Encyclopedia of Complexity and Systems Science

2009 Edition
| Editors: Robert A. Meyers (Editor-in-Chief)

Exobiology and Complexity

  • Eric J. Chaisson
Reference work entry
DOI: https://doi.org/10.1007/978-0-387-30440-3_194

Definition of the Subject

Recent research, guided by theoretical searches for unificationas much as by compilation of huge new databases, suggests that complexsystems throughout Nature are localized, temporary islands of orderedstructures within vastly larger, disordered environments beyond thosesystems. All such complex systems – including, for example,stars, life, and society – can be shown to obeyquantitatively the principles of non‐equilibrium thermodynamics,and all can be modeled in a common, integral manner by analyzingthe energy passing through those systems. The concept of energy flow does seem to be as universal a process as anything yet found inNature for the origin, maintenance, and evolution of ordered, complexsystems. The optimization of such energy flows acts as an agent ofevolution broadly considered, thereby affecting, and to some extentunifying, all of physical, biological, and cultural evolution.

More specifically, non‐equilibrium thermodynamics,especially the energy...

This is a preview of subscription content, log in to check access.


  1. 1.
    AungerR (2007) Major transitions in ‘big’ history. Tech ForecastSoc Chang 68:27Google Scholar
  2. 2.
    BennettCL et al (2003) Wilkinson Microwave Anisotropy Probe (WMAP) basicresults. Astrophys. J Suppl Ser148:1ADSGoogle Scholar
  3. 3.
    BlumHF (1968) Time's arrow and evolution. Princeton University Press,PrincetonGoogle Scholar
  4. 4.
    BonnerJT (1988) Evolution of complexity. Princeton University Press,PrincetonGoogle Scholar
  5. 5.
    BrooksDR, Wiley EO (1988) Evolution as entropy. University of Chicago Press, ChicagoGoogle Scholar
  6. 6.
    BrownH (1976) Energy in our future. Ann Rev Energy1:1ADSGoogle Scholar
  7. 7.
    ChaissonEJ (1981) Cosmic dawn: origins of matter and life. Atlantic MonthlyPress, BostonGoogle Scholar
  8. 8.
    ChaissonEJ (1987) The life era (appendix). Atlantic Monthly Press, NewYorkGoogle Scholar
  9. 9.
    ChaissonEJ (1998) The cosmic environment for the growth ofcomplexity. BioSystems 46:13Google Scholar
  10. 10.
    ChaissonEJ (2001) Cosmic evolution: the rise of complexity in nature. HarvardUniversity Press, CambridgeGoogle Scholar
  11. 11.
    ChaissonEJ (2003) A unifying concept for astrobiology. IntJ Astrobio 2:91Google Scholar
  12. 12.
    ChaissonEJ (2004) Complexity; an energetics agenda. Complex J Santa Fe Inst9:14Google Scholar
  13. 13.
    ChaissonEJ (2005) Non‐equilibrium thermodynamics in an energy‐richuniverse. In: Kleidon A, Lorenz RD (eds) Non‐equilibriumThermodynamics and the Production of Entropy. Springer,BerlinGoogle Scholar
  14. 14.
    ChaissonEJ (2006) Epic of evolution: seven ages of the cosmos. ColumbiaUniversity Press, New YorkGoogle Scholar
  15. 15.
    ChaissonEJ (2009) Cosmic evolution: state of the science. In: Dick S (ed)Cosmos and Culture. NASA, WashingtonGoogle Scholar
  16. 16.
    ChambersR (1844) Vestiges of the natural history of creation. Churchill,LondonGoogle Scholar
  17. 17.
    ChristianD (2004) Maps of time: introduction to bighistory. University California Press, BerkeleyGoogle Scholar
