Skip to main content

Drug Design, Molecular Descriptors in

  • Reference work entry
Encyclopedia of Complexity and Systems Science

Definition of the Subject

Empirical observations of association between chemical structures and their physical, chemical, or biological properties have a longhistory [1], but the real development of mathematical correlations started in the 20th century. Forphysico‐chemical properties, topological indices and their applications were first published by Wiener in 1947 followed soon by Platt and Hosoya, aswill be shown later. Quantitative structure‐activity relationships (QSARs) have 1962 as official birthdates with the connection between Hammettsubstituent constants, lipophilicity, and biological activities, as will be discussed below.

The huge development in analytical and synthetic methods, leading to combinatorial chemistry, high‐throughput screening, and virtual screening(ligand- or structure‐based) on one hand, and on the other hand to the progress in computational hardware and software that allows the processing ofmillions of virtual structure libraries, have made it possible to...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 3,499.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ADMET :

Absorption, distribution, metabolism, excretion, and toxicity, five factors which determine whether a compound with favorable features resulting from a computer‐assisted drug design will also be a useful medicinal drug.

Local vertex invariant (LOVI):

A number associated with a vertex of a molecular graph. It does not depend on the arbitrary numerical labeling of vertices.

Molecular descriptor:

A mathematical entity (either a number, or a set of numbers characterizing substituents or molecular fragments) associated with a chemical structure, allowing quantitative manipulations of such structures (correlations with properties, clustering, ordering or partial ordering, determination of similarity or dissimilarity). Constitutional isomerism is associated with topological indices or other two‐dimensional descriptors, whereas stereoisomerism requires three‐dimensional descriptors.

Molecular graph:

Constitutional chemical formula representing atoms by points (vertices) and covalent bonds by lines (edges). Hydrogen atoms are usually omitted (in hydrogen‐depleted graphs) and carbon atoms are not shown explicitly, but other atoms are assigned weights according to the nature of the heteroatom. Multiple bonds are shown explicitly in multigraphs.

Pharmacophore:

A set of chemical features that determine the biological activity.

Quantitative structure‐activity relationship (QSAR):

Mathematical correlation (e. g. a mono- or multi‐parametric equation) between a physical or a chemical property and molecular descriptor(s).

Receptor:

Physiological macromolecule (usually a protein, but sometimes DNA or RNA), also called target, to which a drug (ligand) binds.

Quantitative structure‐property relationship (QSPR):

Mathematical correlation (e. g. a mono- or multi‐parametric equation) between a biological property and molecular descriptor(s).

Quantitative structure‐toxicity relationship (QSTR ):

Mathematical correlation (e. g. a mono- or multi‐parametric equation) between toxicologic properties and molecular descriptor(s).

Topological index (TI) :

A number characterizing a molecular constitutional graph, resulting from mathematical operations on the LOVIs, or edges/vertices of the graph.

Bibliography

Primary Literature

  1. Devillers J, Balaban AT (eds) (1999) Topological indices and related descriptors in QSAR and QSPR. Gordon and Breach, Amsterdam

    Google Scholar 

  2. Templeton NS, Lasic DD (eds) (2000) Gene therapy. Therapeutical mechanisms and strategies. Marcel Dekker, New York

    Google Scholar 

  3. Ilies MA, Seitz WA, Hohnson BH, Ezell EL, Miller AL, Thompson EB, Balaban AT (2006) J Med Chem 49:3872

    Google Scholar 

  4. Kubinyi H (2002) Drug design course (free download from his home page www.kubinyi.de). See also “Why drugs fail” Herman Skolnik Award Lecture, ACS Meeting, San Francisco, September 2006 on that web page

  5. Maggiora GM (2006) J Chem Inf Model 46:1535

    Google Scholar 

  6. Balaban AT, Pompe M (2007) J Phys Chem 111:2448; erratum, ibid. 4871

    Google Scholar 

  7. Karelson M (2000) Molecular descriptors in QSAR/QSPR. Wiley, New York

    Google Scholar 

  8. Todeschini R, Consonni V (2000) Handbook of molecular descriptors. Wiley, Weinheim

    Google Scholar 

  9. Balaban AT (2000) Quantitative structure‐activity relationships and computational methods in drug discovery. In: Meyers RA (ed) Encyclopedia of analytical chemistry. Wiley, Chichester, p 7288

