Encyclopedia of Complexity and Systems Science

2009 Edition
| Editors: Robert A. Meyers (Editor-in-Chief)

Evolutionary Game Theory

  • William H. Sandholm
Reference work entry
DOI: https://doi.org/10.1007/978-0-387-30440-3_188

Definition of the Subject

Evolutionary game theory studies the behavior of large populations of agents who repeatedly engage in strategicinteractions. Changes in behavior in these populations are driven either by natural selection via differences in birth and death rates, or by theapplication of myopic decision rules by individual agents.

The birth of evolutionary game theory is marked by the publication of a series of papers by mathematical biologist John MaynardSmith [137,138,140]. Maynard Smith adapted the methods of traditional game theory [151,215], which were created to model the behavior of rationaleconomic agents, to the context of biological natural selection. He proposed his notion of an evolutionarily stablestrategy (ESS) as a way of explaining the existence of ritualized animal conflict.

Maynard Smith's equilibrium concept was provided with an explicit dynamic foundation through a differential equation model introduced by Taylorand Jonker [205]. Schuster and Sigmund [189],...

This is a preview of subscription content, log in to check access.



The figures in Sects. “Deterministic Dynamics” and “Local Interaction” were created using Dynamo [184] and VirtualLabs [92], respectively. I am grateful to Caltechfor its hospitality as I completed this article, and I gratefully acknowledge financial support under NSF GrantSES-0617753.


  1. 1.
    Agastya M (2004) Stochastic stability in a double auction. Games EconBehav 48:203–222MathSciNetzbMATHGoogle Scholar
  2. 2.
    Akin E (1979) The geometry of population genetics. Springer,BerlinzbMATHGoogle Scholar
  3. 3.
    Akin E (1980) Domination or equilibrium. Math Biosci 50:239–250MathSciNetzbMATHGoogle Scholar
  4. 4.
    Akin E (1990) The differential geometry of population genetics and evolutionarygames. In: Lessard S (ed) Mathematical and statistical developments of evolutionary theory. Kluwer, Dordrecht,pp 1–93Google Scholar
  5. 5.
    Akin E, Losert V (1984) Evolutionary dynamics of zero-sum games. J MathBiol 20:231–258MathSciNetzbMATHGoogle Scholar
  6. 6.
    Alós-Ferrer C (2005) The evolutionary stability of perfectly competitivebehavior. Econ Theory 26:497–516Google Scholar
  7. 7.
    Alós-Ferrer C, Ania AB, Schenk-Hoppé KR (2000) An evolutionary model of Bertrandoligopoly. Games Econ Behav 33:1–19Google Scholar
  8. 8.
    Alós-Ferrer C, Kirchsteiger G, Walzl M (2006) On the evolution of marketinstitutions: The platform design paradox. Unpublished manuscript, University of KonstanzGoogle Scholar
  9. 9.
    Alós-Ferrer C, Weidenholzer S (2006) Contagion and efficiency. J Econ Theory forthcoming,University of Konstanz and University of ViennaGoogle Scholar
  10. 10.
    Alós-Ferrer C, Weidenholzer S (2006) Imitation, local interactions, andefficiency. Econ Lett 93:163–168Google Scholar
  11. 11.
    Anderlini L, Ianni A (1996) Path dependence and learning from neighbors.Games Econ Behav 13:141–177MathSciNetzbMATHGoogle Scholar
  12. 12.
    Ania AB, Tröger T, Wambach A (2002) An evolutionary analysis of insurancemarkets with adverse selection. Games Econ Behav 40:153–184Google Scholar
  13. 13.
    Arneodo A, Coullet P, Tresser C (1980) Occurrence of strange attractors inthree‐dimensional Volterra equations. Phys Lett 79A:259–263MathSciNetADSGoogle Scholar
  14. 14.
    Axelrod R (1984) The evolution of cooperation. Basic Books, NewYorkGoogle Scholar
  15. 15.
    Balkenborg D, Schlag KH (2001) Evolutionarily stable sets. Int J GameTheory 29:571–595MathSciNetzbMATHGoogle Scholar
  16. 16.
    Basu K, Weibull JW (1991) Strategy sets closed under rational behavior. EconLett 36:141–146MathSciNetzbMATHGoogle Scholar
  17. 17.
    Beckmann M, McGuire CB, Winsten CB (1956) Studies in the economics oftransportation. Yale University Press, New HavenGoogle Scholar
  18. 18.
    Beggs AW (2002) Stochastic evolution with slow learning. Econ Theory19:379–405MathSciNetzbMATHGoogle Scholar
  19. 19.
    Ben‐Shoham A, Serrano R, Volij O (2004) The evolution of exchange.J Econ Theory 114:310–328Google Scholar
  20. 20.
    Benaïm M (1998) Recursive algorithms, urn processes, and the chainingnumber of chain recurrent sets. Ergod Theory Dyn Syst 18:53–87Google Scholar
  21. 21.
    Benaïm M, Hirsch MW (1999) On stochastic approximation algorithms withconstant step size whose average is cooperative. Ann Appl Probab 30:850–869Google Scholar
  22. 22.
    Benaïm M, Hofbauer J, Hopkins E (2006) Learning in games with unstableequilibria. Unpublished manuscript, Université de Neuchâtel, University of Vienna and University of EdinburghGoogle Scholar
  23. 23.
