Encyclopedia of Complexity and Systems Science

2009 Edition
| Editors: Robert A. Meyers (Editor-in-Chief)

Ergodic Theory: Recurrence

  • Nikos Frantzikinakis
  • Randall McCutcheon
Reference work entry
DOI: https://doi.org/10.1007/978-0-387-30440-3_184

Definition of the Subject

The basic principle that lies behind several recurrence phenomena is that the typical trajectory of a system with finite volume comes backinfinitely often to any neighborhood of its initial point. This principle was first exploited by Poincaré in his 1890 King Oscar prize‐winningmemoir that studied planetary motion. Using the prototype of an ergodic‐theoretic argument, he showed that in any system of point masses having fixedtotal energy that restricts its dynamics to bounded subsets of its phase space, the typical state of motion (characterized by configurations andvelocities) must recur to an arbitrary degree of approximation.

Among the recurrence principle's more spectacularly counterintuitive ramifications is that isolated ideal gas systems that do not lose energy willreturn arbitrarily closely to their initial states, even when such a return entails a decrease in entropy from equilibrium, in apparentcontradiction to the second law of thermodynamics . Such...

This is a preview of subscription content, log in to check access.

Bibliography

  1. 1.
    Aaronson J (1981) The asymptotic distribution behavior of transformationspreserving infinite measures. J Analyse Math 39:203–234MathSciNetzbMATHGoogle Scholar
  2. 2.
    Aaronson J (1997) An introduction to infinite ergodic theory. MathematicalSurveys and Monographs 50. American Mathematical Society, ProvidenceGoogle Scholar
  3. 3.
    Aaronson J, Nakada H (2000) Multiple recurrence of Markov shifts and otherinfinite measure preserving transformations. Israel J Math 117:285–310MathSciNetzbMATHGoogle Scholar
  4. 4.
    Barreira L (2001) Hausdorff dimension of measures via Poincaré recurrence. CommMath Phys 219:443–463MathSciNetADSzbMATHGoogle Scholar
  5. 5.
    Barreira L (2005) Poincaré recurrence: old and new. XIVth InternationalCongress on Mathematical Physics, World Sci Publ Hackensack, NJ, pp 415–422Google Scholar
  6. 6.
    Behrend F (1946) On sets of integers which contain no three in arithmeticprogression. Proc Nat Acad Sci 23:331–332MathSciNetADSGoogle Scholar
  7. 7.
    Bergelson V (1987) Weakly mixing PET. Ergod Theory Dynam Syst7:337–349MathSciNetzbMATHGoogle Scholar
  8. 8.
    Bergelson V (1987) Ergodic Ramsey Theory. In: Simpson S (ed) Logic and Combinatorics. Contemporary Mathematics 65. American Math Soc, Providence, pp 63–87Google Scholar
  9. 9.
    Bergelson V (1996) Ergodic Ramsey Theory – an update. In: Pollicot M,Schmidt K (eds) Ergodic theory of \( { \mathbb{Z}^d } \)‑actions. Lecture Note Series 228. London Math Soc, London, pp 1–61Google Scholar
  10. 10.
    Bergelson V (2000) The multifarious Poincaré recurrence theorem. In: ForemanM, Kechris A, Louveau A, Weiss B (eds) Descriptive set theory and dynamical systems. Lecture Note Series 277. London Math Soc, London, pp 31–57Google Scholar
  11. 11.
    Bergelson V (2005) Combinatorial and diophantine applications of ergodictheory. In: Hasselblatt B, Katok A (eds) Handbook of dynamical systems, vol 1B. Elsevier, pp 745–841Google Scholar
  12. 12.
    Bergelson V, Furstenberg H, McCutcheon R (1996) IP-sets and polynomialrecurrence. Ergod Theory Dynam Syst 16:963–974MathSciNetzbMATHGoogle Scholar
  13. 13.
    Bergelson V, Håland-Knutson I, McCutcheon R (2006) IP Systems, generalizedpolynomials and recurrence. Ergod Theory Dynam Syst 26:999–1019Google Scholar
