Encyclopedia of Complexity and Systems Science

2009 Edition
| Editors: Robert A. Meyers (Editor-in-Chief)

Ergodic Theory: Interactions with Combinatorics and Number Theory

  • Tom Ward
Reference work entry
DOI: https://doi.org/10.1007/978-0-387-30440-3_181

Definition of theSubject

Number theory is a branch of pure mathematicsconcerned with the properties of numbers in general, andintegers in particular. The areas of most relevance to thisarticle are Diophantineanalysis (the study of how real numbers may beapproximated by rational numbers, and the consequences forsolutions of equations in integers); analytic number theory, and inparticular asymptotic estimates for the number of primes smallerthan X asa function of X; equidistribution, andquestions about how the digits of real numbers aredistributed. Combinatorics is concerned with identifyingstructures in discrete objects; of most interest here is thatpart of combinatorics connected with Ramsey theory, assertingthat large subsets of highly structured objects mustautomatically contain large replicas of that structure. Ergodictheory is the study of asymptotic behavior of group actionspreserving a probability measure; it has proved to bea powerful part of dynamical systems with...

This is a preview of subscription content, log in to check access.


Primary Literature

  1. 1.
    Adler RL, Weiss B (1970) Similarity of automorphisms of the torus. Memoirs of the American Mathematical Society, No. 98. American Mathematical Society, ProvidenceGoogle Scholar
  2. 2.
    Anosov DV (1967) Geodesic flows on closed Riemannian manifolds of negative curvature. Trudy Mat Inst Steklov 90:209MathSciNetGoogle Scholar
  3. 3.
    Arnol'd VI, Avez A (1968) Ergodic problems of classical mechanics. Translated from the French by A Avez. Benjamin Inc, New YorkGoogle Scholar
  4. 4.
    Auslander L, Green L, Hahn F (1963) Flows on homogeneous spaces. Annals of Mathematics Studies, No 53. Princeton University Press, PrincetonGoogle Scholar
  5. 5.
    Baker A (1990) Transcendental number theory. Cambridge Mathematical Library. Cambridge University Press, Cambridge, 2nd ednGoogle Scholar
  6. 6.
    Benford F (1938) The law of anomalous numbers. Proc Amer Philos Soc 78:551–572Google Scholar
  7. 7.
    Bergelson V (1996) Ergodic Ramsey theory – an update. In: Ergodic theory of \( { \mathbf{Z}^d } \) actions (Warwick, 1993–1994), vol 228. London Math Soc Lecture Note Ser. Cambridge University Press, Cambridge, pp 1–61Google Scholar
  8. 8.
    Bergelson V (2000) Ergodic theory and Diophantine problems. In: Topics in symbolic dynamics and applications (Temuco, 1997), vol 279. London Math Soc Lecture Note Ser. Cambridge University Press, Cambridge, pp 167–205Google Scholar
  9. 9.
    Bergelson V (2003) Minimal idempotents and ergodic Ramsey theory. In: Topics in dynamics and ergodic theory, vol 310. London Math Soc, Lecture Note Series, Cambridge University Press, Cambridge, pp 8–39Google Scholar
  10. 10.
    Bergelson V (2006) Combinatorial and Diophantine applications of ergodic theory. In: Handbook of dynamical systems, vol 1B. Elsevier, Amsterdam, pp 745–869Google Scholar
  11. 11.
    Bergelson V, Leibman A (1996) Polynomial extensions of van der Waerden's and Szemerédi's theorems. J Amer Math Soc 9(3):725–753MathSciNetzbMATHGoogle Scholar
  12. 12.
    Bergelson V, McCutcheon R (2000) An ergodic IP polynomial Szemerédi theorem. Mem Amer Math Soc 146(695):viii–106MathSciNetGoogle Scholar
  13. 13.
    Birkhoff GD (1931) Proof of the ergodic theorem. Proc Natl Acad Sci USA 17:656–660ADSGoogle Scholar
  14. 14.
    Bohl P (1909) Über ein in der Theorie der säkularen Störungen vorkommendes Problem. J Math 135:189–283zbMATHGoogle Scholar
  15. 15.
