Encyclopedia of Complexity and Systems Science

2009 Edition
| Editors: Robert A. Meyers (Editor-in-Chief)

Evolution in Materio

  • Simon Harding
  • Julian F. Miller
Reference work entry
DOI: https://doi.org/10.1007/978-0-387-30440-3_190

Definition of the Subject

Evolution in materio refers to the use of computers running search algorithms, called evolutionary algorithms, to find the values of variables thatshould be applied to material systems so that they carry out useful computation. Examples of such variables might be the location and magnitude ofvoltages that need to be applied to a particular physical system. Evolution in materio is a methodology for programming materials that utilizesphysical effects that the human programmer need not be aware of. It is a general methodology for obtaining analogue computation that is specific tothe desired problem domain. Although a form of this methodology was hinted at in the work of Gordon Pask in the 1950s it was not convincinglydemonstrated until 1996 by Adrian Thompson, who showed that physical properties of a digital chip could be exploited by computer controlledevolution. This article describes the first demonstration that such a method can be used to obtain specific...

This is a preview of subscription content, log in to check access.

Bibliography

Primary Literature

  1. 1.
    Turing AM (1936) On computable numbers, with an application to the entscheidungsproblem. Proc Lond Math Soc 42(2):230–265MathSciNetGoogle Scholar
  2. 2.
    Bissell C (2004) A great disappearing act: the electronic analogue computer. In: IEEE Conference on the History of Electronics, 28–30 JuneGoogle Scholar
  3. 3.
    Deutsch D (1985) Quantum theory, the church–turing principle and the universal quantum computer. Proc Royal Soc Lond A 400:97–117MathSciNetADSzbMATHGoogle Scholar
  4. 4.
    Adamatzky A, Costello BDL, Asai T (2005) Reaction‐Diffusion Computers. Elsevier, AmsterdamGoogle Scholar
  5. 5.
    Adleman LM (1994) Molecular computation of solutions to combinatorial problems. Science 266(11):1021–1024ADSGoogle Scholar
  6. 6.
    Amos M (2005) Theoretical and Experimental DNA Computation. Springer, BerlinzbMATHGoogle Scholar
  7. 7.
    Weiss R, Basu S, Hooshangi S, Kalmbach A, Karig D, Mehreja R, Netravali I (2003) Genetic circuit building blocks for cellular computation, communications, and signal processing. Nat Comput 2(1):47–84Google Scholar
  8. 8.
    UK Computing Research Committee (2005) Grand challenges in computer research. http://www.ukcrc.org.uk/grand_challenges/
  9. 9.
    Stepney S, Braunstein SL, Clark JA, Tyrrell A, Adamatzky A, Smith RE, Addis T, Johnson C, Timmis J, Welch P, Milner R, Partridge D (2005) Journeys in non‐classical computation I: A grand challenge for computing research. Int J Parallel Emerg Distrib Syst 20(1):5–19MathSciNetzbMATHGoogle Scholar
  10. 10.
    Stepney S, Braunstein S, Clark J, Tyrrell A, Adamatzky A, Smith R, Addis T, Johnson C, Timmis J, Welch P, Milner R, Partridge D (2006) Journeys in non‐classical computation II: Initial journeys and waypoints. Int J Parallel, Emerg Distrib Syst 21(2):97–125MathSciNetGoogle Scholar
  11. 11.
    Toffoli T (2005) Nothing makes sense in computing except in the light of evolution. Int J Unconv Comput 1(1):3–29Google Scholar
  12. 12.
    Conrad M (1988) The price of programmability. The Universal Turing Machine. pp 285–307Google Scholar
  13. 13.
    Goldberg D (1989) Genetic Algorithms in Search, Optimization and Machine Learning. Addison‐Wesley, Reading, MassachusettszbMATHGoogle Scholar
  14. 14.
    Holland J (1992) Adaptation in Natural and Artificial Systems. 2nd edn. MIT Press, CambridgeGoogle Scholar
  15. 15.
    Mitchell M (1996) An introduction to genetic algorithms. MIT Press, Cambridge, MA, USAGoogle Scholar
  16. 16.
    Pask G (1958) Physical analogues to the growth of a concept. In: Mechanization of Thought Processes. Symposium 10, National Physical Laboratory, pp 765–794Google Scholar
  17. 17.
    Pask G (1959) The natural history of networks. In: Proceedings of International Tracts. In: Computer Science and Technology and their Application. vol 2, pp 232–263Google Scholar
  18. 18.
    Cariani P (1993) To evolve an ear: epistemological implications of gordon pask's electrochemical devices. Syst Res 3:19–33Google Scholar
  19. 19.
    Pickering A (2002) Cybernetics and the mangle: Ashby, beer and pask. Soc Stud Sci 32:413–437Google Scholar
  20. 20.
    Thompson A, Harvey I, Husbands P (1996) Unconstrained evolution and hard consequences. In: Sanchez E, Tomassini M (eds) Towards Evolvable Hardware: The evolutionary engineering approach. LNCS, vol 1062. Springer, Berlin, pp 136–165Google Scholar
  21. 21.
    Thompson A (1996) An evolved circuit, intrinsic in silicon, entwined with physics. ICES 390–405Google Scholar
  22. 22.
    Bird J, Layzell P (2002) The evolved radio and its implications for modelling the evolution of novel sensors. In: Proceedings of Congress on Evolutionary Computation, pp 1836–1841Google Scholar
  23. 23.
    Layzell P (1998) A new research tool for intrinsic hardware evolution. Proceedings of The Second International Conference on Evolvable Systems: From Biology to Hardware. LNCS, vol 1478. Springer, Berlin, pp 47–56Google Scholar