  14. 14.
    Bergelson V, Host B, Kra B (2005) Multiple recurrence and nilsequences.Inventiones Math 160(2):261–303MathSciNetADSzbMATHGoogle Scholar
  15. 15.
    Bergelson V, Host B, McCutcheon R, Parreau F (2000) Aspects of uniformity inrecurrence. Colloq Math 84/85(2):549–576MathSciNetGoogle Scholar
  16. 16.
    Bergelson V, Leibman A (1996) Polynomial extensions of van der Waerden's andSzemerédi's theorems. J Amer Math Soc 9:725–753MathSciNetzbMATHGoogle Scholar
  17. 17.
    Bergelson V, McCutcheon R (2000) An ergodic IP polynomial Szemerédi theorem.Mem Amer Math Soc 146:viii–106MathSciNetGoogle Scholar
  18. 18.
    Bergelson V, McCutcheon R (2007) Central sets and a noncommutative Roth theorem.Amer J Math 129:1251–1275MathSciNetzbMATHGoogle Scholar
  19. 19.
    Birkhoff G (1931) A proof of the ergodic theorem. Proc Nat Acad Sci17:656–660ADSGoogle Scholar
  20. 20.
    Boshernitzan M (1993) Quantitative recurrence results. Invent Math113:617–631MathSciNetADSzbMATHGoogle Scholar
  21. 21.
    Bourgain J (1986) A Szemerédi type theorem for sets of positive density in\( { \mathbb{R}^k } \). Israel J Math54(3):307–316MathSciNetzbMATHGoogle Scholar
  22. 22.
    Bourgain J (1988) On the maximal ergodic theorem for certain subsets of thepositive integers. Israel J Math 61:39–72MathSciNetzbMATHGoogle Scholar
  23. 23.
    Brown T, Graham R, Landman B (1999) On the set of common differences in vander Waerden's theorem on arithmetic progressions. Canad Math Bull 42:25–36MathSciNetzbMATHGoogle Scholar
  24. 24.
    Carathéodory C (1968) Vorlesungen über reelle Funktionen, 3rd edn. Chelsea Publishing Co, New YorkGoogle Scholar
  25. 25.
    Chazottes J, Ugalde E (2005) Entropy estimation and fluctuations of hittingand recurrence times for Gibbsian sources. Discrete Contin Dyn Syst Ser B 5(3):565–586MathSciNetzbMATHGoogle Scholar
  26. 26.
    Conze J, Lesigne E (1984) Théorèmes ergodiques pour des mesures diagonales. BullSoc Math France 112(2):143–175MathSciNetzbMATHGoogle Scholar
  27. 27.
    Conze J, Lesigne E (1988) Sur un théorème ergodique pour des mesuresdiagonales. Probabilités, Publ Inst Rech Math Rennes 1987-1, Univ Rennes I, Rennes, pp 1–31Google Scholar
  28. 28.
    Evans D, Searles D (2002) The fluctuation theorem. Adv Phys51:1529–1585ADSGoogle Scholar
  29. 29.
    Falconer K, Marstrand J (1986) Plane sets with positive density at infinitycontain all large distances. Bull Lond Math Soc 18:471–474MathSciNetzbMATHGoogle Scholar
  30. 30.
    Frantzikinakis N, Kra B (2006) Ergodic averages for independent polynomialsand applications. J Lond Math Soc 74(1):131–142MathSciNetzbMATHGoogle Scholar
  31. 31.
    Frantzikinakis N, Lesigne E, Wierdl M (2006) Sets of k‑recurrence but not \( { (k+1) } \)-recurrence. Annales de l'Institut Fourier 56(4):839–849Google Scholar
  32. 32.
    Frantzikinakis N, Host B, Kra B (2007) Multiple recurrence and convergence forsets related to the primes. J Reine Angew Math 611:131–144. Available at http://arxiv.org/abs/math/0607637 MathSciNetzbMATHGoogle Scholar
  33. 33.
    Frantzikinakis N (2008) Multiple ergodic averages for three polynomials andapplications. Trans Am Math Soc 360(10):5435–5475. Available at http://arxiv.org/abs/math/0606567 MathSciNetzbMATHGoogle Scholar
  34. 34.
    Furstenberg H (1977) Ergodic behavior of diagonal measures and a theorem ofSzemerédi on arithmetic progressions. J Anal Math 71:204–256MathSciNetGoogle Scholar
  35. 35.