    Benaïm M, Sandholm WH (2007) Logit evolution in potential games:Reversibility, rates of convergence, large deviations, and equilibrium selection. Unpublished manuscript, Université de Neuchâtel and University ofWisconsinGoogle Scholar
  24. 24.
    Benaïm M, Weibull JW (2003) Deterministic approximation of stochasticevolution in games. Econometrica 71:873–903Google Scholar
  25. 25.
    Berger U, Hofbauer J (2006) Irrational behavior in the Brown-von Neumann-Nashdynamics. Games Econ Behav 56:1–6MathSciNetzbMATHGoogle Scholar
  26. 26.
    Bergin J, Bernhardt D (2004) Comparative learning dynamics. Int Econ Rev45:431–465MathSciNetGoogle Scholar
  27. 27.
    Bergin J, Lipman BL (1996) Evolution with state‐dependent mutations.Econometrica 64:943–956zbMATHGoogle Scholar
  28. 28.
    Binmore K, Gale J, Samuelson L (1995) Learning to be imperfect: The ultimatumgame. Games Econ Behav 8:56–90MathSciNetzbMATHGoogle Scholar
  29. 29.
    Binmore K, Samuelson L (1997) Muddling through: Noisy equilibrium selection.J Econ Theory 74:235–265MathSciNetzbMATHGoogle Scholar
  30. 30.
    Binmore K, Samuelson L (1999) Evolutionary drift and equilibrium selection.Rev Econ Stud 66:363–393MathSciNetzbMATHGoogle Scholar
  31. 31.
    Binmore K, Samuelson L, Vaughan R (1995) Musical chairs: Modeling noisyevolution. Games Econ Behav 11:1–35MathSciNetzbMATHGoogle Scholar
  32. 32.
    Binmore K, Samuelson L, Peyton Young H (2003) Equilibrium selection inbargaining models. Games Econ Behav 45:296–328Google Scholar
  33. 33.
    Bishop DT, Cannings C (1978) A generalised war of attrition.J Theor Biol 70:85–124MathSciNetGoogle Scholar
  34. 34.
    Bisin A, Verdier T (2001) The economics of cultural transmission and thedynamics of preferences. J Econ Theory 97:298–319MathSciNetzbMATHGoogle Scholar
  35. 35.
    Björnerstedt J, Weibull JW (1996) Nash equilibrium and evolution by imitation.In: Arrow KJ et al. (eds) The Rational Foundations of Economic Behavior. St. Martin's Press, New York,pp 155–181Google Scholar
  36. 36.
    Blume LE (1993) The statistical mechanics of strategic interaction. GamesEcon Behav 5:387–424MathSciNetzbMATHGoogle Scholar
  37. 37.
    Blume LE (1995) The statistical mechanics of best reponse strategy revision.Games Econ Behav 11:111–145MathSciNetzbMATHGoogle Scholar
  38. 38.
    Blume LE (1997) Population games. In: Arthur WB, Durlauf SN, Lane DA (eds)The economy as an evolving complex system II. Addison–Wesley, Reading pp 425–460Google Scholar
  39. 39.
    Blume LE (2003) How noise matters. Games Econ Behav44:251–271MathSciNetzbMATHGoogle Scholar
  40. 40.
    Bøg M (2006) Is segregation robust? Unpublished manuscript, StockholmSchool of EconomicsGoogle Scholar
  41. 41.
    Bomze IM (1990) Dynamical aspects of evolutionary stability. MonatshefteMathematik 110:189–206MathSciNetzbMATHGoogle Scholar
  42. 42.
    Bomze IM (1991) Cross entropy minimization in uninvadable states of complexpopulations. J Math Biol 30:73–87MathSciNetADSzbMATHGoogle Scholar
  43. 43.
    Börgers T, Sarin R (1997) Learning through reinforcement and the replicatordynamics. J Econ Theory 77:1–14Google Scholar
  44. 44.
    Boylan RT (1995) Continuous approximation of dynamical systems with randomlymatched individuals. J Econ Theory 66:615–625MathSciNetzbMATHGoogle Scholar
  45. 45.
    Brown GW, von Neumann J (1950) Solutions of games by differential equations.In: Kuhn HW, Tucker AW (eds) Contributions to the theory of games I, volume 24 of Annals of Mathematics Studies. Princeton University Press,Princeton, pp 73–79Google Scholar
  46. 46.
    Burke MA, Peyton Young H (2001) Competition and custom in economic contracts:A case study of Illinois agriculture. Am Econ Rev 91:559–573Google Scholar
  47. 47.
    Cabrales A (1999) Adaptive dynamics and the implementation problem withcomplete information. J Econ Theory 86:159–184MathSciNetzbMATHGoogle Scholar
  48. 48.
    Cabrales A (2000) Stochastic replicator dynamics. Int Econ Rev41:451–481MathSciNetGoogle Scholar
  49. 49.
    Cabrales A, Ponti G (2000) Implementation, elimination of weakly dominatedstrategies and evolutionary dynamics. Rev Econ Dyn 3:247–282Google Scholar
  50. 50.