  24. 24.
    Linden DS, Altshuler EE (2001) A system for evolving antennas in-situ. In: 3rd NASA / DoD Workshop on Evolvable Hardware. IEEE Computer Society, pp 249–255Google Scholar
  25. 25.
    Linden DS, Altshuler EE (1999) Evolving wire antennas using genetic algorithms: A review. In: 1st NASA / DoD Workshop on Evolvable Hardware. IEEE Computer Society, pp 225–232Google Scholar
  26. 26.
    Stoica A, Zebulum RS, Guo X, Keymeulen D, Ferguson MI, Duong V (2003) Silicon validation of evolution‐designed circuits. In: Proceedings. NASA/DoD Conference on Evolvable Hardware, pp 21–25Google Scholar
  27. 27.
    Stoica A, Zebulum RS, Keymeulen D (2000) Mixtrinsic evolution. In: Proceedings of the Third International Conference on Evolvable Systems: From Biology to Hardware (ICES2000). Lecture Notes in Computer Science, vol 1801. Springer, Berlin, pp 208–217Google Scholar
  28. 28.
    Miller JF, Downing K (2002) Evolution in materio: Looking beyond the silicon box. In: Proceedings of NASA/DoD Evolvable Hardware Workshop, pp 167–176Google Scholar
  29. 29.
    Thompson A (1998) On the automatic design of robust electronics through artificial evolution. In: Sipper M, Mange D, Pérez-Uribe A (eds) Evolvable Systems: From Biology to Hardware, vol 1478. Springer, New York, pp 13–24Google Scholar
  30. 30.
    Laughlin RB, Pines D, Schmalian J, Stojkovic BP, Wolynes P (2000) The middle way. Proc Nat Acd Sci 97(1):32–37ADSGoogle Scholar
  31. 31.
    Lindoy LF, Atkinson IM (2000) Self‐assembly in Supramolecular Systems. Royal Society of ChemistryGoogle Scholar
  32. 32.
    Langton C (1991) Computation at the edge of chaos: Phase transitions and emergent computation. In: Emergent Computation, pp 12–37. MIT PressGoogle Scholar
  33. 33.
    Demus D, Goodby JW, Gray GW, Spiess HW, Vill V (eds) (1998) Handbook of Liquid Crystals, vol 4. Wiley-VCH, ISBN 3-527-29502-X, pp 2180 Google Scholar
  34. 34.
    Khoo IC (1995) Liquid Crystals: physical properties and nonlinear optical phenomena. WileyGoogle Scholar
  35. 35.
    Khoo IC, Slussarenko S, Guenther BD, Shih MY, Chen P, Wood WV (1998) Optically induced space‐charge fields, dc voltage, and extraordinarily large nonlinearity in dye-doped nematic liquid crystals. Opt Lett 23(4):253–255ADSGoogle Scholar
  36. 36.
    Chandrasekhar S (1998) Columnar, discotic nematic and lamellar liquid crystals: Their structure and physical properties. In: Handbook of Liquid Crystals, vol 2B. Wiley-VCH pp 749–780Google Scholar
  37. 37.
    Crossland WA, Wilkinson TD (1998) Nondisplay applications of liquid crystals. In: Handbook of Liquid Crystals, vol 1. Wiley-VCH, pp 763–822Google Scholar
  38. 38.
    Wright PV, Chambers B, Barnes A, Lees K, Despotakis A (2000) Progress in smart microwave materials and structures. Smart Mater Struct 9:272–279ADSGoogle Scholar
  39. 39.
    Mortimer RJ (1997) Electrochromic materials. Chem Soc Rev 26:147–156Google Scholar
  40. 40.
    Bar-Cohen Y (2001) Electroactive Polymer (EAP) Actuators as Artificial Muscles – Reality, Potential and Challenges. SPIE PressGoogle Scholar
  41. 41.
    Pope M, Swenberg CE (1999) Electronic Processes of Organic Crystals and Polymers. Oxford University Press, OxfordGoogle Scholar
  42. 42.
    Hao T (2005) Electrorheological Fluids: The Non‐aqueous Suspensions. Elsevier ScienceGoogle Scholar
  43. 43.
    Khusid B, Activos A (1996) Effects of interparticle electric interactions on dielectrophoresis in colloidal suspensions. Phys Rev E 54(5):5428–5435ADSGoogle Scholar
  44. 44.
    Khusid B, Activos A (2001) Hermanson KD, Lumsdon SO, Williams JP, Kaler EW, Velev OD. Science 294:1082–1086Google Scholar
  45. 45.
    Petty MC (1996) Langmuir–Blodgett Films: An Introduction. Cambridge University Press, CambridgeGoogle Scholar
  46. 46.
    Mills JW (1995) Polymer processors. Technical Report TR580, Department of Computer Science, University of IndianaGoogle Scholar
  47. 47.
    Mills JW, Beavers MG, Daffinger CA (1989) Lukasiewicz logic arrays. Technical Report TR296, Department of Computer Science, University of IndianaGoogle Scholar
  48. 48.
    Mills JW (1995) Programmable vlsi extended analog computer for cyclotron beam control. Technical Report TR441, Department of Computer Science, University of IndianaGoogle Scholar
  49. 49.
    Mills JW (1995) The continuous retina: Image processing with a single sensor artificial neural field network. Technical Report TR443, Department of Computer Science, University of IndianaGoogle Scholar
  50. 50.
    Harding S, Miller JF (2004) Evolution in materio: A tone discriminator in liquid crystal. In: In Proceedings of the Congress on Evolutionary Computation 2004 (CEC'2004), vol 2, pp 1800–1807Google Scholar
  51. 51.
    Crooks J (2002) Evolvable analogue hardware. Meng project report, The University Of YorkGoogle Scholar
  52. 52.
    Lloyd S (2000) Ultimate physical limits to computation. Nature 406:1047–1054Google Scholar
  53. 53.
    Koza JR (1999) Human‐competitive machine intelligence by means of genetic algorithms. In: Booker L, Forrest S, Mitchell M, Riolo R (eds) Festschrift in honor of John H Holland. Center for the Study of Complex Systems, Ann Arbor, pp 15–22Google Scholar