    Google Scholar 

  10. Randić M (1998) Topological indices. In: Schleyer PVR et al (eds) Encyclopedia of computational chemistry. Wiley, Chichester, p 3018

    Google Scholar 

  11. Kier LB, Hall LH (1986) Molecular connectivity in structure‐activity analysis. Research Studies Press, Letchworth

    Google Scholar 

  12. Kier LB, Hall LH (1976) Molecular connectivity in chemistry and drug research. Academic Press, New York

    Google Scholar 

  13. Kier LB, Hall LH (1999) Molecular structure description: the electrotopological state. Academic Press, San Diego

    Google Scholar 

  14. Bonchev D (1983) Information theoretic indices for characterization of chemical structure. Wiley, Chichester

    Google Scholar 

  15. Hammett LP (1940) Physical organic chemistry, 2nd edn, 1970. McGrawHill, New York

    Google Scholar 

  16. Hammett LP (1935) Chem Rev 17:125

    Google Scholar 

  17. Hansch C, Maloney PP, Fujita T, Muir RM (1962) Nature 194:258

    Google Scholar 

  18. Hansch C, Fujita T (1964) J Am Chem Soc 86:1616

    Google Scholar 

  19. Fujita T, Iwasa J, Hansch C (1964) J Am Chem Soc 86:5175

    Google Scholar 

  20. Hansch C (1969) Acc Chem Res 2:232

    Google Scholar 

  21. Hansch C, Leo A, Hoekman D (1995) Exploring QSAR, hydrophobic, electronic and steric constants. Am. Chem. Soc., Washington

    Google Scholar 

  22. Hansch C, Hoekman D, Gao H (1996) Chem Rev 96:1045

    Google Scholar 

  23. Hansch C, Gao H, Hoekman D (1998) In: Devillers J (ed) Comparative QSAR. Taylor and Francis, Washington, p 285

    Google Scholar 

  24. Hansch C, Leo A (1979) Substituent constants for correlation analysis in chemistry and biology. Wiley/Interscience, New York

    Google Scholar 

  25. Hansch C, Leo A (1995) Exploring QSAR: fundamentals and applications in chemistry and biology. Am. Chem. Soc., Washington

    Google Scholar 

  26. Kubinyi H (1993) QSAR: Hansch analysis and related approaches. VCH Publishers, Weinhim

    Google Scholar 

  27. Verloop A (1976) In: Ariëns EJ (ed) Drug design, vol 3. Academic, New York, p 133

    Google Scholar 

  28. Verloop A, Tipker J (1977) In: Buisman JAK (ed) Biological activity and chemical structure. Elsevier, Amsterdam, p 63

    Google Scholar 

  29. Verloop A, Tipker J (1977) In: Jerman‐Blazić D (ed) QSAR in drug design and toxicology, Hadzi D21–23. Elsevier, Amsterdam, p 97

    Google Scholar 

  30. Kubinyi H (1998) Quantitative structure‐activity relationships in drug design. In: Schleyer PVR et al (eds) Encyclopedia of computational chemistry. Wiley, Chichester, p 2309

    Google Scholar 

  31. Kubinyi H (2006) In: Sener EA, Yalcin I (eds) QSAR and molecular modeling in rational design of bioactive molecules. CADD Society, Ankara, p 30

    Google Scholar 

  32. Balaban AT (1976) (ed) Chemical applications of graph theory. Academic Press, London

    Google Scholar 

  33. Trinajstić N (1992) Chemical graph theory, 2nd edn. CRC Press, Boca Raton

    Google Scholar 

  34. Ivanciuc O, Balaban AT (1998) Graph theory in chemistry. In: Schleyer PVR et al (eds) Encyclopedia of computational chemistry. Wiley, Chichester, p 1169

    Google Scholar 

  35. Rouvray DH, Balaban AT (1979) In: Wilson RJ, Beineke LW (eds) Applications of graph theory. Academic Press, London, p 177

    Google Scholar 

  36. Balaban AT (1995) J Chem Inf Comput Sci 35:339

    Google Scholar 

  37. Ivanciuc O, Ivanciuc T, Diudea MV (1997) SAR QSAR Environ Res 7:63

    Google Scholar 

  38. Ivanciuc O, Ivanciuc T (1999) In: Devillers J, Balaban AT (eds) Topological indices and related descriptors in QSAR and QSPR. Gordon and Breach, Amsterdam