    Furstenberg H (1981) Recurrence in ergodic theory and combinatorial numbertheory. Princeton University Press, PrincetonzbMATHGoogle Scholar
  36. 36.
    Furstenberg H, Katznelson Y (1979) An ergodic Szemerédi theorem for commutingtransformations. J Analyse Math 34:275–291MathSciNetGoogle Scholar
  37. 37.
    Furstenberg H, Katznelson Y (1985) An ergodic Szemerédi theorem forIP‐systems and combinatorial theory. J Analyse Math 45:117–168MathSciNetzbMATHGoogle Scholar
  38. 38.
    Furstenberg H, Katznelson Y (1991) A density version of the Hales–Jewetttheorem. J Analyse Math 57:64–119MathSciNetzbMATHGoogle Scholar
  39. 39.
    Furstenberg H, Katznelson Y, Ornstein D (1982) The ergodic theoretical proofof Szemerédi's theorem. Bull Amer Math Soc (NS) 7(3):527–552MathSciNetzbMATHGoogle Scholar
  40. 40.
    Furstenberg H, Katznelson Y, Weiss B (1990) Ergodic theory and configurationsin sets of positive density. Mathematics of Ramsey theory. Algorithms Combin 5. Springer, Berlin, pp 184–198Google Scholar
  41. 41.
    Furstenberg H, Weiss B (1996) A mean ergodic theorem for \( { (1/N)\sum\sp N\sb {n=1} f(T\sp nx) g(T\sp {n\sp 2}x) } \).Convergence in ergodic theory and probability (Columbus, OH, 1993), Ohio State Univ Math Res Inst Publ 5, de Gruyter, Berlin,pp 193–227Google Scholar
  42. 42.
    Galatolo S, Kim DH, Park KK (2006) The recurrence time for ergodic systemswith infinite invariant measures. Nonlinearity 19:2567–2580MathSciNetADSzbMATHGoogle Scholar
  43. 43.
    Gowers W (2001) A new proof of Szemerédi's theorem. Geom Funct Anal11:465–588MathSciNetzbMATHGoogle Scholar
  44. 44.
    Graham RL (1994) Recent trends in Euclidean Ramsey theory. Trends in discretemathematics. Discret Math 136(1–3):119–127zbMATHGoogle Scholar
  45. 45.
    Green B, Tao T (2008) The primes contain arbitrarily long arithmetic progressions.Ann Math 167:481–547. Available at http://arxiv.org/abs/math/0404188
  46. 46.
    GreenB, Tao T (to appear) Quadratic uniformity of the Möbius function. Annales del'Institut Fourier. Available at http://arxiv.org/abs/math.NT/0606087
  47. 47.
    Green B, Tao T () Linear equations in primes. Ann Math (to appear). Availableat http://arxiv.org/abs/math.NT/0606088
  48. 48.
    Hales A, Jewett R (1963) Regularity and positional games. Trans Amer Math Soc106:222–229MathSciNetzbMATHGoogle Scholar
  49. 49.
    Hasley T, Jensen M (2004) Hurricanes and butterflies. Nature428:127–128ADSGoogle Scholar
  50. 50.
    Host B, Kra B (2005) Nonconventional ergodic averages and nilmanifolds. AnnMath 161:397–488MathSciNetzbMATHGoogle Scholar
  51. 51.
    Kac M (1947) On the notion of recurrence in discrete stochastic processes.Bull Amer Math Soc 53:1002–10010MathSciNetzbMATHGoogle Scholar
  52. 52.
    Kra B (2006) The Green-Tao theorem on arithmetic progressions in the primes:an ergodic point of view. Bull Amer Math Soc (NS) 43:3–23MathSciNetzbMATHGoogle Scholar
  53. 53.
    Kamae T, Mendés-France M (1978) Van der Corput's difference theorem. Israel JMath 31:335–342Google Scholar
  54. 54.
    Katznelson Y (2001) Chromatic numbers of Cayley graphs on ℤ andrecurrence. Paul Erdős and his mathematics (Budapest, 1999). Combinatorica 21(2):211–219MathSciNetzbMATHGoogle Scholar
  55. 55.
    Khintchine A (1934) Eine Verschärfung des Poincaréschen “Wiederkehrsatzes”. Comp Math1:177–179MathSciNetzbMATHGoogle Scholar
  56. 56.
    Kriz I (1987) Large independent sets in shift invariant graphs. Solution ofBergelson's problem. Graphs Combinatorics 3:145–158MathSciNetzbMATHGoogle Scholar
  57. 57.