    Crawford VP (1991) An “evolutionary” interpretation of Van Huyck,Battalio, and Beil's experimental results on coordination. Games Econ Behav 3:25–59zbMATHGoogle Scholar
  51. 51.
    Cressman R (1996) Evolutionary stability in the finitely repeated prisoner'sdilemma game. J Econ Theory 68:234–248MathSciNetzbMATHGoogle Scholar
  52. 52.
    Cressman R (1997) Local stability of smooth selection dynamics for normal formgames. Math Soc Sci 34:1–19MathSciNetzbMATHGoogle Scholar
  53. 53.
    Cressman R (2000) Subgame monotonicity in extensive form evolutionary games.Games Econ Behav 32:183–205MathSciNetzbMATHGoogle Scholar
  54. 54.
    Cressman R (2003) Evolutionary dynamics and extensive form games. MIT Press,CambridgezbMATHGoogle Scholar
  55. 55.
    Cressman R, Schlag KH (1998) On the dynamic (in)stability of backwardsinduction. J Econ Theory 83:260–285MathSciNetzbMATHGoogle Scholar
  56. 56.
    Dafermos S, Sparrow FT (1969) The traffic assignment problem fora general network. J Res Nat Bureau Stand B 73:91–118MathSciNetzbMATHGoogle Scholar
  57. 57.
    Dawid H, Bentley MacLeod W (2008) Hold-up and the evolution of investment andbargaining norms. Games Econ Behav forthcoming62:26–52Google Scholar
  58. 58.
    Dawkins R (1976) The selfish gene. Oxford University Press,OxfordGoogle Scholar
  59. 59.
    Dekel E, Scotchmer S (1992) On the evolution of optimizing behavior.J Econ Theory 57:392–407MathSciNetzbMATHGoogle Scholar
  60. 60.
    Demichelis S, Ritzberger K (2003) From evolutionary to strategic stability.J Econ Theory 113:51–75MathSciNetzbMATHGoogle Scholar
  61. 61.
    Dindoš M, Mezzetti C (2006) Better‐reply dynamics and globalconvergence to Nash equilibrium in aggregative games. Games Econ Behav 54:261–292Google Scholar
  62. 62.
    Dokumacı E, Sandholm WH (2007) Schelling redux: An evolutionary model ofresidential segregation. Unpublished manuscript, University of WisconsinGoogle Scholar
  63. 63.
    Dokumacı E, Sandholm WH (2007) Stochastic evolution with perturbedpayoffs and rapid play. Unpublished manuscript, University of WisconsinGoogle Scholar
  64. 64.
    Droste E, Hommes, Tuinstra J (2002) Endogenous fluctuations under evolutionarypressure in Cournot competition. Games Econ Behav 40:232–269MathSciNetzbMATHGoogle Scholar
  65. 65.
    Dugatkin LA, Reeve HK (eds)(1998) Game theory and animal behavior. OxfordUniversity Press, OxfordGoogle Scholar
  66. 66.
    Ellingsen T, Robles J (2002) Does evolution solve the hold-up problem? GamesEcon Behav 39:28–53MathSciNetzbMATHGoogle Scholar
  67. 67.
    Ellison G (1993) Learning, local interaction, and coordination. Econometrica61:1047–1071MathSciNetzbMATHGoogle Scholar
  68. 68.
    Ellison G (2000) Basins of attraction, long run equilibria, and the speed ofstep‐bystep evolution. Rev Econ Stud 67:17–45MathSciNetzbMATHGoogle Scholar
  69. 69.
    Ely JC (2002) Local conventions. Adv Econ Theory 2:1(30)Google Scholar
  70. 70.
    Ely JC, Sandholm WH (2005) Evolution in Bayesian games I: Theory. Games EconBehav 53:83–109MathSciNetzbMATHGoogle Scholar
  71. 71.
    Eshel I, Samuelson L, Shaked A (1998) Altruists, egoists, and hooligans ina local interaction model. Am Econ Rev 88:157–179Google Scholar
  72. 72.
    Fischer S, Vöcking B (2006) On the evolution of selfish routing. Unpublishedmanuscript, RWTH AachenGoogle Scholar
  73. 73.
    Fisher RA (1930) The genetical theory of natural selection. Clarendon Press,OxfordzbMATHGoogle Scholar
  74. 74.
    Foster DP, Peyton Young H (1990) Stochastic evolutionary game dynamics. TheorPopul Biol 38:219–232 also in Corrigendum 51:77–78 (1997)Google Scholar
  75. 75.
    Freidlin MI, Wentzell AD (1998) Random perturbations of dynamical systems, 2ndedn. Springer, New YorkzbMATHGoogle Scholar
  76. 76.
    Friedman D (1991) Evolutionary games in economics. Econometrica59:637–666MathSciNetzbMATHGoogle Scholar
  77. 77.
    Friedman D, Yellin J (1997) Evolving landscapes for population games.Unpublished manuscript, UC Santa CruzGoogle Scholar
  78. 78.
    Friedman JW, Mezzetti C (2001) Learning in games by random sampling.J Econ Theory 98:55–84MathSciNetzbMATHGoogle Scholar
  79. 79.
    Fudenberg D, Harris C (1992) Evolutionary dynamics with aggregate shocks.J Econ Theory 57:420–441MathSciNetzbMATHGoogle Scholar
  80. 80.
