Definition of the Subject
In this chapter we present some definitions related to the fractal concept as well asseveral methods for calculating the fractal dimension and other relevant exponents. Thepurpose is to introduce the reader to the basic properties of fractals and self‐affinestructures so that this book will be self contained. We do not give references to most of theoriginal works, but, we refer mostly to books and reviews on fractal geometry where theoriginal references can be found.
Fractal geometry isa mathematical tool for dealing with complex systems that have no characteristic lengthscale. A well‐known example is the shape ofa coastline . When we see two picturesof a coastline on two different scales, with 1 cm corresponding for example to0.1 km or 10 km, we cannot tell which scale belongs to which picture: both lookthe same, and this features characterizes also many other geographical patterns likerivers...
Bibliography
Mandelbrot BB (1977)Fractals: Form, chance and dimension. Freeman, San Francisco; Mandelbrot BB (1982) The fractalgeometry of nature. Freeman, San Francisco
Jones H (1991) Part1: 7 chapters on fractal geometry including applications to growth, image synthesis, andneutral net. In: Crilly T, Earschaw RA, Jones H (eds) Fractals and chaos. Springer, NewYork
Peitgen H-O,Jürgens H, Saupe D (1992) Chaos and fractals. Springer, NewYork
Feder J (1988)Fractals. Plenum, New York
Vicsek T (1989)Fractal growth phenomena. World Scientific, Singapore
Avnir D (1992) Thefractal approach to heterogeneous chemistry. Wiley, New York
Barnsley M (1988)Fractals everywhere. Academic Press, San Diego
Takayasu H (1990)Fractals in the physical sciences. Manchester University Press,Manchester
Schuster HG (1984)Deterministic chaos – An introduction. Physik Verlag,Weinheim
Peitgen H-O,Richter PH (1986) The beauty of fractals. Springer, Heidelberg
Stanley HE,Ostrowsky N (1990) Correlations and connectivity: Geometric aspects of physics, chemistry andbiology. Kluwer, Dordrecht
Peitgen H-O,Jürgens H, Saupe D (1991) Chaos and fractals. Springer,Heidelberg
Bunde A,Havlin S (1996) Fractals and disordered systems. Springer,Heidelberg
Gouyet J-F (1992)Physique et structures fractales. Masson, Paris
Bunde A,Havlin S (1995) Fractals in science. Springer,Heidelberg
Havlin S,Ben‐Avraham D (1987) Diffusion in disordered media. Adv Phys 36:695; Ben‐AvrahamD, Havlin S (2000) Diffusion and reactions in fractals and disordered systems. CambridgeUniversity Press, Cambridge
Feigenbaum M(1978) Quantitative universality for a class of non‐lineartransformations. J Stat Phys 19:25
Grassberger P(1981) On the Hausdorff dimension of fractal attractors. J Stat Phys26:173
Mandelbrot BB,Given J (1984) Physical properties of a new fractal model of percolation clusters. PhysRev Lett 52:1853
Douady A, HubbardJH (1982) Itération des polynômes quadratiques complex. CRAS Paris294:123
Weiss GH (1994)Random walks. North Holland, Amsterdam
Flory PJ (1971)Principles of polymer chemistry. Cornell University Press, NewYork
De Gennes PG(1979) Scaling concepts in polymer physics. Cornell University Press,Ithaca
Majid I, Jan N,Coniglio A, Stanley HE (1984) Kinetic growth walk: A new model for linear polymers. PhysRev Lett 52:1257; Havlin S, Trus B, Stanley HE (1984) Cluster‐growth model for branchedpolymers that are “chemically linear”. Phys Rev Lett 53:1288; Kremer K, Lyklema JW(1985) Kinetic growth models. Phys Rev Lett 55:2091
Ziff RM, CummingsPT, Stell G (1984) Generation of percolation cluster perimeters by a random walk.J Phys A 17:3009; Bunde A, Gouyet JF (1984) On scaling relations in growthmodels for percolation clusters and diffusion fronts. J Phys A 18:L285; Weinrib A,Trugman S (1985) A new kinetic walk and percolation perimeters. Phys Rev B 31:2993;Kremer K, Lyklema JW (1985) Monte Carlo series analysis of irreversible self‐avoidingwalks. Part I: The indefinitely‐growing self‐avoiding walk(IGSAW). J Phys A 18:1515; Saleur H, Duplantier B (1987) Exact determination of thepercolation hull exponent in two dimensions. Phys Rev Lett58:2325
Arapaki E,Argyrakis P, Bunde A (2004) Diffusion‐driven spreading phenomena: The structure ofthe hull of the visited territory. Phys Rev E 69:031101