    Leibman A (2002) Lower bounds for ergodic averages. Ergod Theory Dynam. Syst22:863–872MathSciNetzbMATHGoogle Scholar
  58. 58.
    Leibman A (2005) Pointwise convergence of ergodic averages for polynomialsequences of rotations of a nilmanifold. Ergod Theory Dynam Syst 25:201–213MathSciNetzbMATHGoogle Scholar
  59. 59.
    Leibman A (2005) Pointwise convergence of ergodic averages for polynomialactions of \( { \mathbb{Z}^d } \) bytranslations on a nilmanifold. Ergod Theory Dynam Syst 25:215–225MathSciNetzbMATHGoogle Scholar
  60. 60.
    McCutcheon R (2005) FVIP systems and multiple recurrence. Israel J Math146:157–188MathSciNetzbMATHGoogle Scholar
  61. 61.
    Meyerovitch T (2007) Extensions and multiple recurrence of infinite measurepreserving systems. Preprint. Available at http://arxiv.org/abs/math/0703914
  62. 62.
    Ornstein D, Weiss B (1993) Entropy and data compression schemes. IEEE TransInform Theory 39:78–83MathSciNetzbMATHGoogle Scholar
  63. 63.
    Petersen K (1989) Ergodic theory. Cambridge Studies in Advanced Mathematics2. Cambridge University Press, CambridgeGoogle Scholar
  64. 64.
    Poincaré H (1890) Sur le problème des trois corps et les équations de ladynamique. Acta Math 13:1–270Google Scholar
  65. 65.
    Rosenblatt J, Wierdl M (1995) Pointwise ergodic theorems via harmonicanalysis. Ergodic theory and its connections with harmonic analysis (Alexandria, 1993). London Math Soc, Lecture Note Series 205, Cambridge UniversityPress, Cambridge, pp 3–151Google Scholar
  66. 66.
    Sárközy A (1978) On difference sets of integers III. Acta Math Acad SciHungar 31:125–149Google Scholar
  67. 67.
    Shkredov I (2002) Recurrence in the mean. Mat Zametki 72(4):625–632;translation in Math Notes 72(3–4):576–582MathSciNetzbMATHGoogle Scholar
  68. 68.
    Sklar L (2004) Philosophy of Statistical Mechanics. In: Zalta EN (ed) TheStanford Encyclopedia of Philosophy (Summer 2004 edn),http://plato.stanford.edu/archives/sum2004/entries/statphys-statmech/
  69. 69.
    Szemerédi E (1975) On sets of integers containing no k elements in arithmetic progression. Acta Arith 27:299–345Google Scholar
  70. 70.
    Tao T, Ziegler T () The primes contain arbitrarily long polynomialprogressions. Acta Math (to appear). Available at http://www.arxiv.org/abs/math.DS/0610050
  71. 71.
    Walters P (1982) An introduction to ergodic theory. Graduate Texts inMathematics, vol 79. Springer, BerlinGoogle Scholar
  72. 72.
    Weiss B (2000) Single orbit dynamics. CBMS Regional Conference Series inMathematics 95. American Mathematical Society, ProvidenceGoogle Scholar
  73. 73.
    Wyner A, Ziv J (1989) Some asymptotic properties of the entropy of a stationary ergodic data source with applications to data compression. IEEE Trans Inform Theory 35:1250–1258MathSciNetzbMATHGoogle Scholar
  74. 74.
    Zermelo E (1896) Über einen Satz der Dynamik und die mechanische Wärmetheorie.Annalen der Physik 57:485–94; English translation, On a theorem of dynamics and the mechanical theory of heat. In: Brush SG (ed) KineticTheory. Oxford, 1966, II, pp 208–17Google Scholar
  75. 75.
    Ziegler T (2007) Universal characteristic factors and Furstenberg averages. J Amer Math Soc 20:53–97MathSciNetzbMATHGoogle Scholar
  76. 76.
    Ziegler T (2006) Nilfactors of \( { \mathbb{R}^m } \)-actions and configurations in sets of positive upper density in\( { \mathbb{R}^m } \). J Anal Math99:249–266MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Nikos Frantzikinakis
    • 1
  • Randall McCutcheon
    • 1
  1. 1.Department of MathematicsUniversity of MemphisMemphisUSA