  18. 18.
    CookE (1971) The flow of energy in an industrial society. Sci Am224:135Google Scholar
  19. 19.
    DarwinC (1859) On the origin of species. J Murray,LondonGoogle Scholar
  20. 20.
    DiamondJ (2005) Collapse: how societies choose to fail or succeed. Viking,New YorkGoogle Scholar
  21. 21.
    DykeC (1988) Cities as dissipative structures. In: Weber BH et al (eds)Entropy, Information, and Evolution. MIT Press,CambridgeGoogle Scholar
  22. 22.
    DysonF (1979) Time without end: physics and biology in an openuniverse. Rev Mod Phys 51:447ADSGoogle Scholar
  23. 23.
    ElmegreenB, Lada C (1977) Sequential star formation of subgroups in OBassociations. Astrophys J 214:725ADSGoogle Scholar
  24. 24.
    FoxRF (1988) Energy and the evolution of life. Freeman, SanFranciscoGoogle Scholar
  25. 25.
    FrautschiS (1982) Entropy in an expanding universe. Science217:593ADSGoogle Scholar
  26. 26.
    GoldT (1962) The arrow of time. Am J Phys30:403ADSzbMATHGoogle Scholar
  27. 27.
    HakenH (1978) Synergetics. Springer, BerlinzbMATHGoogle Scholar
  28. 28.
    HakenH (1975) Cooperative phenomena in systems far from thermalequiblibrium and in nonphysical systems. Rev Mod Phys47:67MathSciNetADSGoogle Scholar
  29. 29.
    HalacyDS (1977) Earth, water, wind and sun. Harper & Row, NewYorkGoogle Scholar
  30. 30.
    HammondKA, Diamond J (1997) Maximal sustained energy budgets in humans andanimals. Nature 386:457ADSGoogle Scholar
  31. 31.
    HendersonL (1913) Fitness of the environment. Macmillan, NewYorkGoogle Scholar
  32. 32.
    HofkirchnerW (ed) (1999) The quest for a unified theory ofinformation. Gordon & Breach,AmsterdamzbMATHGoogle Scholar
  33. 33.
    JantschE (1980) Self‐organizing universe. Pergamon,OxfordGoogle Scholar
  34. 34.
    JaynesET (1957) Information theory and statistical mechanics. Phys Rev108:171MathSciNetADSGoogle Scholar
  35. 35.
    JervisR (1997) System effects: complexity in political and sociallife. Princeton University Press, PrincetonGoogle Scholar
  36. 36.
    KauffmanS (1993) The origins of order. Oxford University,PressGoogle Scholar
  37. 37.
    KleiberM (1961) The fire of life. Wiley, NewYorkGoogle Scholar
  38. 38.
    KleidonA, Lorenz RD (eds) (2005) Non‐equilibrium thermodynamics and theproduction of entropy. Springer, BerlinGoogle Scholar
  39. 39.
    LamarckJ-B (1809) Philosophie Zoologique. Editions du Seuil, ParisGoogle Scholar
  40. 40.
    LayzerD (1976) The arrow of time. Astrophys J206:559MathSciNetADSGoogle Scholar
  41. 41.
    LayzerD (1988) Growth of order in the universe. In: Weber BH et al (eds)Entropy, Information, and Evolution. MIT Press,CambridgeGoogle Scholar
  42. 42.
    LewinR (1992) Complexity. Macmillan, New YorkGoogle Scholar
  43. 43.
    LineweaverC (2005) Cosmological and biological reproducibility: limits onmaximum entropy production principle. In: Kleidon A, Lorenz RD (eds)Non‐equilibrium Thermodynamics and the Production ofEntropy. Springer, BerlinGoogle Scholar
  44. 44.
    LotkaA (1922) Contribution to the energetics of evolution. Proc Nat AcadSci USA 8:147ADSGoogle Scholar
  45. 45.
    MargulisL, Sagan D (1986) Microcosmos. Simon & Schuster, NewYorkGoogle Scholar
  46. 46.
