Encyclopedia of Complexity and Systems Science

2009 Edition
| Editors: Robert A. Meyers (Editor-in-Chief)

Drug Design, Molecular Descriptors in

  • Alexandru T. Balaban
Reference work entry
DOI: https://doi.org/10.1007/978-0-387-30440-3_136

Definition of the Subject

Empirical observations of association between chemical structures and their physical, chemical, or biological properties have a longhistory [1], but the real development of mathematical correlations started in the 20th century. Forphysico‐chemical properties, topological indices and their applications were first published by Wiener in 1947 followed soon by Platt and Hosoya, aswill be shown later. Quantitative structure‐activity relationships (QSARs) have 1962 as official birthdates with the connection between Hammettsubstituent constants, lipophilicity, and biological activities, as will be discussed below.

The huge development in analytical and synthetic methods, leading to combinatorial chemistry, high‐throughput screening, and virtual screening(ligand- or structure‐based) on one hand, and on the other hand to the progress in computational hardware and software that allows the processing ofmillions of virtual structure libraries, have made it possible to...

This is a preview of subscription content, log in to check access.

Bibliography

Primary Literature

  1. 1.
    Devillers J, Balaban AT (eds) (1999) Topological indices and related descriptors in QSAR and QSPR. Gordon and Breach, AmsterdamGoogle Scholar
  2. 2.
    Templeton NS, Lasic DD (eds) (2000) Gene therapy. Therapeutical mechanisms and strategies. Marcel Dekker, New YorkGoogle Scholar
  3. 3.
    Ilies MA, Seitz WA, Hohnson BH, Ezell EL, Miller AL, Thompson EB, Balaban AT (2006) J Med Chem 49:3872Google Scholar
  4. 4.
    Kubinyi H (2002) Drug design course (free download from his home page www.kubinyi.de). See also “Why drugs fail” Herman Skolnik Award Lecture, ACS Meeting, San Francisco, September 2006 on that web page
  5. 5.
    Maggiora GM (2006) J Chem Inf Model 46:1535Google Scholar
  6. 6.
    Balaban AT, Pompe M (2007) J Phys Chem 111:2448; erratum, ibid. 4871Google Scholar
  7. 7.
    Karelson M (2000) Molecular descriptors in QSAR/QSPR. Wiley, New YorkGoogle Scholar
  8. 8.
    Todeschini R, Consonni V (2000) Handbook of molecular descriptors. Wiley, WeinheimGoogle Scholar
  9. 9.
    Balaban AT (2000) Quantitative structure‐activity relationships and computational methods in drug discovery. In: Meyers RA (ed) Encyclopedia of analytical chemistry. Wiley, Chichester, p 7288Google Scholar
  10. 10.
    Randić M (1998) Topological indices. In: Schleyer PVR et al (eds) Encyclopedia of computational chemistry. Wiley, Chichester, p 3018Google Scholar
  11. 11.
    Kier LB, Hall LH (1986) Molecular connectivity in structure‐activity analysis. Research Studies Press, LetchworthGoogle Scholar
  12. 12.
    Kier LB, Hall LH (1976) Molecular connectivity in chemistry and drug research. Academic Press, New YorkGoogle Scholar
  13. 13.
    Kier LB, Hall LH (1999) Molecular structure description: the electrotopological state. Academic Press, San DiegoGoogle Scholar
  14. 14.
    Bonchev D (1983) Information theoretic indices for characterization of chemical structure. Wiley, ChichesterGoogle Scholar
  15. 15.
    Hammett LP (1940) Physical organic chemistry, 2nd edn, 1970. McGrawHill, New YorkGoogle Scholar
  16. 16.
    Hammett LP (1935) Chem Rev 17:125Google Scholar
  17. 17.
    Hansch C, Maloney PP, Fujita T, Muir RM (1962) Nature 194:258Google Scholar
  18. 18.
    Hansch C, Fujita T (1964) J Am Chem Soc 86:1616Google Scholar
  19. 19.
    Fujita T, Iwasa J, Hansch C (1964) J Am Chem Soc 86:5175Google Scholar
  20. 20.
    Hansch C (1969) Acc Chem Res 2:232Google Scholar
  21. 21.
    Hansch C, Leo A, Hoekman D (1995) Exploring QSAR, hydrophobic, electronic and steric constants. Am. Chem. Soc., WashingtonGoogle Scholar
  22. 22.