    Borel E (1909) Les probabilités denombrables et leurs applications arithmetiques. Rend Circ Math Palermo 27:247–271zbMATHGoogle Scholar
  16. 16.
    Bourgain J (1988) An approach to pointwise ergodic theorems. In: Geometric aspects of functional analysis (1986/87), vol 1317. Lecture Notes in Math, pp 204–223. Springer, BerlinGoogle Scholar
  17. 17.
    Bourgain J (1988) On the maximal ergodic theorem for certain subsets of the integers. Israel J Math 61(1):39–72MathSciNetzbMATHGoogle Scholar
  18. 18.
    Bowen R (1970) Markov partitions for Axiom \( { \mathrm{A} } \) diffeomorphisms. Amer J Math 92:725–747MathSciNetADSzbMATHGoogle Scholar
  19. 19.
    Bowen R (1972) The equidistribution of closed geodesics. Amer J Math 94:413–423MathSciNetzbMATHGoogle Scholar
  20. 20.
    Bowen R (1973) Symbolic dynamics for hyperbolic flows. Amer J Math 95:429–460MathSciNetzbMATHGoogle Scholar
  21. 21.
    Chothi V, Everest G, Ward T (1997) S‑integer dynamical systems: periodic points. J Reine Angew Math 489:99–132MathSciNetzbMATHGoogle Scholar
  22. 22.
    Dolgopyat D (1998) On decay of correlations in Anosov flows. Ann Math 147(2):357–390MathSciNetzbMATHGoogle Scholar
  23. 23.
    Einsiedler M, Ward T (2003) Asymptotic geometry of non-mixing sequences. Ergodic Theory Dyn Syst 23(1):75–85MathSciNetzbMATHGoogle Scholar
  24. 24.
    Ellis R (1969) Lectures on topological dynamics. Benjamin Inc, New YorkzbMATHGoogle Scholar
  25. 25.
    Erdős P (1949) On a new method in elementary number theory which leads to an elementary proof of the prime number theorem. Proc Natl Acad Sci USA 35:374–384Google Scholar
  26. 26.
    Erdős P, Turán P (1936) On some sequences of integers. J London Math Soc 11:261–264Google Scholar
  27. 27.
    Everest G, Miles R, Stevens S, Ward T (2007) Orbit-counting in non-hyperbolic dynamical systems. J Reine Angew Math 608:155–182MathSciNetzbMATHGoogle Scholar
  28. 28.
    Evertse JH, Schlickewei HP (1999) The absolute subspace theorem and linear equations with unknowns from a multiplicative group. In: Number theory in progress, vol 1 (Zakopane-Kościelisko, 1997). de Gruyter, Berlin, pp 121–142Google Scholar
  29. 29.
    Furstenberg H (1961) Strict ergodicity and transformation of the torus. Amer J Math 83:573–601MathSciNetzbMATHGoogle Scholar
  30. 30.
    Furstenberg H (1977) Ergodic behavior of diagonal measures and a theorem of Szemerédi on arithmetic progressions. J Analyse Math 31:204–256MathSciNetzbMATHGoogle Scholar
  31. 31.
    Furstenberg H, Katznelson Y (1979) An ergodic Szemerédi theorem for commuting transformations. J Analyse Math 34:275–291MathSciNetGoogle Scholar
  32. 32.
    Furstenberg H, Katznelson Y (1985) An ergodic Szemerédi theorem for IP-systems and combinatorial theory. J Analyse Math 45:117–168MathSciNetzbMATHGoogle Scholar
  33. 33.
    Furstenberg H, Katznelson Y, Ornstein D (1982) The ergodic theoretical proof of Szemerédi's theorem. Bull Amer Math Soc 7(3):527–552MathSciNetzbMATHGoogle Scholar
  34. 34.
    Furstenberg H, Weiss B (1979) Topological dynamics and combinatorial number theory. J Analyse Math 34:61–85MathSciNetGoogle Scholar
  35. 35.
    Gel′fond AO (1960) Transcendental and algebraic numbers. Translated from the first Russian edition by Leo F Boron. Dover Publications, New YorkGoogle Scholar
  36. 36.