    Google Scholar 

  39. Janežič D, Miličević A, Nikolić S, Trinajstić N (2007) In: Gutman I (ed) Graph theoretical matrices in chemistry. University of Kragujevac (Serbia)

    Google Scholar 

  40. Wiener H (1947) J Am Chem Soc 69(17):2636

    Google Scholar 

  41. Hosoya H (1971) Bull Chem Soc Jpn 44:2332

    Google Scholar 

  42. Platt JR (1947) J Chem Phys 15:419

    ADS  Google Scholar 

  43. Platt JR (1952) J Phys Chem 56:151

    Google Scholar 

  44. Gordon M, Scantlebury GR (1967) J Chem Soc B:1

    Google Scholar 

  45. Gutman I, Ruscić B, Trinajstić N, Wilcox CF (1975) J Chem Phys 62:3399

    Google Scholar 

  46. Schultz HP, Schultz TP (1998) J Chem Inf Comput Sci 38:853

    Google Scholar 

  47. Balaban AT (1979) Theor Chim Acta 5:239

    MATH  Google Scholar 

  48. Bonchev D, Balaban AT, Mekenyan O (1980) J Chem Inf Comput Sci 20:106

    Google Scholar 

  49. Bonchev D, Mekenyan O, Balaban AT (1989) J Chem Inf Comput Sci 29:91

    Google Scholar 

  50. Bonchev D (1989) Theochem 185:155

    Google Scholar 

  51. Balaban AT, Bertelsen S, Basak SC (1994) MATCH Commun Math Comput Chem 30:55

    Google Scholar 

  52. Bonchev D (2001) J Mol Graphics Model 20:65

    Google Scholar 

  53. Randić M (1991) J Math Chem 7:155

    Google Scholar 

  54. Randić M (1975) J Am Chem Soc 97:6609

    Google Scholar 

  55. Kier LB, Hall LH (1976) J Pharm Sci 65:1806

    Google Scholar 

  56. Kier LB (1989) Quant Struct‐Act Relat 8:221

    Google Scholar 

  57. Kier LH, Hall LB (1999) In: Devillers J, Balaban AT (eds) Topological indices and related descriptors in QSAR and QSPR. Gordon and Breach, Amsterdam, pp 307, 455, 491

    Google Scholar 

  58. Bonchev D, Trinajstić N (1977) J Chem Phys 67:4517

    Google Scholar 

  59. Basak SC (1999) In: Devillers J, Balaban AT (eds) Topological indices and related descriptors in QSAR and QSPR. Gordon and Breach, Amsterdam, p 563

    Google Scholar 

  60. Raychaudhury C, Ray SK, Ghosh JJ, Roy AB, Basak SC (1984) J Comput Chem 5:581

    Google Scholar 

  61. Balaban AT, Balaban TS (1991) J Math Chem 8:383

    MathSciNet  Google Scholar 

  62. Balaban AT (1983) Pure Appl Chem 55:199

    Google Scholar 

  63. Balaban AT (1982) Chem Phys Lett 89:399

    MathSciNet  ADS  Google Scholar 

  64. Balaban AT, Ionescu‐Pallas N, Balaban TS (1985) MATCH Commun Math Comput Chem 17:121

    Google Scholar 

  65. Balaban AT (1986) MATCH Commun Math Comput Chem 21:115

    MathSciNet  Google Scholar 

  66. Ivanciuc O, Ivanciuc T, Balaban AT (1998) J Chem Inf Comput Sci 38:395

    Google Scholar 

  67. Balaban AT, Quintas LV (1983) MATCH Commun Math Comput Chem 14:213

    MathSciNet  MATH  Google Scholar 

  68. Lovasz L, Pelikan J (1973) Periodica Math Hung 3:175

    MathSciNet  MATH  Google Scholar 

  69. Medeleanu M, Balaban AT (1998) J Chem Inf Comput Sci 38:1038

    Google Scholar 

  70. Randić M, Vračko M, Novič M (2001) In: Diudea MV (ed) QSPR/QSAR studies by molecular descriptors. Nova Sci. Publ., Huntington, p 147