    Fudenberg D, Imhof LA (2006) Imitation processes with small mutations.J Econ Theory 131:251–262MathSciNetzbMATHGoogle Scholar
  81. 81.
    Fudenberg D, Imhof LA (2008) Monotone imitation dynamics in large populations.J Econ Theory 140:229–245MathSciNetzbMATHGoogle Scholar
  82. 82.
    Fudenberg D, Levine DK (1998) Theory of learning in games. MIT Press,CambridgezbMATHGoogle Scholar
  83. 83.
    Gaunersdorfer A, Hofbauer J (1995) Fictitious play, shapley polygons, and thereplicator equation. Games Econ Behav 11:279–303MathSciNetzbMATHGoogle Scholar
  84. 84.
    Gilboa I, Matsui A (1991) Social stability and equilibrium. Econometrica59:859–867MathSciNetzbMATHGoogle Scholar
  85. 85.
    Goyal S (2007) Connections: An introduction to the economics of networks. PrincetonUniversity Press, PrincetonGoogle Scholar
  86. 86.
    Goyal S, Janssen MCW (1997) Non‐exclusive conventions and socialcoordination. J Econ Theory 77:34–57MathSciNetzbMATHGoogle Scholar
  87. 87.
    Hamilton WD (1967) Extraordinary sex ratios. Science156:477–488ADSGoogle Scholar
  88. 88.
    Hammerstein P, Selten R (1994) Game theory and evolutionary biology. In:Aumann RJ, Hart S (eds) Handbook of Game Theory. vol 2, chap 28, Elsevier, Amsterdam, pp 929–993Google Scholar
  89. 89.
    Harsanyi JC, Selten R (1988) A General Theory of equilibrium selection ingames. MIT Press, CambridgezbMATHGoogle Scholar
  90. 90.
    Hart S (2002) Evolutionary dynamics and backward induction. Games Econ Behav41:227–264zbMATHGoogle Scholar
  91. 91.
    Hart S, Mas‐Colell A (2003) Uncoupled dynamics do not lead to Nashequilibrium. Am Econ Rev 93:1830–1836Google Scholar
  92. 92.
    Hauert C (2007) Virtual Labs in evolutionary game theory. Softwarehttp://www.univie.ac.at/virtuallabs. Accessed 31 Dec 2007
  93. 93.
    Hauert C, De Monte S, Hofbauer J, Sigmund K (2002) Volunteering as Red Queenmechanism for cooperation in public goods games. Science 296:1129–1132ADSGoogle Scholar
  94. 94.
    Herz AVM (1994) Collective phenomena in spatially extended evolutionary games.J Theor Biol 169:65–87Google Scholar
  95. 95.
    Hines WGS (1987) Evolutionary stable strategies: A review of basictheory. Theor Popul Biol 31:195–272MathSciNetzbMATHGoogle Scholar
  96. 96.
    Hofbauer J (1995) Imitation dynamics for games. Unpublished manuscript,University of ViennaGoogle Scholar
  97. 97.
    Hofbauer J (1995) Stability for the best response dynamics. Unpublishedmanuscript, University of ViennaGoogle Scholar
  98. 98.
    Hofbauer J (2000) From Nash and Brown to Maynard Smith: Equilibria, dynamicsand ESS. Selection 1:81–88Google Scholar
  99. 99.
    Hofbauer J, Hopkins E (2005) Learning in perturbed asymmetric games. GamesEcon Behav 52:133–152MathSciNetzbMATHGoogle Scholar
  100. 100.
    Hofbauer J, Oechssler J, Riedel F (2005) Brown-von Neumann-Nash dynamics:The continuous strategy case. Unpublished manuscript, University of ViennaGoogle Scholar
  101. 101.
    Hofbauer J, Sandholm WH (2002) On the global convergence of stochasticfictitious play. Econometrica 70:2265–2294MathSciNetzbMATHGoogle Scholar
  102. 102.
    Hofbauer J, Sandholm WH (2006) Stable games. Unpublished manuscript,University of Vienna and University of WisconsinGoogle Scholar
  103. 103.
    Hofbauer J, Sandholm WH (2006) Survival of dominated strategies underevolutionary dynamics. Unpublished manuscript, University of Vienna and University of WisconsinGoogle Scholar
  104. 104.
    Hofbauer J, Sandholm WH (2007) Evolution in games with randomly disturbedpayoffs. J Econ Theory 132:47–69MathSciNetzbMATHGoogle Scholar
  105. 105.
    Hofbauer J, Schuster P, Sigmund K (1979) A note on evolutionarilystable strategies and game dynamics. J Theor Biol 81:609–612MathSciNetGoogle Scholar
  106. 106.
    Hofbauer J, Sigmund K (1988) Theory of evolution and dynamical systems.Cambridge University Press, CambridgezbMATHGoogle Scholar
  107. 107.
    Hofbauer J, Sigmund K (1998) Evolutionary games and population dynamics.Cambridge University Press, CambridgezbMATHGoogle Scholar
  108. 108.
    Hofbauer J, Sigmund K (2003) Evolutionary game dynamics. Bull Am Math Soc(New Series) 40:479–519MathSciNetzbMATHGoogle Scholar
  109. 109.