    Hansch C, Hoekman D, Gao H (1996) Chem Rev 96:1045Google Scholar
  23. 23.
    Hansch C, Gao H, Hoekman D (1998) In: Devillers J (ed) Comparative QSAR. Taylor and Francis, Washington, p 285Google Scholar
  24. 24.
    Hansch C, Leo A (1979) Substituent constants for correlation analysis in chemistry and biology. Wiley/Interscience, New YorkGoogle Scholar
  25. 25.
    Hansch C, Leo A (1995) Exploring QSAR: fundamentals and applications in chemistry and biology. Am. Chem. Soc., WashingtonGoogle Scholar
  26. 26.
    Kubinyi H (1993) QSAR: Hansch analysis and related approaches. VCH Publishers, WeinhimGoogle Scholar
  27. 27.
    Verloop A (1976) In: Ariëns EJ (ed) Drug design, vol 3. Academic, New York, p 133Google Scholar
  28. 28.
    Verloop A, Tipker J (1977) In: Buisman JAK (ed) Biological activity and chemical structure. Elsevier, Amsterdam, p 63Google Scholar
  29. 29.
    Verloop A, Tipker J (1977) In: Jerman‐Blazić D (ed) QSAR in drug design and toxicology, Hadzi D21–23. Elsevier, Amsterdam, p 97Google Scholar
  30. 30.
    Kubinyi H (1998) Quantitative structure‐activity relationships in drug design. In: Schleyer PVR et al (eds) Encyclopedia of computational chemistry. Wiley, Chichester, p 2309Google Scholar
  31. 31.
    Kubinyi H (2006) In: Sener EA, Yalcin I (eds) QSAR and molecular modeling in rational design of bioactive molecules. CADD Society, Ankara, p 30Google Scholar
  32. 32.
    Balaban AT (1976) (ed) Chemical applications of graph theory. Academic Press, LondonGoogle Scholar
  33. 33.
    Trinajstić N (1992) Chemical graph theory, 2nd edn. CRC Press, Boca RatonGoogle Scholar
  34. 34.
    Ivanciuc O, Balaban AT (1998) Graph theory in chemistry. In: Schleyer PVR et al (eds) Encyclopedia of computational chemistry. Wiley, Chichester, p 1169Google Scholar
  35. 35.
    Rouvray DH, Balaban AT (1979) In: Wilson RJ, Beineke LW (eds) Applications of graph theory. Academic Press, London, p 177Google Scholar
  36. 36.
    Balaban AT (1995) J Chem Inf Comput Sci 35:339Google Scholar
  37. 37.
    Ivanciuc O, Ivanciuc T, Diudea MV (1997) SAR QSAR Environ Res 7:63Google Scholar
  38. 38.
    Ivanciuc O, Ivanciuc T (1999) In: Devillers J, Balaban AT (eds) Topological indices and related descriptors in QSAR and QSPR. Gordon and Breach, AmsterdamGoogle Scholar
  39. 39.
    Janežič D, Miličević A, Nikolić S, Trinajstić N (2007) In: Gutman I (ed) Graph theoretical matrices in chemistry. University of Kragujevac (Serbia)Google Scholar
  40. 40.
    Wiener H (1947) J Am Chem Soc 69(17):2636Google Scholar
  41. 41.
    Hosoya H (1971) Bull Chem Soc Jpn 44:2332Google Scholar
  42. 42.
    Platt JR (1947) J Chem Phys 15:419ADSGoogle Scholar
  43. 43.
    Platt JR (1952) J Phys Chem 56:151Google Scholar
  44. 44.
    Gordon M, Scantlebury GR (1967) J Chem Soc B:1Google Scholar
  45. 45.
    Gutman I, Ruscić B, Trinajstić N, Wilcox CF (1975) J Chem Phys 62:3399Google Scholar
  46. 46.
    Schultz HP, Schultz TP (1998) J Chem Inf Comput Sci 38:853Google Scholar
  47. 47.
    Balaban AT (1979) Theor Chim Acta 5:239zbMATHGoogle Scholar
  48. 48.
    Bonchev D, Balaban AT, Mekenyan O (1980) J Chem Inf Comput Sci 20:106Google Scholar
  49. 49.