    MarijuanPC et al (eds) (1996) First conference on foundations of informationsciences. Biosystems 38:87Google Scholar
  47. 47.
    MatsunoK (1989) Protobiology: Physical Basis of Biology. CRC Press,FloridaGoogle Scholar
  48. 48.
    MayrE (1997) This is biology. Harvard University Press,CambridgeGoogle Scholar
  49. 49.
    McMahonT, Bonner JT (1983) On size and life. Freeman, SanFranciscoGoogle Scholar
  50. 50.
    McNeillJR, McNeill WH (2003) The human web. Norton, NewYorkGoogle Scholar
  51. 51.
    MorowitzHJ (1968) Energy flow in biology. Academic Press, NewYorkGoogle Scholar
  52. 52.
    MorrisonP (1964) A thermodynamic characterization ofself‐reproduction. Rev Mod Phys36:517ADSGoogle Scholar
  53. 53.
    OdumHT (1971) Environment, power, and society. Wiley, NewYorkGoogle Scholar
  54. 54.
    PrigogineI (1961) Introduction to thermodynamics of irreversibleprocesses. Wiley, New YorkzbMATHGoogle Scholar
  55. 55.
    PrigogineI, Nicolis G, Babloyantz A (1972) Thermodynamics of evolution. PhysicsToday 11:23Google Scholar
  56. 56.
    ReevesH (1981) Patience dans l'azur: l'evolution cosmique. Editions duSeuil, ParisGoogle Scholar
  57. 57.
    SaganC (1980) Cosmos. Random House, New YorkGoogle Scholar
  58. 58.
    SalkJ (1982) An evolutionary approach to world problems. UNESCO,ParisGoogle Scholar
  59. 59.
    SchneiderED, Kay JJ (1995) Order from disorder: thermodynamics of complexity inbiology. In: Murphy M, O'Neill L (eds) What is life. CambridgeUniversity Press, CambridgeGoogle Scholar
  60. 60.
    SchroedingerE (1944) What is life? Cambridge University Press,CambridgeGoogle Scholar
  61. 61.
    ShannonCE, Weaver W (1949) Mathematical theory of communication. University ofIllinois Press, Champaign‐UrbanazbMATHGoogle Scholar
  62. 62.
    ShapleyH (1930) Flights from chaos. McGraw Hill, NewYorkGoogle Scholar
  63. 63.
    SmilV (1999) Energies. MIT Press, CambridgeGoogle Scholar
  64. 64.
    SpencerH (1896) A system of synthetic philosophy. Williams and Norgate,LondonGoogle Scholar
  65. 65.
    SpierF (2005) How big history works. Soc Evol Hist4:25Google Scholar
  66. 66.
    SzathmaryE, Maynard Smith J (1995) The major evolutionary transitions. Nature374:227ADSGoogle Scholar
  67. 67.
    TainterJA (1988) The collapse of complex societies. Cambridge University Press,CambridgeGoogle Scholar
  68. 68.
    UlanowiczRE (1986) Growth and development. Springer,BerlinzbMATHGoogle Scholar
  69. 69.
    WeberBH, Depew DJ, Smith JD (eds) (1988) Entropy, information, andevolution. MIT Press, CambridgeGoogle Scholar
  70. 70.
    WestGB, Brown JH, Enquist BJ (1999) Fourth dimension of life. Science284:1677MathSciNetADSzbMATHGoogle Scholar
  71. 71.
    WhiteLA (1959) The evolution of culture. McGraw‐Hill, NewYorkGoogle Scholar
  72. 72.
    WhiteheadAN (1925) Science and the modern world. Macmillan, NewYorkGoogle Scholar
  73. 73.
    WickenJS (1987) Evolution, thermodynamics, and information. OxfordUniversity Press, OxfordGoogle Scholar
  74. 74.
    vonBertalanffy L (1932) Theoretische biologie. Borntraeger,BerlinGoogle Scholar
  75. 75.
    vonBertalanffy L (1968) General system theory. Braziller, NewYorkGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Eric J. Chaisson
    • 1
  1. 1.Wright CenterTufts UniversityMassachusettsUSA