Books and Reviews

  1. 54.
    Analog Computer Museum and History Center: Analog Computer Reading List. http://dcoward.best.vwh.net/analog/readlist.htm
  2. 55.
    Bringsjord S (2001) In Computation, Parallel is Nothing, Physical Everything. Minds and Machines 11(1)Google Scholar
  3. 56.
    Feynman RP (2000) Feyman Lectures on Computation. Perseus Books GroupGoogle Scholar
  4. 57.
    Fifer S (1961) Analogue computation: theory, techniques, and applications. McGraw‐Hill, New YorkGoogle Scholar
  5. 58.
    Greenwood GW, Tyrrell AM (2006) Introduction to Evolvable Hardware: A Practical Guide for Designing Self‐Adaptive Systems. Wiley-IEEE PressGoogle Scholar
  6. 59.
    Hey AJG (ed) (2002) Feynman and Computation. Westview PressGoogle Scholar
  7. 60.
    Penrose R (1989) The Emperor's New Mind, Concerning Computers, Minds, and the Laws of Physics. Oxford University, OxfordGoogle Scholar
  8. 61.
    Piccinini G: The Physical Church–Turing Thesis: Modest or Bold? http://www.umsl.edu/%7Epiccininig/CTModestorBold5.htm
  9. 62.
    Raichman N, Ben-Jacob N, Segev R (2003) Evolvable Hardware: Genetic Search in a Physical Realm. Phys A 326:265–285zbMATHGoogle Scholar
  10. 63.
    Sekanina L (2004) Evolvable Components: From Theory to Hardware Implementations, 1st edn. Springer, HeidelbergGoogle Scholar
  11. 64.
    Siegelmann HT (1999) Neural Networks and Analog Computation, Beyond the Turing Limits. Birkhauser, BostonGoogle Scholar
  12. 65.
    Sienko T, Adamatzky A, Rambidi N, Conrad M (2003) Molecular Computing. MIT PressGoogle Scholar
  13. 66.
    Thompson A (1999) Hardware Evolution: Automatic Design of Electronic Circuits in Reconfigurable Hardware by Artificial Evolution,1st edn. Springer, HeidelbergGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Simon Harding
    • 1
  • Julian F. Miller
    • 2
  1. 1.Department of Computer ScienceMemorial UniversitySt. John'sCanada
  2. 2.Department of ElectronicsUniversity of YorkHeslingtonUK