    Bonchev D, Mekenyan O, Balaban AT (1989) J Chem Inf Comput Sci 29:91Google Scholar
  50. 50.
    Bonchev D (1989) Theochem 185:155Google Scholar
  51. 51.
    Balaban AT, Bertelsen S, Basak SC (1994) MATCH Commun Math Comput Chem 30:55Google Scholar
  52. 52.
    Bonchev D (2001) J Mol Graphics Model 20:65Google Scholar
  53. 53.
    Randić M (1991) J Math Chem 7:155Google Scholar
  54. 54.
    Randić M (1975) J Am Chem Soc 97:6609Google Scholar
  55. 55.
    Kier LB, Hall LH (1976) J Pharm Sci 65:1806Google Scholar
  56. 56.
    Kier LB (1989) Quant Struct‐Act Relat 8:221Google Scholar
  57. 57.
    Kier LH, Hall LB (1999) In: Devillers J, Balaban AT (eds) Topological indices and related descriptors in QSAR and QSPR. Gordon and Breach, Amsterdam, pp 307, 455, 491Google Scholar
  58. 58.
    Bonchev D, Trinajstić N (1977) J Chem Phys 67:4517Google Scholar
  59. 59.
    Basak SC (1999) In: Devillers J, Balaban AT (eds) Topological indices and related descriptors in QSAR and QSPR. Gordon and Breach, Amsterdam, p 563Google Scholar
  60. 60.
    Raychaudhury C, Ray SK, Ghosh JJ, Roy AB, Basak SC (1984) J Comput Chem 5:581Google Scholar
  61. 61.
    Balaban AT, Balaban TS (1991) J Math Chem 8:383MathSciNetGoogle Scholar
  62. 62.
    Balaban AT (1983) Pure Appl Chem 55:199Google Scholar
  63. 63.
    Balaban AT (1982) Chem Phys Lett 89:399MathSciNetADSGoogle Scholar
  64. 64.
    Balaban AT, Ionescu‐Pallas N, Balaban TS (1985) MATCH Commun Math Comput Chem 17:121Google Scholar
  65. 65.
    Balaban AT (1986) MATCH Commun Math Comput Chem 21:115MathSciNetGoogle Scholar
  66. 66.
    Ivanciuc O, Ivanciuc T, Balaban AT (1998) J Chem Inf Comput Sci 38:395Google Scholar
  67. 67.
    Balaban AT, Quintas LV (1983) MATCH Commun Math Comput Chem 14:213MathSciNetzbMATHGoogle Scholar
  68. 68.
    Lovasz L, Pelikan J (1973) Periodica Math Hung 3:175MathSciNetzbMATHGoogle Scholar
  69. 69.
    Medeleanu M, Balaban AT (1998) J Chem Inf Comput Sci 38:1038Google Scholar
  70. 70.
    Randić M, Vračko M, Novič M (2001) In: Diudea MV (ed) QSPR/QSAR studies by molecular descriptors. Nova Sci. Publ., Huntington, p 147Google Scholar
  71. 71.
    Plavsić D, Nikolić S, Trinajstić N, Mihalić Z (1993) J Math Chem 12:235Google Scholar
  72. 72.
    Ivanciuc O, Balaban TS, Balaban AT (1993) J Math Chem 12:309MathSciNetGoogle Scholar
  73. 73.
    Khadikar PV, Deshpande NV, Kale PP, Dobrynin AA, Gutman I, Dömötör G (1995) J Chem Inf Comput Sci 35:547Google Scholar
  74. 74.
    Diudea MV, Minailiuc O, Balaban AT (1991) J Comput Chem 12:527MathSciNetGoogle Scholar
  75. 75.
    Balaban AT, Diudea MV (1993) J Chem Inf Comput Sci 33:421Google Scholar
  76. 76.
    Diudea MV (1997) J Chem Inf Comput Sci 37:292–300Google Scholar
  77. 77.
    Diudea MV (1997) MATCH Commun Math Comput Chem 35:163MathSciNetGoogle Scholar
  78. 78.
    Diudea MV, Vizitiu AE, Janežič D (2007) J Chem Inf Model 47:864Google Scholar
  79. 79.
    Rücker G, Rücker C (1993) J Chem Inf Comput Sci 33:683Google Scholar
  80. 80.
