Scholar 

  5. Banzhaf W (1993) Self‐replicating sequences of binary numbers – foundations I and II: General and strings of length n = 4. Biol Cybern 69:269–281

    MATH  Google Scholar 

  6. Banzhaf W (1994) Self‐replicating sequences of binary numbers: The build-up of complexity. Complex Syst 8:215–225

    MATH  Google Scholar 

  7. Banzhaf W (1995) Self‐organizing algorithms derived from RNA interactions. In: Banzhaf W, Eeckman FH (eds) Evolution and Biocomputing. LNCS, vol 899. Springer, Berlin, pp 69–103

    Google Scholar 

  8. Banzhaf W, Dittrich P, Rauhe H (1996) Emergent computation by catalytic reactions. Nanotechnology 7(1):307–314

    ADS  Google Scholar 

  9. Benkö G, Flamm C, Stadler PF (2003) A graph-based toy model of chemistry. J Chem Inf Comput Sci 43(4):1085–1093. doi:10.1021/ci0200570

  10. Bersini H (2000) Reaction mechanisms in the oo chemistry. In: Bedau MA, McCaskill JS, Packard NH, Rasmussen S (eds) Artificial life VII. MIT Press, Cambridge, pp 39–48

    Google Scholar 

  11. Boerlijst MC, Hogeweg P (1991) Spiral wave structure in pre‐biotic evolution: Hypercycles stable against parasites. Physica D 48(1):17–28

    ADS  MATH  Google Scholar 

  12. Breyer J, Ackermann J, McCaskill J (1999) Evolving reaction‐diffusion ecosystems with self‐assembling structure in thin films. Artif Life 4(1):25–40

    Google Scholar 

  13. Conrad M (1992) Molecular computing: The key-lock paradigm. Computer 25:11–22

    Google Scholar 

  14. Dewdney AK (1984) In the game called core war hostile programs engage in a battle of bits. Sci Amer 250:14–22

    ADS  Google Scholar 

  15. Dittrich P (2001) On artificial chemistries. Ph D thesis, University of Dortmund

    Google Scholar 

  16. Dittrich P, Banzhaf W (1998) Self‐evolution in a constructive binary string system. Artif Life 4(2):203–220

    Google Scholar 

  17. Dittrich P, Speroni di Fenizio P (2007) Chemical organization theory. Bull Math Biol 69(4):1199–1231. doi:10.1007/s11538-006-9130-8

    MathSciNet  MATH  Google Scholar 

  18. Ehricht R, Ellinger T, McCascill JS (1997) Cooperative amplification of templates by cross‐hybridization (CATCH). Eur J Biochem 243(1/2):358–364

    Google Scholar 

  19. Eigen M (1971) Selforganization of matter and the evolution of biological macromolecules. Naturwissenschaften 58(10):465–523

    Google Scholar 

  20. Eigen M, Schuster P (1977) The hypercycle: A principle of natural self‐organisation, part A. Naturwissenschaften 64(11):541–565

    Google Scholar 

  21. Érdi P, Tóth J (1989) Mathematical models of chemical reactions: Theory and applications of deterministic and stochastic models. Pinceton University Press, Princeton

    Google Scholar 

  22. Faeder JR, Blinov ML, Goldstein B, Hlavacek WS (2005) Rule-based modeling of biochemical networks. Complexity. doi:10.1002/cplx.20074

  23. Farmer JD, Kauffman SA, Packard NH (1986) Autocatalytic replication of polymers. Physica D 22:50–67

    MathSciNet  Google Scholar 

  24. Fernando C, Rowe J (2007) Natural selection in chemical evolution. J Theor Biol 247(1):152–167. doi:10.1016/j.jtbi.2007.01.028

    MathSciNet  Google Scholar 

  25. Fernando C, von Kiedrowski G, Szathmáry E (2007) A stochastic model of nonenzymatic nucleic acid replication: Elongators sequester replicators. J Mol Evol 64(5):572–585. doi:10.1007/s00239-006-0218-4

  26. Fontana W (1992) Algorithmic chemistry. In: Langton CG, Taylor C, Farmer JD, Rasmussen S (eds) Artificial life II. Addison‐Wesley, Redwood City, pp 159–210

    Google Scholar 

  27. Fontana W, Buss LW (1994) ‘The arrival of the fittest’: Toward a theory of biological organization. Bull Math Biol 56:1–64

    MATH  Google Scholar 

  28. Fontana W, Buss LW (1996) The barrier of objects: From dynamical systems to bounded organization. In: Casti J, Karlqvist A (eds) Boundaries and barriers. Addison‐Wesley, Redwood City, pp 56–116