    Hofbauer J, Swinkels JM (1996) A universal Shapley example.Unpublished manuscript, University of Vienna and Northwestern UniversityGoogle Scholar
  110. 110.
    Hofbauer J, Weibull JW (1996) Evolutionary selection against dominatedstrategies. J Econ Theory 71:558–573MathSciNetzbMATHGoogle Scholar
  111. 111.
    Hopkins E (1999) A note on best response dynamics. Games Econ Behav29:138–150MathSciNetzbMATHGoogle Scholar
  112. 112.
    Hopkins E, Seymour RM (2002) The stability of price dispersion under sellerand consumer learning. Int Econ Rev 43:1157–1190MathSciNetGoogle Scholar
  113. 113.
    Imhof LA (2005) The long-run behavior of the stochastic replicator dynamics.Ann Appl Probab 15:1019–1045MathSciNetzbMATHGoogle Scholar
  114. 114.
    Jackson MO Social and economic networks. Princeton University Press,Princeton, forthcomingGoogle Scholar
  115. 115.
    Jacobsen HJ, Jensen M, Sloth B (2001) Evolutionary learning in signallinggames. Games Econ Behav 34:34–63MathSciNetGoogle Scholar
  116. 116.
    Jordan JS (1993) Three problems in learning mixed‐strategy Nashequilibria. Games Econ Behav 5:368–386zbMATHGoogle Scholar
  117. 117.
    Josephson J (2008) Stochastic better reply dynamics in finite games. EconTheory, 35:381–389MathSciNetzbMATHGoogle Scholar
  118. 118.
    Josephson J, Matros A (2004) Stochastic imitation in finite games. GamesEcon Behav 49:244–259MathSciNetzbMATHGoogle Scholar
  119. 119.
    Kandori M, Mailath GJ, Rob R (1993) Learning, mutation, and long runequilibria in games. Econometrica 61:29–56MathSciNetzbMATHGoogle Scholar
  120. 120.
    Kandori M, Rob R (1995) Evolution of equilibria in the long run:A general theory and applications. J Econ Theory 65:383–414MathSciNetzbMATHGoogle Scholar
  121. 121.
    Kandori M, Rob R (1998) Bandwagon effects and long run technology choice.Games Econ Behav 22:84–120MathSciNetGoogle Scholar
  122. 122.
    Kim Y-G, Sobel J (1995) An evolutionary approach to pre-play communication.Econometrica 63:1181–1193MathSciNetzbMATHGoogle Scholar
  123. 123.
    Kimura M (1958) On the change of population fitness by natural selection.Heredity 12:145–167Google Scholar
  124. 124.
    Kosfeld M (2002) Stochastic strategy adjustment in coordination games. EconTheory 20:321–339MathSciNetzbMATHGoogle Scholar
  125. 125.
    Kukushkin NS (2004) Best response dynamics in finite games with additiveaggregation. Games Econ Behav 48:94–110MathSciNetzbMATHGoogle Scholar
  126. 126.
    Kuran T, Sandholm WH (2008) Cultural integration and its discontents. RevEconomic Stud 75:201–228MathSciNetzbMATHGoogle Scholar
  127. 127.
    Kurtz TG (1970) Solutions ofordinary differential equations as limits ofpure jump Markov processes. J Appl Probab 7:49–58MathSciNetzbMATHGoogle Scholar
  128. 128.
    Kuzmics C (2004) Stochastic evolutionary stability in extensive form gamesof perfect information. Games Econ Behav 48:321–336MathSciNetzbMATHGoogle Scholar
  129. 129.
    Lahkar R (2007) The dynamic instability of dispersed price equilibria.Unpublished manuscript, University College LondonGoogle Scholar
  130. 130.
    Lahkar R, Sandholm WH The projection dynamic and the geometry ofpopulation games. Games Econ Behav, forthcomingGoogle Scholar
  131. 131.
    Losert V, Akin E (1983) Dynamics of games and genes: Discrete versuscontinuous time. J Math Biol 17:241–251MathSciNetzbMATHGoogle Scholar
  132. 132.
    Lotka AJ (1920) Undamped oscillation derived from the law of mass action.J Am Chem Soc 42:1595–1598Google Scholar
  133. 133.
    Mailath GJ (1992) Introduction: Symposium on evolutionary game theory.J Econ Theory 57:259–277MathSciNetzbMATHGoogle Scholar
  134. 134.
    Maruta T (1997) On the relationship between risk‐dominance andstochastic stability. Games Econ Behav 19:221–234MathSciNetGoogle Scholar
  135. 135.
    Maruta T (2002) Binary games with state dependent stochastic choice.J Econ Theory 103:351–376MathSciNetzbMATHGoogle Scholar
  136. 136.
    Mathevet L (2007) Supermodular Bayesian implementation: Learning andincentive design. Unpublished manuscript, CaltechGoogle Scholar
  137. 137.
    Maynard Smith J (1972) Game theory and the evolution of fighting. In:Maynard Smith J On Evolution. Edinburgh University Press, Edinburgh, pp 8–28Google Scholar
  138. 138.
    Maynard Smith J (1974) The theory of games and the evolution of animalconflicts. J Theor Biol 47:209–221MathSciNetGoogle Scholar
  139. 139.
    Maynard Smith J (1982) Evolution and the theory of games. CambridgeUniversity Press, CambridgezbMATHGoogle Scholar
  140. 140.
    Maynard Smith J, Price GR (1973) The logic of animal conflict. Nature246:15–18Google Scholar
  141. 141.
    Miękisz J (2004) Statistical mechanics of spatial evolutionary games.J Phys A 37:9891–9906Google Scholar
  142. 142.
    Möbius MM (2000) The formation of ghettos as a local interactionphenomenon. Unpublished manuscript, MITGoogle Scholar
  143. 143.
    Monderer D, Shapley LS (1996) Potential games. Games Econ Behav14:124–143MathSciNetzbMATHGoogle Scholar
  144. 144.
    Moran PAP (1962) The statistical processes of evolutionary theory.Clarendon Press, OxfordzbMATHGoogle Scholar
  145. 145.
    Myatt DP, Wallace CC (2003) A multinomial probit model of stochasticevolution. J Econ Theory 113:286–301MathSciNetzbMATHGoogle Scholar
  146. 146.
    Myatt DP, Wallace CC (2007) An evolutionary justification for thresholds incollective‐action problems. Unpublished manuscript, Oxford UniversityGoogle Scholar
  147. 147.
    Myatt DP, Wallace CC (2008) An evolutionary analysis of the volunteer's dilemma.Games Econ Behav 62:67–76MathSciNetzbMATHGoogle Scholar
  148. 148.
    Myatt DP, Wallace CC (2008) When does one bad applespoil the barrel? An evolutionary analysis of collective action. Rev Econ Stud 75:499–527MathSciNetzbMATHGoogle Scholar
  149. 149.
    Nachbar JH (1990) “Evolutionary” selection dynamics in games:Convergence and limit properties. Int J Game Theory 19:59–89MathSciNetzbMATHGoogle Scholar
  150. 150.
    Nagurney A, Zhang D (1997) Projected dynamical systems in the formulation,stability analysis and computation of fixed demand traffic network equilibria. Transp Sci 31:147–158zbMATHGoogle Scholar
  151. 151.
    Nash JF (1951) Non‐cooperative games. Ann Math54:287–295MathSciNetGoogle Scholar
  152. 152.
    Nöldeke G, Samuelson L (1993) An evolutionary analysis of backward andforward induction. Games Econ Behav 5:425–454Google Scholar
  153. 153.
    Nowak MA (2006) Evolutionary dynamics: Exploring the equations of life.Belknap/Harvard, CambridgeGoogle Scholar
  154. 154.
    Nowak MA, Bonhoeffer S, May RM (1994) More spatial games. Int J BifurcChaos 4:33–56MathSciNetzbMATHGoogle Scholar
  155. 155.
    Nowak MA, Bonhoeffer S, May RM (1994) Spatial games and the maintenance ofcooperation. Proc Nat Acad Sci 91:4877–4881ADSzbMATHGoogle Scholar
  156. 156.
    Nowak MA, May RM (1992) Evolutionary games and spatial chaos. Nature359:826–829ADSGoogle Scholar
  157. 157.
    Nowak MA, May RM (1993) The spatial dilemmas of evolution. IntJ Bifurc Chaos 3:35–78MathSciNetzbMATHGoogle Scholar
  158. 158.
    Nowak MA, Sasaki A, Taylor C, Fudenberg D (2004) Emergence of cooperationand evolutionary stability in finite populations. Nature 428:646–650ADSGoogle Scholar
  159. 159.
    Oechssler J, Riedel F (2001) Evolutionary dynamics on infinite strategyspaces. Econ Theory 17:141–162MathSciNetzbMATHGoogle Scholar
  160. 160.
    Oechssler J, Riedel F (2002) On the dynamic foundation of evolutionarystability in continuous models. J Econ Theory 107:141–162MathSciNetGoogle Scholar
  161. 161.
    Rhode P, Stegeman M (1996) A comment on “learning, mutation, andlong run equilibria in games”. Econometrica 64:443–449Google Scholar
  162. 162.
    Ritzberger K, Weibull JW (1995) Evolutionary selection in normal form games.Econometrica 63:1371–1399MathSciNetzbMATHGoogle Scholar
  163. 163.
    Robles J (1998) Evolution with changing mutation rates. J Econ Theory79:207–223MathSciNetzbMATHGoogle Scholar
  164. 164.
    Robles J (2008) Evolution, bargaining and time preferences. Econ Theory 35:19–36MathSciNetADSzbMATHGoogle Scholar
  165. 165.
    Robson A, Vega-Redondo F (1996) Efficient equilibrium selection inevolutionary games with random matching. J Econ Theory 70:65–92MathSciNetzbMATHGoogle Scholar
  166. 166.
    Rosenthal RW (1973) A class of games possessing pure strategy Nashequilibria. Int J Game Theory 2:65–67zbMATHGoogle Scholar
  167. 167.
    Samuelson L (1988) Evolutionary foundations of solution concepts for finite,two‐player, normal‐form games. In: Vardi MY (ed) Proc. of the Second Conference on Theoretical Aspects of Reasoning About Knowledge (PacificGrove, CA, 1988), Morgan Kaufmann Publishers, Los Altos, pp 211–225Google Scholar
  168. 168.
    Samuelson L (1994) Stochastic stability in games with alternative bestreplies. J Econ Theory 64:35–65MathSciNetzbMATHGoogle Scholar
  169. 169.
    Samuelson L (1997) Evolutionary games and equilibrium selection. MIT Press,CambridgezbMATHGoogle Scholar
  170. 170.
    Samuelson L, Zhang J (1992) Evolutionary stability in asymmetric games.J Econ Theory 57:363–391MathSciNetzbMATHGoogle Scholar
  171. 171.
    Sandholm WH (1998) Simple and clever decision rules in a model of evolution.Econ Lett 61:165–170MathSciNetzbMATHGoogle Scholar
  172. 172.
    Sandholm WH (2001) Almost global convergence to p‑dominant equilibrium. Int J Game Theory 30:107–116MathSciNetzbMATHGoogle Scholar
  173. 173.
    Sandholm WH (2001) Potential games with continuous player sets. J EconTheory 97:81–108MathSciNetzbMATHGoogle Scholar
  174. 174.
    Sandholm WH (2002) Evolutionary implementation and congestion pricing. RevEcon Stud 69:81–108MathSciNetGoogle Scholar
  175. 175.
    Sandholm WH (2003) Evolution and equilibrium under inexact information.Games Econ Behav 44:343–378MathSciNetzbMATHGoogle Scholar
  176. 176.
    Sandholm WH (2005) Excess payoffdynamics and other well‐behavedevolutionary dynamics. J Econ Theory 124:149–170MathSciNetzbMATHGoogle Scholar
  177. 177.
    Sandholm WH (2005) Negative externalities and evolutionary implementation.Rev Econ Stud 72:885–915MathSciNetzbMATHGoogle Scholar
  178. 178.
    Sandholm WH (2006) Pairwise comparison dynamics. Unpublished manuscript, University of WisconsinGoogle Scholar
  179. 179.
    Sandholm WH (2007) Evolution in Bayesian games II: Stability of purifiedequilibria. J Econ Theory 136:641–667MathSciNetzbMATHGoogle Scholar
  180. 180.
    Sandholm WH (2007) Pigouvian pricing and stochastic evolutionaryimplementation. J Econ Theory 132:367–382MathSciNetzbMATHGoogle Scholar
  181. 181.
    Sandholm WH (2007) Large population potential games. Unpublished manuscript, University of WisconsinGoogle Scholar
  182. 182.
    Sandholm WH (2007) Simple formulas for stationary distributions andstochastically stable states. Games Econ Behav 59:154–162MathSciNetzbMATHGoogle Scholar
  183. 183.
    Sandholm WH Population games and evolutionary dynamics. MIT Press,Cambridge, forthcomingGoogle Scholar
  184. 184.
    Sandholm WH, Dokumacı E (2007) Dynamo: Phase diagrams for evolutionarydynamics. Software http://www.ssc.wisc.edu/%7Ewhs/dynamo
  185. 185.
    Sandholm WH, Dokumacı E, Lahkar R The projection dynamic and thereplicator dynamic. Games Econ Behav, forthcomingGoogle Scholar
  186. 186.
    Sandholm WH, Pauzner A (1998) Evolution, population growth, and historydependence. Games Econ Behav 22:84–120MathSciNetzbMATHGoogle Scholar
  187. 187.
    Sato Y, Akiyama E, Doyne Farmer J (2002) Chaos in learning a simpletwo‐person game. Proc Nat Acad Sci 99:4748–4751ADSzbMATHGoogle Scholar
  188. 188.
    Schlag KH (1998) Why imitate, and if so, how? A boundedly rationalapproach to multi-armed bandits. J Econ Theory 78:130–156MathSciNetzbMATHGoogle Scholar
  189. 189.
    Schuster P, Sigmund K (1983) Replicator dynamics. J Theor Biol100:533–538MathSciNetGoogle Scholar
  190. 190.
    Schuster P, Sigmund K, Hofbauer J, Wolff R (1981) Selfregulation ofbehaviour in animal societies I: Symmetric contests. Biol Cybern 40:1–8MathSciNetzbMATHGoogle Scholar
  191. 191.
    Selten R (1991) Evolution, learning, and economic behavior. Games EconBehav 3:3–24zbMATHGoogle Scholar
  192. 192.
    Shahshahani S (1979) A new mathematical framework for the study oflinkage and selection. Mem Am Math Soc 211Google Scholar
  193. 193.
    Shapley LS (1964) Some topics in two person games. In: Dresher M, ShapleyLS, Tucker AW (eds) Advances in game theory. vol 52 of Annals of Mathematics Studies. Princeton University Press, Princeton,pp 1–28Google Scholar
  194. 194.
    Skyrms B (1990) The Dynamics of Rational Deliberation. Harvard UniversityPress, CambridgezbMATHGoogle Scholar
  195. 195.
    Skyrms B (1992) Chaos in game dynamics. J Log Lang Inf1:111–130MathSciNetGoogle Scholar
  196. 196.
    Smith HL (1995) Monotone Dynamical Systems: An introduction to the theory ofcompetitive and cooperative systems. American MathematicalSociety, Providence, RIzbMATHGoogle Scholar
  197. 197.
    Smith MJ (1984) The stability of a dynamic model of trafficassignment –an application of a method of Lyapunov. Transp Sci 18:245–252ADSGoogle Scholar
  198. 198.
    Stegeman M, Rhode P (2004) Stochastic Darwinian equilibria in small andlarge populations. Games Econ Behav 49:171–214MathSciNetzbMATHGoogle Scholar
  199. 199.
    Swinkels JM (1992) Evolutionary stability with equilibrium entrants.J Econ Theory 57:306–332MathSciNetzbMATHGoogle Scholar
  200. 200.
    Swinkels JM (1993) Adjustment dynamics and rational play in games. GamesEcon Behav 5:455–484MathSciNetzbMATHGoogle Scholar
  201. 201.
    Szabó G, Fáth G (2007) Evolutionary games on graphs. Phys Rep446:97–216Google Scholar
  202. 202.
    Szabó G, Hauert C (2002) Phase transitions and volunteering in spatialpublic goods games. Phys Rev Lett 89:11801(4)Google Scholar
  203. 203.
    Tainaka K-I (2001) Physics and ecology of rock-paper‐scissors game.In: Marsland TA, Frank I (eds) Computers and games, Second International Conference (Hamamatsu 2000), vol 2063 in Lecture Notes in Computer Science.Springer, Berlin, pp 384–395Google Scholar
  204. 204.
    Tanabe Y (2006) The propagation of chaos for interacting individuals ina large population. Math Soc Sci 51:125–152MathSciNetzbMATHGoogle Scholar
  205. 205.
    Taylor PD, Jonker L (1978) Evolutionarily stable strategies and gamedynamics. Math Biosci 40:145–156MathSciNetzbMATHGoogle Scholar
  206. 206.
    Thomas B (1985) On evolutionarily stable sets. J Math Biol22:105–115MathSciNetzbMATHGoogle Scholar
  207. 207.
    Topkis D (1979) Equilibrium points in nonzero‐sum n‑person submodular games. SIAM J Control Optim 17:773–787MathSciNetzbMATHGoogle Scholar
  208. 208.
    Tröger T (2002) Why sunk costs matter for bargaining outcomes: Anevolutionary approach. J Econ Theory 102:28–53Google Scholar
  209. 209.
    Ui T (1998) Robustness of stochastic stability. Unpublished manuscript,Bank of JapanGoogle Scholar
  210. 210.
    van Damme E, Weibull JW (2002)Evolution in games with endogenous mistakeprobabilities. J Econ Theory 106:296–315zbMATHGoogle Scholar
  211. 211.
    Vega-Redondo F (1996) Evolution, games, and economic behaviour. OxfordUniversity Press, OxfordGoogle Scholar
  212. 212.
    Vega-Redondo F (1997) The evolution of Walrasian behavior. Econometrica65:375–384zbMATHGoogle Scholar
  213. 213.
    Vega-Redondo F (2007) Complex social networks. Cambridge University Press,CambridgezbMATHGoogle Scholar
  214. 214.
    Volterra V (1931) Lecons sur la Theorie Mathematique de la Lutte pour laVie. Gauthier–Villars, ParisGoogle Scholar
  215. 215.
    von Neumann J, Morgenstern O (1944) Theory of games and economic behavior.Prentice–Hall, PrincetonGoogle Scholar
  216. 216.
    Weibull JW (1995) Evolutionary game theory. MIT Press,CambridgezbMATHGoogle Scholar
  217. 217.
    Weibull JW (1996) The mass action interpretation. Excerpt from “Thework of John Nash in game theory: Nobel Seminar, December 8, 1994”. J Econ Theory 69:165–171MathSciNetGoogle Scholar
  218. 218.
    Weissing FJ (1991) Evolutionarystability and dynamic stability ina class of evolutionary normal form games. In: Selten R (ed) Game Equilibrium Models I. Springer, Berlin,pp 29–97Google Scholar
  219. 219.
    Peyton Young H (1993) The evolution of conventions. Econometrica61:57–84MathSciNetzbMATHGoogle Scholar
  220. 220.
    Peyton Young H (1993) An evolutionary model of bargaining. J EconTheory 59:145–168Google Scholar
  221. 221.
    Peyton Young H (1998) Conventional contracts. Review Econ Stud65:773–792zbMATHGoogle Scholar
  222. 222.
    Peyton Young H (1998) Individual strategy and social structure. PrincetonUniversity Press, PrincetonGoogle Scholar
  223. 223.
    Peyton Young H (2001) The dynamics of conformity. In: Durlauf SN, PeytonYoung H (eds) Social dynamics. Brookings Institution Press/MITPress, Washington/Cambridge, pp 133–153Google Scholar
  224. 224.
    Zeeman EC (1980) Population dynamics from game theory. In:Nitecki Z, Robinson C (eds) Global theory of dynamical systems (Evanston, 1979). number 819 in Lecture Notes in Mathematics. Springer, Berlin,pp 472–497Google Scholar
  225. 225.
    Zhang J (2004) A dynamic model of residential segregation. J MathSociol 28:147–170zbMATHGoogle Scholar
  226. 226.
    Zhang J (2004) Residential segregation in an all‐integrationist world.J Econ Behav Organ 24:533–550Google Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • William H. Sandholm
    • 1
  1. 1.Department of EconomicsUniversity of WisconsinMadisonUSA