    Rücker G, Rücker C (1999) J Chem Inf Comput Sci 39:788Google Scholar
  81. 81.
    Rücker G, Rücker C (1994) J Chem Inf Comput Sci 34:534Google Scholar
  82. 82.
    Balaban AT, Beteringhe A, Constantinescu T, Filip PA, Ivanciuc O (2007) J Chem Inf Model 47:716; Vukičević D, Beteringe A, Constantinescu T, Pompe M, Balaban AT (2008) Chem Phys Lett 464:155Google Scholar
  83. 83.
    Filip PA, Balaban TS, Balaban AT (1987) J Math Chem 1:61MathSciNetGoogle Scholar
  84. 84.
    Basak SC, Gute BD (2001) J Mol Graphics Model 20:95Google Scholar
  85. 85.
    Estrada E (2001) Chem Phys Lett 336:248ADSGoogle Scholar
  86. 86.
    Estrada E (2003) J Phys Chem A 107:7482Google Scholar
  87. 87.
    Estrada E (2004) J Phys Chem A 108:5468Google Scholar
  88. 88.
    Matamala AR, Estrada E (2005) J Phys Chem A 109:9890Google Scholar
  89. 89.
    Matamala AR, Estrada E (2005) Chem Phys Lett 410:343ADSGoogle Scholar
  90. 90.
    Estrada E, Matamala AR (2007) J Chem Inf Comput Sci 47:794Google Scholar
  91. 91.
    Estrada E, Gutierrez Y (2001) MATCH Commun Math Comput Chem 44:155MathSciNetzbMATHGoogle Scholar
  92. 92.
    Esterada E (2000) SAR QSAR Environ Des 11:55; Estrada E, Gutierrez Y, Gonzales H (2000) J Chem Inf Comput Sci 40:1386Google Scholar
  93. 93.
    Estrada E, Pena A, Garcia‐Domenech R (1998) J Comput‐Aided Mol Des 12:583Google Scholar
  94. 94.
    Estrada E, Quincoces JA, Patlewicz G (2004) Mol Divers 8:21Google Scholar
  95. 95.
    Randić M (1991) J Chem Inf Comput Sci 31:311Google Scholar
  96. 96.
    Randić M (1991) New J Chem 15:517Google Scholar
  97. 97.
    Randić M (2001) J Mol Graphics Model 20:19Google Scholar
  98. 98.
    Randić M, Pompe M (2001) J Chem Inf Comput Sci 41:573Google Scholar
  99. 99.
    Pompe M, Randić M (2006) J Chem Inf Comput Sci 46:2Google Scholar
  100. 100.
    Randic M, Pompe M (2007) Acta Chim Slov 54:605Google Scholar
  101. 101.
    Toropov AA, Toropova AP, Mukhamedzhnova DV, Gutman I (2005) Indian J Chem 44A:1545Google Scholar
  102. 102.
    Toropov AA, Benfenati E (2007) Comput Biol Chem 31:57zbMATHGoogle Scholar
  103. 103.
    Toropov AA, Benfenati E (2007) Eur J Med Chem 42:606Google Scholar
  104. 104.
    Roy K, Toropov AA, Raska I Jr (2007) QSAR & Comp Sci 26:460Google Scholar
  105. 105.
    Gálvez J, Garcia R, Salabert MT, Soler R (1994) J Chem Inf Comput Sci 34:520Google Scholar
  106. 106.
    Gálvez J, de Julian‐Ortiz JV, Garcia‐Domenech R (2001) J Mol Graph Model 20:84Google Scholar
  107. 107.
    Grassy G, Calas B, Yasri A, Lahana R, Woo J, Iyer S, Kaczorek M, Floc'h R, Buelow R (1998) Nat Biotechnol 16:748Google Scholar
  108. 108.
    Gorse D, Lahana R (2000) Curr Opin Chem Biol 4:287; Gorse A-D (2006) Curr Top Med Chem 6:3; Iyer S, Lahana R, Buelow R (2002) Curr Pharm Des 8:2217; Gorse D, Rees A, Kaczorek M, Lahana R (1999) Drug Disc Today 4:257Google Scholar
  109. 109.
    Grassy G, Kaczorek M, Lahana R, Yasri A (2006) US Patent 7,024,311Google Scholar
  110. 110.
    Kubinyi H, Folkers G, Martin YC (eds) (1998) 3D QSAR in drug design: Ligand–protein interactions and molecular similarity, vols 9–11. Kluwer, DordrechtGoogle Scholar
  111. 111.
    Balaban AT (ed) (1997) From chemical topology to three‐dimensional geometry. Plenum, New YorkGoogle Scholar
  112. 112.
    Balaban AT (1997) J Chem Inf Comput Sci 37:645Google Scholar
  113. 113.
    Kubinyi H, Folkers G, Martin YC (eds) (1998) 3D QSAR in drug design: Recent advances, vols. 12–14. Kluwer, DordrechtGoogle Scholar
  114. 114.
    Cramer RD III, Patterson DE, Bunce JD (1988) J Am Chem Soc 110:5959Google Scholar
  115. 115.
    Cramer RD III, Patterson DE, Bunce JD (1989) In: Fauchère JL (ed) Quantitative structure‐activity relationships in drug design. Alan R Liss, New York, p 161Google Scholar
  116. 116.
    Cramer RD III, DePriest SA, Patterson DE, Hecht P (1993) In: Kubinyi H (ed) 3D QSAR in Drug Design: Theory, methods and applications. ESCOM, Leiden, p 583Google Scholar
  117. 117.
    Böhm M, Klebe G (2002) J Med Chem 45:1585Google Scholar
  118. 118.
    Martin YC, Kim KH, Lin CT (1996) In: Charton M (ed) Advances in quantitative structure‐activity relationships. JAI Press, GreenwichGoogle Scholar
  119. 119.
    Todeschini R, Lasagni M, Marengo E (1994) J Chemom 8:263Google Scholar
  120. 120.
    Todeschini R, Gramatica P, Marengo E, Provenzani R (1995) Chemom Intell Lab Syst 27:221Google Scholar
  121. 121.
    Todeschini R, Vighi M, Provenzani R, Finizio A, Gramatica P (1996) Chemosphere 32:1527Google Scholar
  122. 122.
    Todeschini R, Gramatica P (1997) Quant Struct‐Act Relat 16:113, 120Google Scholar
  123. 123.
    Todeschini R, Gramatica P (1997) SAR QSAR Environ Res 7:89Google Scholar
  124. 124.
    Gramatica P, Consonni V, Todeschini R (1999) Chemosphere 38:1371Google Scholar
  125. 125.
    Gramatica P, Corradi M, Consonni V (2000) Chemosphere 41:763Google Scholar
  126. 126.
    Ferguson AM, Heritage T, Jonathon P, Pack SE, Phillips L, Rogan J, Snaith PJ (1997) J Comp-Aided Mol Des 11:143Google Scholar
  127. 127.
    Fontaine F, Pastor M, Sanz F (2004) J Med Chem 47:2805Google Scholar
  128. 128.
    Johnson M, Maggiora GM (eds) (1990) Concepts and applications of molecular similarity. Wiley, New York; Maggiora GM, Shanmungasundaram V (2004) Methods Mol Biol 275:1Google Scholar
  129. 129.
    Horvath D, Mao B (2003) QSAR Comb Sci 22:498Google Scholar
  130. 130.
    Mezey PG (1993) Shape in chemistry. An introduction to molecular shape and topology. Wiley, New YorkGoogle Scholar
  131. 131.
    Carbo-Dorca R, Mezey PG (eds) (1998) Advances in molecular similarity, vol 2. JAI Press, StamfordGoogle Scholar
  132. 132.
    Karelson M, Lobanov VS, Katritzky AR (1996) Chem Rev 96:1027Google Scholar
  133. 133.
    Zyrianov Y (2005) J Chem Inf Model 45:657Google Scholar
  134. 134.
    Burden FR (1989) J Chem Inf Comput Sci 29:225Google Scholar
  135. 135.
    Basak SC, Balaban AT, Grunwald G, Gute BD (2000) J Chem Inf Comput Sci 40:891; Basak SC, Gute BD, Balaban AT (2004) Croat Chem Acta 77:331Google Scholar
  136. 136.
    Basak SC, Gute BD, Mills D (2006) Arkivoc ix:157Google Scholar
  137. 137.
    Bertz SH (1988) Discret Appl Math 19:65MathSciNetzbMATHGoogle Scholar
  138. 138.
    Balaban AT (2002) In: Rouvray DH, King RB (eds) Topology in chemistry: Discrete mathematics of molecules. Horwood Publishing Ltd., Chichester, p 89Google Scholar
  139. 139.
    Ivanciuc O, Ivamciuc T, Cabrol‐Bass D, Balaban AT (2000) MATCH Commun Math Comput Chem 42:155Google Scholar
  140. 140.
    Balaban AT (2002) MATCH Commun Math Comput Chem 45:5Google Scholar
  141. 141.
    Basak SC, Mills D, Mumtaz MM, Balasubramanian K (2003) Indian J Chem 42A:1385; Basak SC, Mills D, Balaban AT, Gute BD (2001) J Chem Inf Comput Sci 41:671Google Scholar
  142. 142.
    Katritzky AR, Lobanov VS, Karelson M (1995) Chem Soc Rev 24:279Google Scholar
  143. 143.
    Perun TJ, Propst CL (1989) Computer‐aided drug design. Methods and applications. Marcel Dekker, New YorkGoogle Scholar
  144. 144.
    Karelson M, Maran U, Wang Y, Katritzky AR (2000) Coll Czech Chem Commun 64:1551Google Scholar
  145. 145.
    Jurs PC (1996) Computer software applications in chemistry, 2nd edn. Wiley, New YorkGoogle Scholar
  146. 146.
    Zupan J, Gasteiger J (1999) Neural networks in chemistry and drug design. Wiley, WeinheimGoogle Scholar
  147. 147.
    Devillers J (1996) Neural networks in QSAR and drug design. Academic Press, LondonGoogle Scholar
  148. 148.
    Jorissen RN, Gilson MK (2005) J Chem Inf Model 45:549Google Scholar
  149. 149.
    Devillers J (1996) Genetic algorithms in molecular modeling. Academic Press, LondonGoogle Scholar
  150. 150.
    Goldberg DE (1989) Genetic algorithms in search, optimization and machine learning. Addison‐Wesley, ReadingzbMATHGoogle Scholar
  151. 151.
    Liu R, So SS (2001) J Chem Inf Comput Sci 41:1633Google Scholar
  152. 152.
    Gola J, Obrezanova O, Champness E, Segall M (2006) QSAR Comb Sci 25:1172Google Scholar
  153. 153.
    Katritzky AR, Kuanar M, Slavov S, Dobchev DA, Fara DC, Karelson M, Acree WE, Solov'ev VP, Varnek A (2006) Bioorg Med Chem 14:4888Google Scholar
  154. 154.
    Li H, Yap CW, Ung CY, Xue Y, Cao ZW, Chen YZ (2005) J Chem Inf Model 45:1376Google Scholar
  155. 155.
    Balaban AT, Catana C (1994) SAR QSAR Environm Res 2:1Google Scholar
  156. 156.
    Mekenyan O, Bonchev D, Balaban AT (1988) J Math Chem 2:347MathSciNetGoogle Scholar
  157. 157.
    Charton M (2003) J Comput‐Aided Mol Des 17:197; Charton M, Charton B (2003) J Comput‐Aided Mol Des 17:211Google Scholar
  158. 158.
    Mekenyan O, Pavlov T, Grancharov V, Todorov M, Schmieder P, Veith G (2005) J Chem Inf Model 45:283Google Scholar
  159. 159.
    Schultz HP, Schultz EB, Schultz TP (1995) J Chem Inf Comput Sci 35:864Google Scholar
  160. 160.
    Pyka A (1993) J Planar Chromatog Mod TLC 6:282Google Scholar
  161. 161.
    Pyka A (1997) J Serb Chem Soc 62:251; Gutman I, Pyka A, ibid. 261Google Scholar
  162. 162.
    Pyka A (1999) J Liq Chromatog Relat Technol 22:41Google Scholar
  163. 163.
    Randić M, Zupan J (2001) J Chem Inf Comput Sci 41:550 Google Scholar
  164. 164.
    Randić M, Balaban AT, Basak SC (2001) J Chem Inf Comput Sci 41:593Google Scholar
  165. 165.
    Labanowski JK, Motoc I, Dammkoehler RA (1991) Comput Chem 15:47Google Scholar
  166. 166.
    Bögel H, Dettman J, Randić M (1997) Croat Chem Acta 70:827Google Scholar
  167. 167.