    Google Scholar 

  29. Furusawa C, Kaneko K (1998) Emergence of multicellular organisms with dynamic differentiation and spatial pattern. Artif Life 4:79–93

    Google Scholar 

  30. Gánti T (1975) Organization of chemical reactions into dividing and metabolizing units: The chemotons. Biosystems 7(1):15–21

    Google Scholar 

  31. Giavitto J-L, Michel O (2001) MGS: A rule-based programming language for complex objects and collections. Electron Note Theor Comput Sci 59(4):286–304

    Google Scholar 

  32. Gillespie DT (1976) General method for numerically simulating stochastic time evolution of coupled chemical‐reaction. J Comput Phys 22(4):403–434

    MathSciNet  ADS  Google Scholar 

  33. Grzybowski BA, Stone HA, Whitesides GM (2000) Dynamic self‐assembly of magnetized, millimetre‐sized objects rotating at a liquid‐air interface. Nature 405(6790):1033–1036

    ADS  Google Scholar 

  34. Hlavacek W, Faeder J, Blinov M, Posner R, Hucka M, Fontana W (2006) Rules for modeling signal‐transduction systems. Sci STKE 2006:re6

    Google Scholar 

  35. Hofbauer J, Sigmund K (1988) Dynamical systems and the theory of evolution. University Press, Cambridge

    MATH  Google Scholar 

  36. Hofstadter DR (1979) Gödel, Escher, Bach: An eternal golden braid. Basic Books Inc, New York. ISBN 0-465-02685-0

    Google Scholar 

  37. Hordijk W, Crutchfield JP, Mitchell M (1996) Embedded‐particle computation in evolved cellular automata. In: Toffoli T, Biafore M, Leäo J (eds) PhysComp96. New England Complex Systems Institute, Cambridge, pp 153–8

    Google Scholar 

  38. Hosokawa K, Shimoyama I, Miura H (1994) Dynamics of self‐assembling systems: Analogy with chemical kinetics. Artif Life 1(4):413–427

    Google Scholar 

  39. Hutton TJ (2002) Evolvable self‐replicating molecules in an artificial chemistry. Artif Life 8(4):341–356

    MathSciNet  Google Scholar 

  40. Ikegami T, Hashimoto T (1995) Active mutation in self‐reproducing networks of machines and tapes. Artif Life 2(3):305–318

    Google Scholar 

  41. Jain S, Krishna S (1998) Autocatalytic sets and the growth of complexity in an evolutionary model. Phys Rev Lett 81(25):5684–5687

    ADS  Google Scholar 

  42. Jain S, Krishna S (1999) Emergence and growth of complex networks in adaptive systems. Comput Phys Commun 122:116–121

    Google Scholar 

  43. Jain S, Krishna S (2001) A model for the emergence of cooperation, interdependence, and structure in evolving networks. Proc Natl Acad Sci USA 98(2):543–547

    ADS  Google Scholar 

  44. Jain S, Krishna S (2002) Large extinctions in an evolutionary model: The role of innovation and keystone species. Proc Natl Acad Sci USA 99(4):2055–2060. doi:10.1073/pnas.032618499

    MathSciNet  ADS  Google Scholar 

  45. Kaneko K (2007) Life: An introduction to complex systems biology. Springer, Berlin

    Google Scholar 

  46. Kauffman SA (1971) Cellular homeostasis, epigenesis and replication in randomly aggregated macromolecular systems. J Cybern 1:71–96

    Google Scholar 

  47. Kauffman SA (1986) Autocatalytic sets of proteins. J Theor Biol 119:1–24

    Google Scholar 

  48. Kauffman SA (1993) The origins of order: Self‐organization and selection in evolution. Oxford University Press, New York

    Google Scholar 

  49. Kirner T, Ackermann J, Ehricht R, McCaskill JS (1999) Complex patterns predicted in an in vitro experimental model system for the evolution of molecular cooperation. Biophys Chem 79(3):163–86

    Google Scholar 

  50. Kniemeyer O, Buck‐Sorlin GH, Kurth W (2004) A graph grammar approach to artificial life. Artif Life 10(4):413–431. doi:10.1162/1064546041766451

  51. Laing R (1972) Artificial organisms and autonomous cell rules. J Cybern 2(1):38–49

    Google Scholar 

  52. Laing R (1975) Some alternative reproductive strategies in artificial molecular machines. J Theor Biol 54:63–84

    MathSciNet  Google Scholar 

  53. Laing R (1977) Automaton models of reproduction by self‐inspection. J Theor Biol 66:437–56

    MathSciNet  Google Scholar 

  54. Langton CG (1984) Self‐reproduction in cellular automata. Physica D 10D(1–2):135–44

    ADS  Google Scholar 

  55. Langton CG (1989) Artificial life. In: Langton CG (ed) Proc of artificial life. Addison‐Wesley, Redwood City, pp 1–48