    Goldfeld D (2004) The elementary proof of the prime number theorem: an historical perspective. In: Number theory (2003). Springer, New York, pp 179–192Google Scholar
  37. 37.
    Goldston DA, Yıldırım CY (2005) Small gaps between primes I. arXiv:math.NT/0504336Google Scholar
  38. 38.
    Gowers WT (2007) Hypergraph regularity and the multidimensional Szemerédi Theorem. Ann of Math 166:897–946MathSciNetzbMATHGoogle Scholar
  39. 39.
    Green B, Tao T (2004) The primes contain arbitrarily long arithmetic progressions. arXiv:math.NT/0404188Google Scholar
  40. 40.
    Green B, Tao T (2006) Linear equations in primes. arXiv:math.NT/0606088Google Scholar
  41. 41.
    Hejhal DA (1976) The Selberg trace formula and the Riemann zeta function. Duke Math J 43(3):441–482MathSciNetzbMATHGoogle Scholar
  42. 42.
    Hill TP (1995) Base-invariance implies Benford's law. Proc Amer Math Soc 123(3):887–895MathSciNetzbMATHGoogle Scholar
  43. 43.
    Hindman N (1974) Finite sums from sequences within cells of a partition of ℕ. J Comb Theory Ser A 17:1–11MathSciNetzbMATHGoogle Scholar
  44. 44.
    Hlawka E (1964) Discrepancy and uniform distribution of sequences. Compositio Math 16:83–91MathSciNetzbMATHGoogle Scholar
  45. 45.
    Host B, Kra B (2005) Convergence of polynomial ergodic averages. Israel J Math 149:1–19, Probability in mathematicsMathSciNetzbMATHGoogle Scholar
  46. 46.
    Host B, Kra B (2005) Nonconventional ergodic averages and nilmanifolds. Ann Math 161(1):397–488MathSciNetzbMATHGoogle Scholar
  47. 47.
    Huber H (1959) Zur analytischen Theorie hyperbolischen Raumformen und Bewegungsgruppen. Math Ann 138:1–26MathSciNetzbMATHGoogle Scholar
  48. 48.
    Katok A (1980) Lyapunov exponents, entropy and periodic orbits for diffeomorphisms. Inst Hautes Études Sci Publ Math (51):137–173MathSciNetzbMATHGoogle Scholar
  49. 49.
    Katsuda A, Sunada T (1990) Closed orbits in homology classes. Inst Hautes Études Sci Publ Math (71):5–32MathSciNetzbMATHGoogle Scholar
  50. 50.
    Khinchin AI (1964) Continued fractions. The University of Chicago Press, ChicagozbMATHGoogle Scholar
  51. 51.
    Knieper G (1997) On the asymptotic geometry of nonpositively curved manifolds. Geom Funct Anal 7(4):755–782MathSciNetzbMATHGoogle Scholar
  52. 52.
    Koopman B (1931) Hamiltonian systems and transformations in Hilbert spaces. Proc Natl Acad Sci USA 17:315–318ADSGoogle Scholar
  53. 53.
    Kra B (2006) The Green-Tao theorem on arithmetic progressions in the primes: an ergodic point of view. Bull Amer Math Soc 43(1):3–23MathSciNetzbMATHGoogle Scholar
  54. 54.
    Kuz'min RO (1928) A problem of Gauss. Dokl Akad Nauk, pp 375–380Google Scholar
  55. 55.
    Lalley SP (1987) Distribution of periodic orbits of symbolic and Axiom A flows. Adv Appl Math 8(2):154–193MathSciNetzbMATHGoogle Scholar
  56. 56.
    Lalley SP (1988) The “prime number theorem” for the periodic orbits of a Bernoulli flow. Amer Math Monthly 95(5):385–398MathSciNetzbMATHGoogle Scholar
  57. 57.
    Ledrappier F (1978) Un champ markovien peut étre d'entropie nulle et mélangeant. C R Acad Sci Paris Sér A-B 287(7):A561–A563MathSciNetGoogle Scholar
  58. 58.