Witten TA, SanderLM (1981) Diffusion‐limited aggregation, a kinetic critical phenomenon. Phys RevLett 47:1400
Meakin P (1983)Diffusion‐controlled cluster formation in two, three, and four dimensions. PhysRev A 27:604,1495
Meakin P (1988)In: Domb C, Lebowitz J (eds) Phase transitions and critical phenomena, vol 12. Academic Press,New York, p 335
Muthukumar M(1983) Mean‐field theory for diffusion‐limited cluster formation. Phys Rev Lett50:839; Tokuyama M, Kawasaki K (1984) Fractal dimensions for diffusion‐limitedaggregation. Phys Lett A 100:337
Pietronero L(1992) Fractals in physics: Applications and theoretical developments. Physica A191:85
Meakin P, Majid I,Havlin S, Stanley HE (1984) Topological properties of diffusion limited aggregation andcluster‐cluster aggregation. Physica A 17:L975
Mandelbrot BB(1992) Plane DLA is not self‐similar; is it a fractal that becomes increasinglycompact as it grows? Physica A 191:95; see also: Mandelbrot BB, Vicsek T (1989) Directedrecursive models for fractal growth. J Phys A 22:L377
Schwarzer S, LeeJ, Bunde A, Havlin S, Roman HE, Stanley HE (1990) Minimum growth probability ofdiffusion‐limited aggregates. Phys Rev Lett 65:603
Meakin P (1983)Formation of fractal clusters and networks by irreversible diffusion‐limitedaggregation. Phys Rev Lett 51:1119; Kolb M (1984) Unified description of static and dynamicscaling for kinetic cluster formation. Phys Rev Lett 53:1653
Stauffer D,Aharony A (1992) Introduction to percolation theory. Taylor and Francis,London
Kesten H (1982)Percolation theory for mathematicians. Birkhauser, Boston
Grimmet GR (1989)Percolation. Springer, New York
Song C, Havlin S,Makse H (2005) Self‐similarity of complex networks. Nature433:392
Havlin S,Blumberg‐Selinger R, Schwartz M, Stanley HE, Bunde A (1988) Random multiplicativeprocesses and transport in structures with correlated spatial disorder. Phys Rev Lett61:1438
Voss RF (1985) In:Earshaw RA (ed) Fundamental algorithms in computer graphics. Springer, Berlin,p 805
Coleman PH,Pietronero L (1992) The fractal structure of the universe. Phys Rep213:311
Kaye BH (1989)A random walk through fractal dimensions. Verlag Chemie,Weinheim
Turcotte DL (1997)Fractals and chaos in geology and geophysics. Cambridge University Press,Cambridge
Hurst HE, BlackRP, Simaika YM (1965) Long‐term storage: An experimental study. Constable,London
Mandelbrot BB,Wallis JR (1969) Some long‐run properties of geophysical records. Wat Resour Res5:321–340
Koscielny‐Bunde E,Kantelhardt JW, Braun P, Bunde A, Havlin S (2006) Long‐term persistence andmultifractality of river runoff records: Detrended fluctuation studies. Hydrol J322:120–137
Mudelsee M (2007)Long memory of rivers from spatial aggregation. Wat Resour Res43:W01202
Livina VL,Ashkenazy Y, Braun P, Monetti A, Bunde A, Havlin S (2003) Nonlinear volatility of riverflux fluctuations. Phys Rev E 67:042101
Koscielny‐Bunde E,Bunde A, Havlin S, Roman HE, Goldreich Y, Schellnhuber H-J (1998) Indication ofa universal persistence law governing athmospheric variability. Phys Rev Lett 81:729–732
Pelletier JD,Turcotte DL (1999) Self‐affine time series: Application and models. Adv Geophys40:91
Talkner P, WeberRO (2000) Power spectrum and detrended fluctuation analysis: Application to dailytemperatures. Phys Rev E 62:150–160
Eichner JF,Koscielny‐Bunde E, Bunde A, Havlin S, Schellnhuber H-J (2003) Power‐lawpersistence and trends in the atmosphere: A detailed study of long temperaturerecords. Phys Rev E 68:046133
Király A,Bartos I, Jánosi IM (2006) Correlation properties of daily temperature anormalies overland. Tellus 58A(5):593–600
Santhanam MS,Kantz H (2005) Long‐range correlations and rare events in boundary layer windfields. Physica A 345:713–721
Liu YH, Cizeau P,Meyer M, Peng C-K, Stanley HE (1997) Correlations in economic time series. Physica A245:437; Liu YH, Gopikrishnan P, Cizeau P, Meyer M, Peng C-K, Stanley HE (1999) Statisticalproperties of the volatility of price fluctuations. Phys Rev E60:1390
Peng C-K, MietusJ, Hausdorff JM, Havlin S, Stanley HE, Goldberger AL (1993) Long‐range anticorrelationsand non‐gaussian behavior of the heartbeat. Phys Rev Lett70:1343–1346
Bunde A,Havlin S, Kantelhardt JW, Penzel T, Peter J-H, Voigt K (2000) Correlated and uncorrelatedregions in heart‐rate fluctuations during sleep. Phys Rev Lett85:3736