    Google Scholar 

  56. Lazcano A, Bada JL (2003) The 1953 Stanley L. Miller experiment: Fifty years of prebiotic organic chemistry. Orig Life Evol Biosph 33(3):235–42

    ADS  Google Scholar 

  57. Lenaerts T, Bersini H (2009) A synthon approach to artificial chemistry. Artif Life 9 (in press)

    Google Scholar 

  58. Lenski RE, Ofria C, Collier TC, Adami C (1999) Genome complexity, robustness and genetic interactions in digital organisms. Nature 400(6745):661–4

    ADS  Google Scholar 

  59. Lohn JD, Colombano S, Scargle J, Stassinopoulos D, Haith GL (1998) Evolution of catalytic reaction sets using genetic algorithms. In: Proc IEEE International Conference on Evolutionary Computation. IEEE, New York, pp 487–492

    Google Scholar 

  60. Lugowski MW (1989) Computational metabolism: Towards biological geometries for computing. In: Langton CG (ed) Artificial Life. Addison‐Wesley, Redwood City, pp 341–368. ISBN 0-201-09346-4

    Google Scholar 

  61. Matsumaru N, Speroni di Fenizio P, Centler F, Dittrich P (2006) On the evolution of chemical organizations. In: Artmann S, Dittrich P (eds) Proc of the 7th german workshop of artificial life. IOS Press, Amsterdam, pp 135–146

    Google Scholar 

  62. Maynard Smith J, Szathmáry E (1995) The major transitions in evolution. Oxford University Press, New York

    Google Scholar 

  63. McCaskill JS (1988) Polymer chemistry on tape: A computational model for emergent genetics. Internal report. MPI for Biophysical Chemistry, Göttingen

    Google Scholar 

  64. McCaskill JS, Chorongiewski H, Mekelburg D, Tangen U, Gemm U (1994) Configurable computer hardware to simulate long-time self‐organization of biopolymers. Ber Bunsenges Phys Chem 98(9):1114–1114

    Google Scholar 

  65. McMullin B, Varela FJ (1997) Rediscovering computational autopoiesis. In: Husbands P, Harvey I (eds) Fourth european conference on artificial life. MIT Press, Cambridge, pp 38–47

    Google Scholar 

  66. Miller SL (1953) A production of amino acids under possible primitive earth conditions. Science 117(3046):528–9

    ADS  Google Scholar 

  67. Morris HC (1989) Typogenetics: A logic for artificial life. In: Langton CG (ed) Artif life. Addison‐Wesley, Redwood City, pp 341–368

    Google Scholar 

  68. Ono N, Ikegami T (2000) Self‐maintenance and self‐reproduction in an abstract cell model. J Theor Biol 206(2):243–253

    Google Scholar 

  69. Pargellis AN (1996) The spontaneous generation of digital “life”. Physica D 91(1–2):86–96

    MATH  Google Scholar 

  70. Pǎun G (2000) Computing with membranes. J Comput Syst Sci 61(1):108–143

    Google Scholar 

  71. Petri CA (1962) Kommunikation mit Automaten. Ph D thesis, University of Bonn

    Google Scholar 

  72. Rasmussen S, Knudsen C, Feldberg R, Hindsholm M (1990) The coreworld: Emergence and evolution of cooperative structures in a computational chemistry. Physica D 42:111–134

    ADS  Google Scholar 

  73. Rasmussen S, Knudsen C, Feldberg R (1992) Dynamics of programmable matter. In: Langton CG, Taylor C, Farmer JD, Rasmussen S (eds) Artificial life II. Addison‐Wesley, Redwood City, pp 211–291. ISBN 0-201-52570-4

    Google Scholar 

  74. Ray TS (1992) An approach to the synthesis of life. In: Langton CG, Taylor C, Farmer JD, Rasmussen S (eds) Artificial life II. Addison‐Wesley, Redwood City, pp 371–408

    Google Scholar 

  75. Rössler OE (1971) A system theoretic model for biogenesis. Z Naturforsch B 26(8):741–746

    Google Scholar 

  76. Sali A, Shakhnovich E, Karplus M (1994) How does a protein fold? Nature 369(6477):248–251

    ADS  Google Scholar 

  77. Sali A, Shakhnovich E, Karplus M (1994) Kinetics of protein folding: A lattice model study of the requirements for folding to the native state. J Mol Biol 235(5):1614–1636