    Google Scholar 

  71. Plavsić D, Nikolić S, Trinajstić N, Mihalić Z (1993) J Math Chem 12:235

    Google Scholar 

  72. Ivanciuc O, Balaban TS, Balaban AT (1993) J Math Chem 12:309

    MathSciNet  Google Scholar 

  73. Khadikar PV, Deshpande NV, Kale PP, Dobrynin AA, Gutman I, Dömötör G (1995) J Chem Inf Comput Sci 35:547

    Google Scholar 

  74. Diudea MV, Minailiuc O, Balaban AT (1991) J Comput Chem 12:527

    MathSciNet  Google Scholar 

  75. Balaban AT, Diudea MV (1993) J Chem Inf Comput Sci 33:421

    Google Scholar 

  76. Diudea MV (1997) J Chem Inf Comput Sci 37:292–300

    Google Scholar 

  77. Diudea MV (1997) MATCH Commun Math Comput Chem 35:163

    MathSciNet  Google Scholar 

  78. Diudea MV, Vizitiu AE, Janežič D (2007) J Chem Inf Model 47:864

    Google Scholar 

  79. Rücker G, Rücker C (1993) J Chem Inf Comput Sci 33:683

    Google Scholar 

  80. Rücker G, Rücker C (1999) J Chem Inf Comput Sci 39:788

    Google Scholar 

  81. Rücker G, Rücker C (1994) J Chem Inf Comput Sci 34:534

    Google Scholar 

  82. Balaban AT, Beteringhe A, Constantinescu T, Filip PA, Ivanciuc O (2007) J Chem Inf Model 47:716; Vukičević D, Beteringe A, Constantinescu T, Pompe M, Balaban AT (2008) Chem Phys Lett 464:155

    Google Scholar 

  83. Filip PA, Balaban TS, Balaban AT (1987) J Math Chem 1:61

    MathSciNet  Google Scholar 

  84. Basak SC, Gute BD (2001) J Mol Graphics Model 20:95

    Google Scholar 

  85. Estrada E (2001) Chem Phys Lett 336:248

    ADS  Google Scholar 

  86. Estrada E (2003) J Phys Chem A 107:7482

    Google Scholar 

  87. Estrada E (2004) J Phys Chem A 108:5468

    Google Scholar 

  88. Matamala AR, Estrada E (2005) J Phys Chem A 109:9890

    Google Scholar 

  89. Matamala AR, Estrada E (2005) Chem Phys Lett 410:343

    ADS  Google Scholar 

  90. Estrada E, Matamala AR (2007) J Chem Inf Comput Sci 47:794

    Google Scholar 

  91. Estrada E, Gutierrez Y (2001) MATCH Commun Math Comput Chem 44:155

    MathSciNet  MATH  Google Scholar 

  92. Esterada E (2000) SAR QSAR Environ Des 11:55; Estrada E, Gutierrez Y, Gonzales H (2000) J Chem Inf Comput Sci 40:1386

    Google Scholar 

  93. Estrada E, Pena A, Garcia‐Domenech R (1998) J Comput‐Aided Mol Des 12:583

    Google Scholar 

  94. Estrada E, Quincoces JA, Patlewicz G (2004) Mol Divers 8:21

    Google Scholar 

  95. Randić M (1991) J Chem Inf Comput Sci 31:311

    Google Scholar 

  96. Randić M (1991) New J Chem 15:517

    Google Scholar 

  97. Randić M (2001) J Mol Graphics Model 20:19

    Google Scholar 

  98. Randić M, Pompe M (2001) J Chem Inf Comput Sci 41:573

    Google Scholar 

  99. Pompe M, Randić M (2006) J Chem Inf Comput Sci 46:2

    Google Scholar 

  100. Randic M, Pompe M (2007) Acta Chim Slov 54:605

    Google Scholar 

  101. Toropov AA, Toropova AP, Mukhamedzhnova DV, Gutman I (2005) Indian J Chem 44A:1545

    Google Scholar 

  102. Toropov AA, Benfenati E (2007) Comput Biol Chem 31:57

    MATH  Google Scholar 

  103. Toropov AA, Benfenati E (2007) Eur J Med Chem 42:606

    Google Scholar 

  104. Roy K, Toropov AA, Raska I Jr (2007) QSAR & Comp Sci 26:460

    Google Scholar 

  105. Gálvez J, Garcia R, Salabert MT, Soler R (1994) J Chem Inf Comput Sci 34:520

    Google Scholar 

  106. Gálvez J, de Julian‐Ortiz JV, Garcia‐Domenech R (2001) J Mol Graph Model 20:84

    Google Scholar 

  107. Grassy G, Calas B, Yasri A, Lahana R, Woo J, Iyer S, Kaczorek M, Floc'h R, Buelow R (1998) Nat Biotechnol 16:748

    Google Scholar 

  108. Gorse D, Lahana R (2000) Curr Opin Chem Biol 4:287; Gorse A-D (2006) Curr Top Med Chem 6:3; Iyer S, Lahana R, Buelow R (2002) Curr Pharm Des 8:2217; Gorse D, Rees A, Kaczorek M, Lahana R (1999) Drug Disc Today 4:257

    Google Scholar 

  109. Grassy G, Kaczorek M, Lahana R, Yasri A (2006) US Patent 7,024,311

    Google Scholar 

  110. Kubinyi H, Folkers G, Martin YC (eds) (1998) 3D QSAR in drug design: Ligand–protein interactions and molecular similarity, vols 9–11. Kluwer, Dordrecht

    Google Scholar 

  111. Balaban AT (ed) (1997) From chemical topology to three‐dimensional geometry. Plenum, New York

    Google Scholar 

  112. Balaban AT (1997) J Chem Inf Comput Sci 37:645

    Google Scholar 

  113. Kubinyi H, Folkers G, Martin YC (eds) (1998) 3D QSAR in drug design: Recent advances, vols. 12–14. Kluwer, Dordrecht

    Google Scholar 

  114. Cramer RD III, Patterson DE, Bunce JD (1988) J Am Chem Soc 110:5959

    Google Scholar 

  115. Cramer RD III, Patterson DE, Bunce JD (1989) In: Fauchère JL (ed) Quantitative structure‐activity relationships in drug design. Alan R Liss, New York, p 161

    Google Scholar 

  116. Cramer RD III, DePriest SA, Patterson DE, Hecht P (1993) In: Kubinyi H (ed) 3D QSAR in Drug Design: Theory, methods and applications. ESCOM, Leiden, p 583

    Google Scholar 

  117. Böhm M, Klebe G (2002) J Med Chem 45:1585

    Google Scholar 

  118. Martin YC, Kim KH, Lin CT (1996) In: Charton M (ed) Advances in quantitative structure‐activity relationships. JAI Press, Greenwich

    Google Scholar 

  119. Todeschini R, Lasagni M, Marengo E (1994) J Chemom 8:263

    Google Scholar 

  120. Todeschini R, Gramatica P, Marengo E, Provenzani R (1995) Chemom Intell Lab Syst 27:221

    Google Scholar 

  121. Todeschini R, Vighi M, Provenzani R, Finizio A, Gramatica P (1996) Chemosphere 32:1527

    Google Scholar 

  122. Todeschini R, Gramatica P (1997) Quant Struct‐Act Relat 16:113, 120

    Google Scholar 

  123. Todeschini R, Gramatica P (1997) SAR QSAR Environ Res 7:89

    Google Scholar 

  124. Gramatica P, Consonni V, Todeschini R (1999) Chemosphere 38:1371

    Google Scholar 

  125. Gramatica P, Corradi M, Consonni V (2000) Chemosphere 41:763

    Google Scholar 

  126. Ferguson AM, Heritage T, Jonathon P, Pack SE, Phillips L, Rogan J, Snaith PJ (1997) J Comp-Aided Mol Des 11:143

    Google Scholar 

  127. Fontaine F, Pastor M, Sanz F (2004) J Med Chem 47:2805

    Google Scholar 

  128. Johnson M, Maggiora GM (eds) (1990) Concepts and applications of molecular similarity. Wiley, New York; Maggiora GM, Shanmungasundaram V (2004) Methods Mol Biol 275:1

    Google Scholar 

  129. Horvath D, Mao B (2003) QSAR Comb Sci 22:498

    Google Scholar 

  130. Mezey PG (1993) Shape in chemistry. An introduction to molecular shape and topology. Wiley, New York

    Google Scholar 

  131. Carbo-Dorca R, Mezey PG (eds) (1998) Advances in molecular similarity, vol 2. JAI Press, Stamford

    Google Scholar 

  132. Karelson M, Lobanov VS, Katritzky AR (1996) Chem Rev 96:1027

    Google Scholar 

  133. Zyrianov Y (2005) J Chem Inf Model 45:657

    Google Scholar 

  134. Burden FR (1989) J Chem Inf Comput Sci 29:225

    Google Scholar 

  135. Basak SC, Balaban AT, Grunwald G, Gute BD (2000) J Chem Inf Comput Sci 40:891; Basak SC, Gute BD, Balaban AT (2004) Croat Chem Acta 77:331