Leland WE, TaqquMS, Willinger W, Wilson DV (1994) On the self‐similar nature of Ethernettraffic. IEEE/Transactions ACM Netw 2:1–15
Kantelhardt JW,Koscielny‐Bunde E, Rego HA, Bunde A, Havlin S (2001) Detectinglong‐range correlations with detrended fluctuation analysis. Physica A295:441
Rybski D,Bunde A, Havlin S, Von Storch H (2006) Long‐term persistence in climate and thedetection problem. Geophys Res Lett 33(6):L06718
Rybski D,Bunde A (2008) On the detection of trends in long‐term correlatedrecords. Physica A
Giese E, Mossig I,Rybski D, Bunde A (2007) Long‐term analysis of air temperature trends in CentralAsia. Erdkunde 61(2):186–202
Govindan RB,Vjushin D, Brenner S, Bunde A, Havlin S, Schellnhuber H-J (2002) Global climate modelsviolate scaling of the observed atmospheric variability. Phys Rev Lett89:028501
Vjushin D, ZhidkovI, Brenner S, Havlin S, Bunde A (2004) Volcanic forcing improves atmosphere‐oceancoupled general circulation model scaling performance. Geophys Res Lett31:L10206
Monetti A, HavlinS, Bunde A (2003) Long‐term persistence in the sea surface temperaturefluctuations. Physica A 320:581–589
Kantelhardt JW,Koscielny‐Bunde E, Rybski D, Braun P, Bunde A, Havlin S (2006) Long‐termpersistence and multifractality of precipitation and river runoff records. Geophys J ResAtmosph 111:1106
Bunde A,Kropp J, Schellnhuber H-J (2002) The science of disasters – climate disruptions,heart attacks, and market crashes. Springer, Berlin
Pfisterer C (1998)Wetternachhersage, 500 Jahre Klimavariationen und Naturkatastrophen 1496–1995. VerlagPaul Haupt, Bern
Glaser R (2001)Klimageschichte Mitteleuropas. Wissenschaftliche Buchgesellschaft,Darmstadt
Mudelsee M,Börngen M, Tetzlaff G, Grünwald U (2003) No upward trends in the occurrence ofextreme floods in Central Europe. Nature 425:166
Bunde A,Eichner J, Havlin S, Kantelhardt JW (2003) The effect of long‐term correlations on thereturn periods of rare events. Physica A 330:1
Bunde A,Eichner J, Havlin S, Kantelhardt JW (2005) Long‐term memory: A natural mechanismfor the clustering of extreme events and anomalous residual times in climate records. Phys RevLett 94:048701
Eichner J,Kantelhardt JW, Bunde A, Havlin S (2006) Extreme value statistics in records withlong‐term persistence. Phys Rev E 73:016130
Yamasaki K,Muchnik L, Havlin S, Bunde A, Stanley HE (2005) Scaling and memory in volatility returnintervals in financial markets. PNAS 102:26 9424–9428
Lennartz S, LivinaVN, Bunde A, Havlin S (2008) Long‐term memory in earthquakes and the distributionof interoccurence times. Europ Phys Lett 81:69001
Corral A (2004)Long‐term clustering, scaling, and universality in the temporal occurrence ofearthquakes. Phys Rev Lett 92:108501
Stanley HE, MeakinP (1988) Multifractal phenomena in physics and chemistry. Nature355:405
Ivanov PC,Goldberger AL, Havlin S, Rosenblum MG, Struzik Z, Stanley HE (1999) Multifractality in humanheartbeat dynamics. Nature 399:461
Bogachev MI,Eichner JF, Bunde A (2007) Effect of nonlinear correlations on the statistics of returnintervals in multifractal data sets. Phys Rev Lett 99:240601
Bogachev MI,Bunde A (2008) Memory effects in the statistics of interoccurrence times between largereturns in financial records. Phys Rev E 78:036114; Bogachev MI, Bunde A (2008)Improving risk extimation in multifractal records: Applications to physiology andfinancing. Preprint
Acknowledgments
We like to thank all our coworkers in this field, in particular Eva Koscielny‐Bunde, Mikhail Bogachev, Jan Kantelhardt, Jan Eichner, Diego Rybski, Sabine Lennartz, Lev Muchnik, Kazuko Yamasaki, John Schellnhuber and Hans von Storch.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag
About this entry
Cite this entry
Bunde, A., Havlin, S. (2009). Fractal Geometry, A Brief Introduction to. In: Meyers, R. (eds) Encyclopedia of Complexity and Systems Science. Springer, New York, NY. https://doi.org/10.1007/978-0-387-30440-3_218
Download citation
DOI: https://doi.org/10.1007/978-0-387-30440-3_218
Publisher Name: Springer, New York, NY
Print ISBN: 978-0-387-75888-6
Online ISBN: 978-0-387-30440-3
eBook Packages: Physics and AstronomyReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics