Skip to main content
  • 322 Accesses

Definition of the Subject

As one can see from this volume, chaotic behavior of complex dynamical systems is prevalent in nature and in large classes oftransformations. Rigidity theory can be viewed as the counterpart to the generic theory of dynamical systems which often investigates chaotic dynamics fora typical transformation belonging to a large class. In rigidity one is interested in finding obstructions to chaotic, or generic,behavior. This often leads to rather unexpected classification results. As such, rigidity in dynamics and ergodic theory is difficult to define preciselyand the best approach to this subject is to study various results and themes that developed so far. A classification is offered below in local,global, differentiable and measurable rigidity. One should note that all branches are strongly intertwined and, at this stage of the development of thesubject, it is difficult to separate them.

Rigidity is a well developed and prominent topic in modern mathematics....

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 3,499.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Differentiable rigidity:

Differentiable rigidity refers to finding invariants to the differentiable conjugacy of dynamical systems, and, more general, group actions.

Local rigidity:

Local rigidity refers to the study of perturbations of homomorphisms from discrete or continuous groups into diffeomorphism groups.

Global rigidity:

Global rigidity refers to the classification of all group actions on manifolds satisfying certain conditions.

Measure rigidity:

Measure rigidity refers to the study of invariant measures for actions of abelian groups and semigroups.

Lattice:

A lattice in a Lie group is a discrete subgroup of finite covolume.

Conjugacy:

Two elements \( { g_1,g_2 } \) in a group G are said to be conjugated if there exists an element \( { h\in G } \) such that \( { g_1=h^{-1}g_2h } \). The element h is called conjugacy.

C k Conjugacy:

Two diffeomorphisms \( { \phi_1, \phi_2 } \) acting on the same manifold M are said to be C k-conjugated if there exists a C k diffeomorphism h of M such that \( { \phi_1=h^{-1}\circ \phi_2\circ h } \). The diffeomorphism h is called C k conjugacy.

Bibliography

Primary Literature

  1. Anosov DV (1967) Geodesic flows on closed Riemannian manifolds with negativecurvature. Proc Stek Inst 90:1–235

    MathSciNet  Google Scholar 

  2. Ballman W, Brin M, Eberlein P (1985) Structure of manifolds ofnon‐negative curvature. I. Ann Math 122:171–203

    Google Scholar 

  3. Ballman W, Brin M, Spatzier R (1985) Structure of manifolds ofnon‐negative curvature. II. Ann Math 122:205–235

    Google Scholar 

  4. Benoist Y, Labourie F (1993) Flots d'Anosov á distribuitions stable et instabledifférentiables. Invent Math 111:285–308

    MathSciNet  ADS  MATH  Google Scholar 

  5. Benveniste EJ (2000) Rigidity of isometric lattice actions on compact Riemannianmanifolds. Geom Func Anal 10:516–542

    MathSciNet  MATH  Google Scholar 

  6. Berend D (1983) Multi‐invariant sets on tori. Trans AMS280:509–532

    MathSciNet  MATH  Google Scholar 

  7. Berend D (1984) Multi‐invariant sets on compact abelian groups. Trans AMS286:505–535

    MathSciNet  MATH  Google Scholar 

  8. Borel A, Prasad G (1992) Values of isotropic quadratic forms at S‑integralpoints. Compositio Math 83:347–372

    MathSciNet  MATH  Google Scholar 

  9. Brin MI, Pesin YA (1974) Partially hyperbolic dynamical systems. Izvestia38:170–212

    MathSciNet  MATH  Google Scholar 

  10. Burns K, Pugh C, Shub M, Wilkinson A (2001) Recent results about stableergodicity. In: Katok A, Pesin Y, de la Llave R, Weiss H (eds) Smooth ergodic theory and its applications, Seattle, 1999. Proc Symp Pure Math, vol 69. AMS, Providence, pp 327–366

    Google Scholar 

  11. Calabi E (1961) On compact Riemannian manifolds with constantcurvature. I. Proc Symp Pure Math, vol 3. AMS, Providence, pp 155–180

    Google Scholar 

  12. Calabi E, Vesentini E (1960) On compact, locally symmetric Kählermanifolds. Ann Math 17:472–507

    MathSciNet  Google Scholar 

  13. Corlette K (1992) Archimedian superrigidity and hyperbolic geometry. Ann Math135:165–182

    MathSciNet  MATH  Google Scholar 

  14. Damianović D, Katok A (2005) Periodic cycle functionals and cocycle rigidityfor certain partially hyperbolic actions. Disc Cont Dynam Syst 13:985–1005

    Google Scholar 

  15. Damianović D, Katok A (2007) Local rigidity of partially hyperbolic actions KAM, I.method and \( { \mathbb{Z}^k } \)-actions on the torus. Preprint available athttp://www.math.psu.edu/katok_a

  16. Dani SG, Margulis GA (1990) Values of quadratic forms at integer points: anelementary approach. Enseign Math 36:143–174

    MathSciNet  MATH  Google Scholar 

  17. Dani SG, Smillie J (1984) Uniform distributions of horocycle orbits forFuchsian groups. Duke Math J 51:185–194

    MathSciNet  MATH  Google Scholar 

  18. Einsiedler M, Katok A (2003) Invariant measures on G/Γ for split simple Lie groups. Comm Pure Appl Math 56:1184–1221

    MathSciNet  MATH  Google Scholar 

  19. Einsiedler M, Lindenstrauss E (2003) Rigidity properties of \( { \mathbb{Z}^d } \)-actions on tori and solenoids. Elec ResAnn AMS 9:99–110

    MathSciNet  MATH  Google Scholar 

  20. Einsiedler M, Katok A, Lindenstrauss E (2006) Invariant measures and the setof exceptions to Littlewood conjecture. Ann Math 164:513–560

    MathSciNet  MATH  Google Scholar 

  21. Farrell FT, Jones LE (1989) A topological analog of Mostow's rigiditytheorem. J AMS 2:237–370

    Google Scholar 

  22. Feldman J (1993) A generalization of a result of R Lyons aboutmeasures on [0,1). Isr J Math 81:281–287

    MATH  Google Scholar 

  23. Fisher D (2006) Local rigidity of group actions: past, present,future. In: Dynamics, Ergodic Theory and Geometry (2007). Cambridge University Press

    Google Scholar 

  24. Fisher D, Margulis GA (2003) Local rigidity for cocycles. In: Surv Diff GeomVIII. International Press, Cambridge, pp 191–234

    Google Scholar 

  25. Fisher D, Margulis GA (2004) Local rigidity of affine actions of higher rankLie groups and their lattices. 2003

    Google Scholar 

  26. Fisher D, Margulis GA (2005) Almost isometric actions, property T, and localrigidity. Invent Math 162:19–80

    MathSciNet  ADS  MATH  Google Scholar 

  27. Flaminio L, Forni G (2003) Invariant distributions and time averages forhorocycle flows. Duke Math J 119:465–526

    MathSciNet  MATH  Google Scholar 

  28. Forni G (1997) Solutions of the cohomological equation forarea‐preserving flows on compact surfaces of higher genus. Ann Math 146:295–344

    MathSciNet  MATH  Google Scholar 

  29. Franks J (1970) Anosov diffeomorphisms. In: Chern SS, Smale S (eds) GlobalAnalysis (Proc Symp Pure Math, XIV, Berkeley 1968). AMS, Providence, pp 61–93

    Google Scholar 

  30. Franks J, Williams R (1980) Anomalous Anosov flows. In: Global theory ofdynamical systems, Proc Inter Conf Evanston, 1979. Lecture Notes in Mathematics, vol 819. Springer, Berlin,pp 158–174

    Google Scholar 

  31. Furstenberg H (1963) A Poisson formula for semi‐simple Lie groups. AnnMath 77:335–386

    MathSciNet  MATH  Google Scholar 

  32. Furstenberg H (1967) Disjointness in ergodic theory, minimal sets, anda problem in Diophantine approximation. Math Syst Theor 1:1–49

    MathSciNet  MATH  Google Scholar 

  33. Furstenberg H (1973) The unique ergodicity of the horocycle flow. In: Recentadvances in topological dynamics, Proc Conf Yale Univ, New Haven 1972. Lecture Notes in Mathematics, vol 318. Springer, Berlin,pp 95–115

    Google Scholar 

  34. Ghys E (1985) Actions localement libres du groupe affine. Invent Math82:479–526

    MathSciNet  ADS  MATH  Google Scholar 

  35. Goetze E, Spatzier R (1999) Smooth classification of Cartan actions of higherrank semi‐simple Lie groups and their lattices. Ann Math 150:743–773

    MathSciNet  MATH  Google Scholar 

  36. Gromov M, Schoen R (1992) Harmonic maps into singular spacesand p‑adic superrigidity for lattices in groups of rank one. Publ Math IHES76:165–246

    MathSciNet  MATH  Google Scholar 

  37. Guysinsky M (2002) The theory of nonstationary normal forms. Erg Th Dyn Syst22:845–862

    MathSciNet  MATH  Google Scholar 

  38. Guysinsky M, Katok A (1998) Normal forms and invariant geometric structuresfor dynamical systems with invariant contracting foliations. Math Res Lett 5:149–163

    MathSciNet  MATH  Google Scholar 

  39. Hamilton R (1982) The inverse function theorem of Nash and Moser. Bull AMS7:65–222

    MathSciNet  MATH  Google Scholar 

  40. Helgason S (1978) Differential Geometry, Lie Groups and SymmetricSpaces. Academic Press, New York

    MATH  Google Scholar 

  41. Hirsch M, Pugh C, Shub M (1977) Invariant Manifolds. Lecture Notes inMathematics, vol 583. Springer, Berlin

    Google Scholar 

  42. Host B (1995) Nombres normaux, entropie, translations. Isr J Math91:419–428

    MathSciNet  MATH  Google Scholar 

  43. Hurder S (1992) Rigidity of Anosov actions of higher rank lattices. Ann Math135:361–410

    MathSciNet  MATH  Google Scholar 

  44. Hurder S, Katok A (1990) Differentiability, rigidity and Godbillon‐Veyclasses for Anosov flows. Publ Math IHES 72:5–61

    MathSciNet  MATH  Google Scholar 

  45. Johnson AS (1992) Measures on the circle invariant under multiplication bya nonlacunary subsemigroup of integers. Isr J Math 77:211–240

    MATH  Google Scholar 

  46. Journé JL (1988) A regularity lemma for functions of severalvariables. Rev Mat Iberoam 4:187–193

    Google Scholar 

  47. Kalinin B, Katok A (2002) Measurable rigidity and disjointness for\( { \mathbb{Z}^k } \)-actions by toralautomorphisms. Erg Theor Dyn Syst 22:507–523

    MathSciNet  MATH  Google Scholar 

  48. Kalinin B, Katok A (2007) Measure rigidity beyond uniform hyperbolicity:invariant measures for Cartan actions on tori. J Modern Dyn 1:123–146

    MathSciNet  MATH  Google Scholar 

  49. Kalinin B, Spatzier R (2007) On the classification ofCartan actions. Geom Func Anal 17:468–490

    MathSciNet  MATH  Google Scholar 

  50. Kanai M (1996) A new approach to the rigidity of discrete groupactions. Geom Func Anal 6:943–1056

    MathSciNet  MATH  Google Scholar 

  51. Katok A, Hasselblatt B (1995) Introduction to the modern theory of dynamicalsystems. Encyclopedia of Mathematics and its Applications 54. Cambridge University Press, Cambridge

    Google Scholar 

  52. Katok A, Katok S (1995) Higher cohomology for abelian groups of toralautomorphisms. Erg Theor Dyn Syst 15:569–592

    MathSciNet  MATH  Google Scholar 

  53. Katok A, Katok S (2005) Higher cohomology for abelian groups of toralautomorphisms. II. The partially hyperbolic case, and corrigendum. Erg Theor Dyn Syst 25:1909–1917

    MathSciNet  MATH  Google Scholar 

  54. Katok A, Kononenko A (1996) Cocycles' stability for partially hyperbolicsystems. Math Res Lett 3:191–210

    MathSciNet  MATH  Google Scholar 

  55. Katok A, Lewis J (1991) Local rigidity for certain groups of toralautomorphisms. Isr J Math 75:203–241

    MathSciNet  MATH  Google Scholar 

  56. Katok A, Lewis J (1996) Global rigidity results for lattice actions on toriand new examples of vol preserving actions. Isr J Math 93:253–280

    MathSciNet  MATH  Google Scholar 

  57. Katok A, Niţică V (2007) Rigidity of higher rank abelian cocycles withvalues in diffeomorphism groups. Geometriae Dedicata 124:109–131

    Google Scholar 

  58. Katok A, Niţică V () Differentiable rigidity of abelian groupactions. Cambridge University Press (to appear)

    Google Scholar 

  59. Katok A, Spatzier R (1994) First cohomology of Anosov actions of higher rankabelian groups and applications to rigidity. Publ Math IHES 79:131–156

    MathSciNet  MATH  Google Scholar 

  60. Katok A, Spatzier R (1994) Subelliptic estimates of polynomial differentialoperators and applications to rigidity of abelian actions. Math Res Lett 1:193–202

    MathSciNet  MATH  Google Scholar 

  61. Katok A, Spatzier R (1996) Invariant measures for higher‐rank abelianactions. Erg Theor Dyn Syst 16:751–778; Katok A, Spatzier R (1998) Corrections to: Invariant measures for higher‐rank abelian actions.; (1996)Erg Theor Dyn Syst 16:751–778; Erg Theor Dyn Syst 18:503–507

    MathSciNet  MATH  Google Scholar 

  62. Katok A, Spatzier R (1997) Differential rigidity of Anosov actions of higherrank abelian groups and algebraic lattice actions. Trudy Mat Inst Stek 216:292–319

    MathSciNet  Google Scholar 

  63. Katok A, Lewis J, Zimmer R (1996) Cocycle superrigidity and rigidity forlattice actions on tori. Topology 35:27–38

    MathSciNet  MATH  Google Scholar 

  64. Katok A, Niţică V, Török A (2000) Non‐abelian cohomology ofabelian Anosov actions. Erg Theor Dyn Syst2:259–288

    Google Scholar 

  65. Katok A, Katok S, Schmidt K (2002) Rigidity of measurable structure for\( { {\mathbb{Z}}^d } \)-actions byautomorphisms of a torus. Comm Math Helv 77:718–745

    MathSciNet  MATH  Google Scholar 

  66. Kazhdan DA (1967) On the connection of a dual space of a group with thestructure of its closed subgroups. Funkc Anal Prilozen 1:71–74

    Google Scholar 

  67. Lewis J (1991) Infinitezimal rigidity for the action of \( { SL_n({\mathbb{Z}}) } \) on \( { {\mathbb{T}}^n } \). Trans AMS324:421–445

    MATH  Google Scholar 

  68. Lindenstrauss E (2005) Rigidity of multiparameter actions. Isr Math J149:199–226

    MathSciNet  MATH  Google Scholar 

  69. Lindenstrauss E (2006) Invariant measures and arithmetic quantum uniqueergodicity. Ann Math 163:165–219

    MathSciNet  MATH  Google Scholar 

  70. Livshits A (1971) Homology properties of Y‑systems. Math Zametki 10:758–763

    Google Scholar 

  71. Livshits A (1972) Cohomology of dynamical systems. Izvestia 6:1278–1301he Livšic cohomology equation. Ann Math 123:537–611

    Google Scholar 

  72. de la Llave R (1987) Invariants for smooth conjugacy of hyperbolic dynamicalsystems. I. Comm Math Phys 109:369–378

    MathSciNet  ADS  MATH  Google Scholar 

  73. de la Llave R (1992) Smooth conjugacy and S-R-B measures for uniformly andnon‐uniformly hyperbolic dynamical systems. Comm Math Phys 150:289–320

    MathSciNet  ADS  MATH  Google Scholar 

  74. de la Llave R (1997) Analytic regularity of solutions of Livshits's cohomologyequation and some applications to analytic conjugacy of hyperbolic dynamical systems. Erg Theor Dyn Syst 17:649–662

    MATH  Google Scholar 

  75. de la Llave R, Moriyon R (1988) Invariants for smooth conjugacy of hyperbolicdynamical systems. IV. Comm Math Phys 116:185–192

    MathSciNet  ADS  MATH  Google Scholar 

  76. de la Llave R, Marco JM, Moriyon R (1986) Canonical perturbation theory ofAnosov systems and regularity results for the Livšic cohomology equation. Ann Math 123:537–611

    MATH  Google Scholar 

  77. Lyons R (1988) On measures simultaneously 2- and 3‑invariant. Isr JMath 61:219–224

    MathSciNet  MATH  Google Scholar 

  78. Manning A (1974) There are no new Anosov diffeomorphisms on tori. Amer J Math96:422–429

    MathSciNet  MATH  Google Scholar 

  79. Marco JM, Moriyon R (1987) Invariants for smooth conjugacy of hyperbolicdynamical systems. I. Comm Math Phys 109:681–689

    MathSciNet  ADS  MATH  Google Scholar 

  80. Marco JM, Moriyon R (1987) Invariants for smooth conjugacy of hyperbolicdynamical systems. III. Comm Math Phys 112:317–333

    MathSciNet  ADS  MATH  Google Scholar 

  81. Margulis GA (1989) Discrete subgroups and ergodic theory. In: Number theory,trace formulas and discrete groups, Oslo, 1987. Academic Press, Boston, pp 277–298

    Google Scholar 

  82. Margulis GA (1991) Discrete subgroups of semi‐simple Liegroups. Springer, Berlin

    Google Scholar 

  83. Margulis GA (1997) Oppenheim conjecture. In: Fields Medalists Lectures, vol 5.World Sci Ser 20th Century Math. World Sci Publ, River Edge, pp 272–327

    Google Scholar 

  84. Margulis GA (2000) Problems and conjectures in rigidity theory. In:Mathematics: frontiers and perspectives. AMS, Providence, pp 161–174

    Google Scholar 

  85. Margulis GA, Qian N (2001) Local rigidity of weakly hyperbolic actions ofhigher rank real Lie groups and their lattices. Erg Theor Dyn Syst 21:121–164

    MathSciNet  MATH  Google Scholar 

  86. Margulis GA, Tomanov G (1994) Invariant measures for actions of unipotentgroups over local fields of homogenous spaces. Invent Math116:347–392

    MathSciNet  ADS  MATH  Google Scholar 

  87. Mieczkowski D (2007) The first cohomology of parabolic actions for somehigher‐rank abelian groups and representation theory. J Modern Dyn 1:61–92

    MathSciNet  MATH  Google Scholar 

  88. Milnor J (1971) Introduction to algebraic K‑theory. Princeton University Press, Princeton

    Google Scholar 

  89. Mok N, Siu YT, Yeung SK (1993) Geometric superrigidity. Invent Math113:57–83

    MathSciNet  ADS  MATH  Google Scholar 

  90. Mostow GD (1973) Strong rigidity of locally symmetric spaces. Ann Math Studies78. Princeton University Press, Princeton

    Google Scholar 

  91. Newhouse SE (1970) On codimension one Anosov diffeomorphisms. Amer J Math92:761–770

    MathSciNet  MATH  Google Scholar 

  92. Niţică V, Török A (1995) Cohomology of dynamical systems and rigidity ofpartially hyperbolic actions of higher rank lattices. Duke Math J 79:751–810

    Google Scholar 

  93. Niţică V, Török A (1998) Regularity of the transfer map for cohomologouscocycles. Erg Theor Dyn Syst 18:1187–1209

    Google Scholar 

  94. Niţică V, Török A (2001) Local rigidity of certain partially hyperbolicactions of product type. Erg Theor Dyn Syst 21:1213–1237

    Google Scholar 

  95. Niţică V, Török A (2002) On the cohomology of Anosov actions. In:Rigidity in dynamics and geometry, Cambridge, 2000. Springer, Berlin, pp 345–361

    Google Scholar 

  96. Niţică V, Török A (2003) Cocycles over abelian TNS actions. Geom Ded102:65–90

    Google Scholar 

  97. Oseledec VI (1968) A multiplicative ergodic theorem. CharacteristicLyapunov, exponents of dynamical systems. Trudy Mosk Mat Obsc 19:179–210

    MathSciNet  Google Scholar 

  98. Parry W (1999) The Livšic periodic point theorem for non‐abeliancocycles. Erg Theor Dyn Syst 19:687–701

    MathSciNet  MATH  Google Scholar 

  99. Pugh C, Shub M (1972) Ergodicity of Anosov actions. Invent Math15:1–23

    MathSciNet  ADS  MATH  Google Scholar 

  100. Ratner M (1991) On Ragunathan's measure conjecture. Ann Math134:545–607

    MathSciNet  MATH  Google Scholar 

  101. Ratner M (1991) Ragunathan's topological conjecture and distributions ofunipotent flows. Duke Math J 63:235–280

    MathSciNet  MATH  Google Scholar 

  102. Ratner M (1995) Raghunathan'sconjecture for Cartesians products of real andp-adic Lie groups. Duke Math J 77:275–382

    MathSciNet  MATH  Google Scholar 

  103. Rudolph D (1990) × 2 and × 3 invariant measures andentropy. Erg Theor Dyn Syst 10:395–406

    MathSciNet  MATH  Google Scholar 

  104. Schmidt K (1999) Remarks on Livšic' theory for nonabelian cocycles. ErgTheor Dyn Syst 19:703–721

    MATH  Google Scholar 

  105. Selberg A (1960) On discontinuous groups in higher‐dimensionalsymmetric spaces. In: Contributions to function theory. Inter Colloq Function Theory, Bombay. Tata Institute of Fundamental Research,pp 147–164

    Google Scholar 

  106. Smale S (1967) Differentiable dynamical systems. Bull AMS73:747–817

    MathSciNet  MATH  Google Scholar 

  107. Spatzier R (1995) Harmonic analysis in rigidity theory. In: Ergodic theoryand its connections with harmonic analysis. Alexandria, 1993. London Math Soc Lect Notes Ser, vol 205. Cambridge University Press, Cambridge,pp 153–205

    Google Scholar 

  108. Veech WA (1986) Periodic points and invariant pseudomeasures for toralendomorphisms. Erg Theor Dyn Syst 6:449–473

    MathSciNet  MATH  Google Scholar 

  109. Verjovsky A (1974) Codimension one Anosov flows. Bul Soc Math Mex19:49–77

    MathSciNet  MATH  Google Scholar 

  110. Weil A (1960) On discrete subgroups of Lie groups. I. Ann Math72:369–384

    MathSciNet  Google Scholar 

  111. Weil A (1962) On discrete subgroups of Lie groups. II. Ann Math75:578–602

    MathSciNet  Google Scholar 

  112. Weil A (1964) Remarks on the cohomology of groups. Ann Math80:149–157

    MathSciNet  MATH  Google Scholar 

  113. Zimmer R (1984) Ergodic theory and semi‐simple groups. Birhhäuser,Boston

    Google Scholar 

  114. Zimmer R (1987) Actions of semi‐simple groups and discretesubgroups. Proc Inter Congress of Math (1986). AMS, Providence, pp 1247–1258

    Google Scholar 

  115. Zimmer R (1990) Infinitesimal rigidity of smooth actions of discretesubgroups of Lie groups. J Diff Geom 31:301–322

    MathSciNet  MATH  Google Scholar 

Books and Reviews

  1. de la Harpe P, Valette A (1989) La propriété (T) de Kazhdan pour les groupes localement compacts. Astérisque 175

    Google Scholar 

  2. Feres R (1998) Dynamical systems and semi‐simple groups: An introduction. Cambridge Tracts in Mathematics, vol 126. Cambridge University Press, Cambridge

    Google Scholar 

  3. Feres R, Katok A (2002) Ergodic theory and dynamics of G‑spaces. In: Handbook in Dynamical Systems, 1A. Elsevier, Amsterdam, pp 665–763

    Google Scholar 

  4. Gromov M (1988) Rigid transformation groups. In: Bernard D, Choquet‐Bruhat Y (eds) Géométrie Différentielle (Paris, 1986). Hermann, Paris, pp 65–139; Travaux en Cours. 33

    Google Scholar 

  5. Kleinbock D, Shah N, Starkov A (2002) Dynamics of subgroup actions on homogeneous spaces of Lie groups and applications to number theory. In: Handbook in Dynamical Systems, 1A. Elsevier, Amsterdam, pp 813–930

    Google Scholar 

  6. Knapp A (2002) Lie groups beyond an introduction, 2nd edn. Progress in Mathematics, 140. Birkhäuser, Boston

    MATH  Google Scholar 

  7. Raghunathan MS (1972) Discrete subgroups of Lie groups. Springer, Berlin

    MATH  Google Scholar 

  8. Witte MD (2005) Ratner's theorems on unipotent flows. Chicago Lectures in Mathematics. University of Chicago Press, Chicago

    Google Scholar 

Download references

Acknowledgment

This research was supported in part by NSF Grant DMS-0500832.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag

About this entry

Cite this entry

Niţică, V. (2009). Ergodic Theory: Rigidity. In: Meyers, R. (eds) Encyclopedia of Complexity and Systems Science. Springer, New York, NY. https://doi.org/10.1007/978-0-387-30440-3_185

Download citation

Publish with us

Policies and ethics