    Google Scholar 

  136. Basak SC, Gute BD, Mills D (2006) Arkivoc ix:157

    Google Scholar 

  137. Bertz SH (1988) Discret Appl Math 19:65

    MathSciNet  MATH  Google Scholar 

  138. Balaban AT (2002) In: Rouvray DH, King RB (eds) Topology in chemistry: Discrete mathematics of molecules. Horwood Publishing Ltd., Chichester, p 89

    Google Scholar 

  139. Ivanciuc O, Ivamciuc T, Cabrol‐Bass D, Balaban AT (2000) MATCH Commun Math Comput Chem 42:155

    Google Scholar 

  140. Balaban AT (2002) MATCH Commun Math Comput Chem 45:5

    Google Scholar 

  141. Basak SC, Mills D, Mumtaz MM, Balasubramanian K (2003) Indian J Chem 42A:1385; Basak SC, Mills D, Balaban AT, Gute BD (2001) J Chem Inf Comput Sci 41:671

    Google Scholar 

  142. Katritzky AR, Lobanov VS, Karelson M (1995) Chem Soc Rev 24:279

    Google Scholar 

  143. Perun TJ, Propst CL (1989) Computer‐aided drug design. Methods and applications. Marcel Dekker, New York

    Google Scholar 

  144. Karelson M, Maran U, Wang Y, Katritzky AR (2000) Coll Czech Chem Commun 64:1551

    Google Scholar 

  145. Jurs PC (1996) Computer software applications in chemistry, 2nd edn. Wiley, New York

    Google Scholar 

  146. Zupan J, Gasteiger J (1999) Neural networks in chemistry and drug design. Wiley, Weinheim

    Google Scholar 

  147. Devillers J (1996) Neural networks in QSAR and drug design. Academic Press, London

    Google Scholar 

  148. Jorissen RN, Gilson MK (2005) J Chem Inf Model 45:549

    Google Scholar 

  149. Devillers J (1996) Genetic algorithms in molecular modeling. Academic Press, London

    Google Scholar 

  150. Goldberg DE (1989) Genetic algorithms in search, optimization and machine learning. Addison‐Wesley, Reading

    MATH  Google Scholar 

  151. Liu R, So SS (2001) J Chem Inf Comput Sci 41:1633

    Google Scholar 

  152. Gola J, Obrezanova O, Champness E, Segall M (2006) QSAR Comb Sci 25:1172

    Google Scholar 

  153. Katritzky AR, Kuanar M, Slavov S, Dobchev DA, Fara DC, Karelson M, Acree WE, Solov'ev VP, Varnek A (2006) Bioorg Med Chem 14:4888