    Stankevich IV, Skvortsova MI, Zefirov NS (1995) Theochem 342:173Google Scholar
  168. 168.
    Hosoya H, Gotoh M, Murajami M, Ikeda S (1999) J Chem Inf Comput Sci 39:192Google Scholar
  169. 169.
    Kier LB, Hall LB (1977) Eur J Med Chem Chim Ther 12:307Google Scholar
  170. 170.
    Estrada E (1999) Chem Phys Lett 312:556ADSGoogle Scholar
  171. 171.
    Skvortsova MI, Fedyaev KS, Palyulin VA, Zefirov NS (2003) Internet Electron J Mol Des 2:70Google Scholar
  172. 172.
    Skvortseva MI, Baskin II, Slovokhovotova OL, Palyulin VA, Zefirov NS (1993) J Chem Inf Comput Sci 33:630Google Scholar
  173. 173.
    Gordeeva EV, Molchanova MS, Zefirov NS (1990) Tetrahdron Comput Meth 3:389Google Scholar
  174. 174.
    Garcìa GC, Luque-Ruiz I, Gómez MA Doncel AC, Plaza AG (2005) J Chem Inf Model 45:231Google Scholar
  175. 175.
    Fink T, Bruggesser, Reymond J-L (2005) Angew Chem Int Ed Engl 44:1504Google Scholar
  176. 176.
    Bologa C, Allu TK, Olah M, Kappler MA, Oprea TI (2005) J Comput Aided Mol Des 19:625ADSGoogle Scholar
  177. 177.
    Balaban AT (2005) J Comput Aided Mol Des 19:651ADSGoogle Scholar
  178. 178.
    Clement OO, Güner OF (2005) J Comput Aided Mol Des 19:731Google Scholar
  179. 179.
    Faulon J-L, Brown WM, Martin S (2005) J Comput Aided Mol Des 19:637ADSGoogle Scholar
  180. 180.
    Varnek A, Fourches D, Hoonakker F, Solov'ev VP (2005) J Comput Aided Mol Des 19:693ADSGoogle Scholar
  181. 181.
    Filimonov D, Poroikov V (2005) J Comput Aided Mol Des 19:705ADSGoogle Scholar

Books and Reviews

  1. 182.
    Bohacek RS, McMartin C, Guida WC (1996) Med Res Revs 16:3Google Scholar
  2. 183.
    Bonchev D, Rouvray DH (eds) (2005) Complexity in chemistry, biology, and ecology. Springer, New YorkzbMATHGoogle Scholar
  3. 184.
    Bonchev D, Buck GA (2007) J Chem Inf Model 47:909Google Scholar
  4. 185.
    Estrada E, Uriarte E (2001) Curr Med Chem 8:1573Google Scholar
  5. 186.
    Diudea MV (ed) (2000) QSPR/QSAR studies by molecular descriptors. Nova Science Press, New YorkGoogle Scholar
  6. 187.
    Diudea MV, Florescu MS, Khadikar PV (2006) Molecular topology and its applications. Eficon, BucharestGoogle Scholar
  7. 188.
    Holtje HD, Sippl W (eds) (2001) Rational approach to drug design. Prous Sci, BarcelonaGoogle Scholar
  8. 189.
    Mannhold R, Kubinyi H, Timmermann H (eds) (1997) Molecular modeling. Methods and principles in medicinal chemistry, vol 5. VCH, WeinheimGoogle Scholar
  9. 190.
    Ooms F (2000) Curr Med Chem 7:141Google Scholar
  10. 191.
    Pogliani L (2000) Chem Rev 100:3827Google Scholar
  11. 192.
    Randić M (1998) In: Schleyer PvR et al (eds) Encyclopedia of computational chemistry, vol 5. Wiley, Chichester, p 3018Google Scholar
  12. 193.
    Richon AB, Young SS: An introduction of QSAR methodology. http://www.netsci.org/Science/Compchem/feature19.html
  13. 194.
    Snyder JP, Snyder FD (2000) In: Gundertofte K, Jørgensen FS (eds) Molecular modeling: prediction of bioactivity. Kluwer, New YorkGoogle Scholar
  14. 195.
    van de Waterbeemd H (1995) Chemometric methods in drug design. VCH, WeinheimGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Alexandru T. Balaban
    • 1
  1. 1.Texas A&M UniversityGalvestonUSA