    Leibman A (2005) Convergence of multiple ergodic averages along polynomials of several variables. Israel J Math 146:303–315MathSciNetzbMATHGoogle Scholar
  59. 59.
    Levy P (1929) Sur les lois de probabilité dont dependent les quotients complets et incomplets d'une fraction continue. Bull Soc Math France 57:178–194MathSciNetzbMATHGoogle Scholar
  60. 60.
    Levy P (1936) Sur quelques points de la théorie des probabilités dénombrables. Ann Inst H Poincaré 6(2):153–184Google Scholar
  61. 61.
    Lind DA (1982) Dynamical properties of quasihyperbolic toral automorphisms. Ergodic Theory Dyn Syst 2(1):49–68MathSciNetzbMATHGoogle Scholar
  62. 62.
    Margulis GA (1969) Certain applications of ergodic theory to the investigation of manifolds of negative curvature. Funkcional Anal i Priložen 3(4):89–90MathSciNetGoogle Scholar
  63. 63.
    Margulis GA (2004) On some aspects of the theory of Anosov systems. Springer Monographs in Mathematics. Springer, Berlin.Google Scholar
  64. 64.
    Masser DW (2004) Mixing and linear equations over groups in positive characteristic. Israel J Math 142:189–204MathSciNetzbMATHGoogle Scholar
  65. 65.
    Mertens F (1874) Ein Beitrag zur analytischen Zahlentheorie. J Reine Angew Math 78:46–62zbMATHGoogle Scholar
  66. 66.
    Nagle B, Rödl V, Schacht M (2006) The counting lemma for regular k‑uniform hypergraphs. Random Structures Algorithms 28(2):113–179Google Scholar
  67. 67.
    Newcomb S (1881) Note on the frequency of the use of digits in natural numbers. Amer J Math 4(1):39–40MathSciNetGoogle Scholar
  68. 68.
    Noorani MS (1999) Mertens' theorem and closed orbits of ergodic toral automorphisms. Bull Malaysian Math Soc 22(2):127–133MathSciNetzbMATHGoogle Scholar
  69. 69.
    Oxtoby JC (1952) Ergodic sets. Bull Amer Math Soc 58:116–136MathSciNetzbMATHGoogle Scholar
  70. 70.
    Parry W (1969) Ergodic properties of affine transformations and flows on nilmanifolds. Amer J Math 91:757–771MathSciNetzbMATHGoogle Scholar
  71. 71.
    Parry W (1983) An analogue of the prime number theorem for closed orbits of shifts of finite type and their suspensions. Israel J Math 45(1):41–52MathSciNetzbMATHGoogle Scholar
  72. 72.
    Parry W (1984) Bowen's equidistribution theory and the Dirichlet density theorem. Ergodic Theory Dyn Syst 4(1):117–134MathSciNetzbMATHGoogle Scholar
  73. 73.
    Parry W, Pollicott M (1983) An analogue of the prime number theorem for closed orbits of Axiom A flows. Ann Math 118(3):573–591MathSciNetzbMATHGoogle Scholar
  74. 74.
    Poincaré H (1890) Sur le probléme des trois corps et les équations de la Dynamique. Acta Math 13:1–270Google Scholar
  75. 75.
    Pollicott M, Sharp R (1998) Exponential error terms for growth functions on negatively curved surfaces. Amer J Math 120(5):1019–1042MathSciNetzbMATHGoogle Scholar
  76. 76.
    Rado R (1933) Studien zur Kombinatorik. Math Z 36(1):424–470MathSciNetzbMATHGoogle Scholar
  77. 77.
    Ratner M (1973) Markov partitions for Anosov flows on n‑dimensional manifolds. Israel J Math 15:92–114MathSciNetzbMATHGoogle Scholar
  78. 78.
    Rohlin VA (1949) On endomorphisms of compact commutative groups. Izvestiya Akad Nauk SSSR Ser Mat 13:329–340MathSciNetGoogle Scholar
  79. 79.
    Roth K (1952) Sur quelques ensembles d'entiers. C R Acad Sci Paris 234:388–390MathSciNetzbMATHGoogle Scholar
  80. 80.
    Sárközy A (1978) On difference sets of sequences of integers. III. Acta Math Acad Sci Hungar 31(3-4):355–386Google Scholar
  81. 81.