    Google Scholar 

  154. Li H, Yap CW, Ung CY, Xue Y, Cao ZW, Chen YZ (2005) J Chem Inf Model 45:1376

    Google Scholar 

  155. Balaban AT, Catana C (1994) SAR QSAR Environm Res 2:1

    Google Scholar 

  156. Mekenyan O, Bonchev D, Balaban AT (1988) J Math Chem 2:347

    MathSciNet  Google Scholar 

  157. Charton M (2003) J Comput‐Aided Mol Des 17:197; Charton M, Charton B (2003) J Comput‐Aided Mol Des 17:211

    Google Scholar 

  158. Mekenyan O, Pavlov T, Grancharov V, Todorov M, Schmieder P, Veith G (2005) J Chem Inf Model 45:283

    Google Scholar 

  159. Schultz HP, Schultz EB, Schultz TP (1995) J Chem Inf Comput Sci 35:864

    Google Scholar 

  160. Pyka A (1993) J Planar Chromatog Mod TLC 6:282

    Google Scholar 

  161. Pyka A (1997) J Serb Chem Soc 62:251; Gutman I, Pyka A, ibid. 261

    Google Scholar 

  162. Pyka A (1999) J Liq Chromatog Relat Technol 22:41

    Google Scholar 

  163. Randić M, Zupan J (2001) J Chem Inf Comput Sci 41:550

    Google Scholar 

  164. Randić M, Balaban AT, Basak SC (2001) J Chem Inf Comput Sci 41:593

    Google Scholar 

  165. Labanowski JK, Motoc I, Dammkoehler RA (1991) Comput Chem 15:47

    Google Scholar 

  166. Bögel H, Dettman J, Randić M (1997) Croat Chem Acta 70:827

    Google Scholar 

  167. Stankevich IV, Skvortsova MI, Zefirov NS (1995) Theochem 342:173

    Google Scholar 

  168. Hosoya H, Gotoh M, Murajami M, Ikeda S (1999) J Chem Inf Comput Sci 39:192

    Google Scholar 

  169. Kier LB, Hall LB (1977) Eur J Med Chem Chim Ther 12:307

    Google Scholar 

  170. Estrada E (1999) Chem Phys Lett 312:556

    ADS  Google Scholar 

  171. Skvortsova MI, Fedyaev KS, Palyulin VA, Zefirov NS (2003) Internet Electron J Mol Des 2:70

    Google Scholar 

  172. Skvortseva MI, Baskin II, Slovokhovotova OL, Palyulin VA, Zefirov NS (1993) J Chem Inf Comput Sci 33:630

    Google Scholar 

  173. Gordeeva EV, Molchanova MS, Zefirov NS (1990) Tetrahdron Comput Meth 3:389

    Google Scholar 

  174. Garcìa GC, Luque-Ruiz I, Gómez MA Doncel AC, Plaza AG (2005) J Chem Inf Model 45:231

    Google Scholar 

  175. Fink T, Bruggesser, Reymond J-L (2005) Angew Chem Int Ed Engl 44:1504

    Google Scholar 

  176. Bologa C, Allu TK, Olah M, Kappler MA, Oprea TI (2005) J Comput Aided Mol Des 19:625

    ADS  Google Scholar 

  177. Balaban AT (2005) J Comput Aided Mol Des 19:651

    ADS  Google Scholar 

  178. Clement OO, Güner OF (2005) J Comput Aided Mol Des 19:731

    Google Scholar 

  179. Faulon J-L, Brown WM, Martin S (2005) J Comput Aided Mol Des 19:637

    ADS  Google Scholar 

  180. Varnek A, Fourches D, Hoonakker F, Solov'ev VP (2005) J Comput Aided Mol Des 19:693

    ADS  Google Scholar 

  181. Filimonov D, Poroikov V (2005) J Comput Aided Mol Des 19:705

    ADS  Google Scholar 

Books and Reviews

  1. Bohacek RS, McMartin C, Guida WC (1996) Med Res Revs 16:3

    Google Scholar 

  2. Bonchev D, Rouvray DH (eds) (2005) Complexity in chemistry, biology, and ecology. Springer, New York

    MATH  Google Scholar 

  3. Bonchev D, Buck GA (2007) J Chem Inf Model 47:909

    Google Scholar 

  4. Estrada E, Uriarte E (2001) Curr Med Chem 8:1573

    Google Scholar 

  5. Diudea MV (ed) (2000) QSPR/QSAR studies by molecular descriptors. Nova Science Press, New York

    Google Scholar 

  6. Diudea MV, Florescu MS, Khadikar PV (2006) Molecular topology and its applications. Eficon, Bucharest

    Google Scholar 

  7. Holtje HD, Sippl W (eds) (2001) Rational approach to drug design. Prous Sci, Barcelona

    Google Scholar 

  8. Mannhold R, Kubinyi H, Timmermann H (eds) (1997) Molecular modeling. Methods and principles in medicinal chemistry, vol 5. VCH, Weinheim

    Google Scholar 

  9. Ooms F (2000) Curr Med Chem 7:141

    Google Scholar 

  10. Pogliani L (2000) Chem Rev 100:3827

    Google Scholar 

  11. Randić M (1998) In: Schleyer PvR et al (eds) Encyclopedia of computational chemistry, vol 5. Wiley, Chichester, p 3018

    Google Scholar 

  12. Richon AB, Young SS: An introduction of QSAR methodology. http://www.netsci.org/Science/Compchem/feature19.html

  13. Snyder JP, Snyder FD (2000) In: Gundertofte K, Jørgensen FS (eds) Molecular modeling: prediction of bioactivity. Kluwer, New York

    Google Scholar 

  14. van de Waterbeemd H (1995) Chemometric methods in drug design. VCH, Weinheim

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag

About this entry

Cite this entry

Balaban, A.T. (2009). Drug Design, Molecular Descriptors in. In: Meyers, R. (eds) Encyclopedia of Complexity and Systems Science. Springer, New York, NY. https://doi.org/10.1007/978-0-387-30440-3_136

Download citation

Publish with us

Policies and ethics