    Google Scholar 

  78. Salzberg C (2007) A graph-based reflexive artificial chemistry. Biosystems 87(1):1–12

    Google Scholar 

  79. Sayama H (2009) Swarm chemistry. Artif Life. (in press)

    Google Scholar 

  80. Sayama H (1998) Introduction of structural dissolution into Langton's self‐reproducing loop. In: Adami C, Belew R, Kitano H, Taylor C (eds) Artificial life VI. MIT Press, Cambridge, pp 114–122

    Google Scholar 

  81. Segre D, Ben-Eli D, Lancet D (2000) Compositional genomes: Prebiotic information transfer in mutually catalytic noncovalent assemblies. Proc Natl Acad Sci USA 97(8):4112–4117

    ADS  Google Scholar 

  82. Socci ND, Onuchic JN (1995) Folding kinetics of proteinlike heteropolymers. J Chem Phys 101(2):1519–1528

    ADS  Google Scholar 

  83. Speroni di Fenizio P (2000) A less abstract artficial chemistry. In: Bedau MA, McCaskill JS, Packard NH, Rasmussen S (eds) Artificial life VII. MIT Press, Cambridge, pp 49–53

    Google Scholar 

  84. Speroni Di Fenizio P, Dittrich P (2002) Artificial chemistry's global dynamics. Movement in the lattice of organisation. J Three Dimens Images 16(4):160–163. ISSN 1342-2189

    Google Scholar 

  85. Stadler PF, Fontana W, Miller JH (1993) Random catalytic reaction networks. Physica D 63:378–392

    MathSciNet  ADS  MATH  Google Scholar 

  86. Suzuki H (2007) Mathematical folding of node chains in a molecular network. Biosystems 87(2–3):125–135. doi:10.1016/j.biosystems.2006.09.005

    Google Scholar 

  87. Suzuki K, Ikegami T (2006) Spatial‐pattern‐induced evolution of a self‐replicating loop network. Artif Life 12(4):461–485. doi:10.1162/artl.2006.12.4.461

    Google Scholar 

  88. Suzuki Y, Tanaka H (1997) Symbolic chemical system based on abstract rewriting and its behavior pattern. Artif Life Robotics 1:211–219

    Google Scholar 

  89. Tangen U, Schulte L, McCaskill JS (1997) A parallel hardware evolvable computer polyp. In: Pocek KL, Arnold J (eds) IEEE symposium on FPGAs for custopm computing machines. IEEE Computer Society, Los Alamitos

    Google Scholar 

  90. Thürk M (1993) Ein Modell zur Selbstorganisation von Automatenalgorithmen zum Studium molekularer Evolution. Ph D thesis, Universität Jena

    Google Scholar 

  91. Turing AM (1952) The chemical basis of morphogenesis. Phil Trans R Soc London B 237:37–72

    ADS  Google Scholar 

  92. Vanderzande C (1998) Lattice models of polymers. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  93. Varela FJ, Maturana HR, Uribe R (1974) Autopoiesis: The organization of living systems. BioSystems 5(4):187–196

    Google Scholar 

  94. Varetto L (1993) Typogenetics: An artificial genetic system. J Theor Biol 160(2):185–205

    Google Scholar 

  95. Varetto L (1998) Studying artificial life with a molecular automaton. J Theor Biol 193(2):257–285

    Google Scholar 

  96. Vico G (1710) De antiquissima Italorum sapientia ex linguae originibus eruenda librir tres. Neapel

    Google Scholar 

  97. von Neumann J, Burks A (ed) (1966) The theory of self‐reproducing automata. University of Illinois Press, Urbana

    Google Scholar 

  98. Zauner K-P, Conrad M (1996) Simulating the interplay of structure, kinetics, and dynamics in complex biochemical networks. In: Hofestädt R, Lengauer T, Löffler M, Schomburg D (eds) Computer science and biology GCB'96. University of Leipzig, Leipzig, pp 336–338

    Google Scholar 

  99. Zeleny M (1977) Self‐organization of living systems: A formal model of autopoiesis. Int J General Sci 4:13–28

    Google Scholar 

Books and Reviews

  1. Adami C (1998) Introduction to artificial life. Springer, New York

    MATH  Google Scholar 

  2. Dittrich P, Ziegler J, Banzhaf W (2001) Artificial chemistries – a review. Artif Life 7(3):225–275

    Google Scholar 

  3. Hofbauer J, Sigmund K (1998) Evolutionary games and population dynamics. Cambridge University Press, Cambridge

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag

About this entry

Cite this entry

Dittrich, P. (2009). Artificial Chemistry . In: Meyers, R. (eds) Encyclopedia of Complexity and Systems Science. Springer, New York, NY. https://doi.org/10.1007/978-0-387-30440-3_23

Download citation

Publish with us

Policies and ethics