    Schlickewei HP (1990) S‑unit equations over number fields. Invent Math 102(1):95–107MathSciNetADSzbMATHGoogle Scholar
  82. 82.
    Schmidt K (1989) Mixing automorphisms of compact groups and a theorem by Kurt Mahler. Pacific J Math 137(2):371–385MathSciNetzbMATHGoogle Scholar
  83. 83.
    Schmidt K (1995) Dynamical systems of algebraic origin, vol 128. Progress in Mathematics. Birkhäuser, BaselGoogle Scholar
  84. 84.
    Schmidt K (2001) The dynamics of algebraic \( { \mathbb{Z}^d } \)-actions. In: European Congress of Mathematics, vol I (Barcelona, 2000), vol 201. Progress in Math. Birkhäuser, Basel, pp 543–553Google Scholar
  85. 85.
    Schmidt K, Ward T (1993) Mixing automorphisms of compact groups and a theorem of Schlickewei. Invent Math 111(1):69–76MathSciNetADSzbMATHGoogle Scholar
  86. 86.
    Schmidt WM (1972) Norm form equations. Ann Math 96(2):526–551zbMATHGoogle Scholar
  87. 87.
    Selberg A (1949) An elementary proof of the prime-number theorem. Ann Math 50(2):305–313MathSciNetzbMATHGoogle Scholar
  88. 88.
    Selberg A (1956) Harmonic analysis and discontinuous groups in weakly symmetric Riemannian spaces with applications to Dirichlet series. J Indian Math Soc 20:47–87MathSciNetzbMATHGoogle Scholar
  89. 89.
    Sharp R (1991) An analogue of Mertens' theorem for closed orbits of Axiom A flows. Bol Soc Brasil Mat 21(2):205–229MathSciNetzbMATHGoogle Scholar
  90. 90.
    Sharp R (1993) Closed orbits in homology classes for Anosov flows. Ergodic Theory Dyn Syst 13(2):387–408MathSciNetzbMATHGoogle Scholar
  91. 91.
    Sierpiński W (1910) Sur la valeur asymptotique d'une certaine somme. Bull Intl Acad Polonmaise des Sci et des Lettres (Cracovie), pp 9–11Google Scholar
  92. 92.
    Sinaĭ JG (1966) Asymptotic behavior of closed geodesics on compact manifolds with negative curvature. Izv Akad Nauk SSSR Ser Mat 30:1275–1296Google Scholar
  93. 93.
    Sinaĭ JG (1968) Construction of Markov partitionings. Funkcional Anal i Priložen 2(3):70–80Google Scholar
  94. 94.
    Silverman JH (2007) The Arithmetic of Dynamical Systems, vol 241. Graduate Texts in Mathematics. Springer, New YorkGoogle Scholar
  95. 95.
    Smale S (1967) Differentiable dynamical systems. Bull Amer Math Soc 73:747–817MathSciNetzbMATHGoogle Scholar
  96. 96.
    Szemerédi E (1969) On sets of integers containing no four elements in arithmetic progression. Acta Math Acad Sci Hungar 20:89–104Google Scholar
  97. 97.
    Szemerédi E (1975) On sets of integers containing no k elements in arithmetic progression. Acta Arith 27:199–245Google Scholar
  98. 98.
    Tao T (2005) The dichotomy between structure and randomness, arithmetic progressions, and the primes. arXiv:math/0512114v2Google Scholar
  99. 99.
    Tao T (2006) Arithmetic progressions and the primes. Collect Math, vol extra, Barcelona, pp 37–88Google Scholar
  100. 100.
    Tao T (2007) What is good mathematics? arXiv:math/0702396v1Google Scholar
  101. 101.
    Tao T, Ziegler T (2006) The primes contain arbitrarily long polynomial progressions. arXiv:math.NT/0610050Google Scholar
  102. 102.
    van der Poorten AJ, Schlickewei HP (1991) Additive relations in fields. J Austral Math Soc Ser A 51(1):154–170MathSciNetzbMATHGoogle Scholar
  103. 103.
    van der Waerden BL (1927) Beweis einer Baudet'schen Vermutung. Nieuw Arch Wisk 15:212–216Google Scholar
  104. 104.
    van der Waerden BL (1971) How the proof of Baudet's conjecture was found. In: Studies in Pure Mathematics (Presented to Richard Rado). Academic Press, London, pp 251–260Google Scholar
  105. 105.
    von Neumann J (1932) Proof of the quasi-ergodic hypothesis. Proc Natl Acad Sci USA 18:70–82ADSGoogle Scholar
  106. 106.
    Waddington S (1991) The prime orbit theorem for quasihyperbolic toral automorphisms. Monatsh Math 112(3):235–248MathSciNetzbMATHGoogle Scholar
  107. 107.
    Ward T (1998) Almost all S‑integer dynamical systems have many periodic points. Ergodic Theory Dyn Syst 18(2):471–486zbMATHGoogle Scholar
  108. 108.
    Weil A (1967) Basic number theory. Die Grundlehren der mathematischen Wissenschaften, Band 144. Springer, New YorkGoogle Scholar
  109. 109.
    Weyl H (1910) Über die Gibbssche Erscheinung und verwandte Konvergenzphänomene. Rendiconti del Circolo Matematico di Palermo 30:377–407zbMATHGoogle Scholar
  110. 110.
    Weyl H (1916) Uber die Gleichverteilung von Zahlen mod Eins. Math Ann 77:313–352MathSciNetzbMATHGoogle Scholar
  111. 111.
    Wiener N (1932) Tauberian theorems. Ann Math 33(1):1–100MathSciNetGoogle Scholar

Books and Reviews

  1. 112.
    Cornfeld IP, Fomin SV, Sinaĭ YG (1982) Ergodic theory. Springer, New YorkGoogle Scholar
  2. 113.
    Dajani K, Kraaikamp C (2002) Ergodic theory of numbers, vol 29. In: Carus Mathematical Monographs. Mathematical Association of America, Washington DCGoogle Scholar
  3. 114.
    Denker M, Grillenberger C, Sigmund K (1976) Ergodic theory on compact spaces. Lecture Notes in Mathematics, vol 527. Springer, BerlinGoogle Scholar
  4. 115.
    Furstenberg H (1981) Recurrence in ergodic theory and combinatorial number theory. Princeton University Press, PrincetonzbMATHGoogle Scholar
  5. 116.
    Glasner E (2003) Ergodic theory via joinings, vol 101. Mathematical Surveys and Monographs. American Mathematical Society, ProvidenceGoogle Scholar
  6. 117.
    Iosifescu M, Kraaikamp C (2002) Metrical theory of continued fractions, vol 547. Mathematics and its Applications. Kluwer, DordrechtGoogle Scholar
  7. 118.
    Katok A, Hasselblatt B (1995) Introduction to the modern theory of dynamical systems, vol 54. In: Encyclopedia of Mathematics and its Applications. Cambridge University Press, CambridgeGoogle Scholar
  8. 119.
    Krengel U (1985) Ergodic theorems, vol 6. de Gruyter Studies in Mathematics. de Gruyter, BerlinGoogle Scholar
  9. 120.
    McCutcheon R (1999) Elemental methods in ergodic Ramsey theory, vol 1722. Lecture Notes in Mathematics. Springer, BerlinGoogle Scholar
  10. 121.
    Petersen K (1989) Ergodic theory, vol 2. Cambridge Studies in Advanced Mathematics. Cambridge University Press, CambridgeGoogle Scholar
  11. 122.
    Schweiger F (1995) Ergodic theory of fibred systems and metric number theory. Oxford Science Publications. The Clarendon Press Oxford University Press, New YorkGoogle Scholar
  12. 123.
    Totoki H (1969) Ergodic theory. Lecture Notes Series, No 14. Matematisk Institut, Aarhus Universitet, AarhusGoogle Scholar
  13. 124.
    Walters P (1982) An introduction to ergodic theory, vol 79. Graduate Texts in Mathematics. Springer, New YorkGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Tom Ward
    • 1
  1. 1.School of MathematicsUniversity of East AngliaNorwichUK