Encyclopedia of Complexity and Systems Science

2009 Edition
| Editors: Robert A. Meyers (Editor-in-Chief)

Drug Design with Artificial Neural Networks

  • Ovidiu Ivanciuc
Reference work entry
DOI: https://doi.org/10.1007/978-0-387-30440-3_134

Definition of the Subject

The fundamental hypothesis of the structure‐property models is that thestructural features of molecules determine the physical, chemical and biological properties of chemical compounds. The first studies that usestructure‐activity relationships to explain the biological properties of sets of compounds were published by Kopp [74], Crum-Brown and Frazer [18], Meyer [88], and Overton [97]. Modernstructure‐activity relationships (SAR) and quantitativestructure‐activity relationships (QSAR) models are based on theHansch model that predicts a biological property as a statistical correlation with steric, electronic, and hydrophobicindices [27,35,36,37]. The Hansch model shaped the general scene ofstructure‐activity correlations, and almost all subsequent SAR and QSAR models are variations that extend the Hansch model with novel classes ofdescriptors or with more powerful statistical models, such as partial least squares (PLS), artificial neural networks (ANN),...

This is a preview of subscription content, log in to check access.


  1. 1.
    Adams CP, Brantner VV (2006) Estimating the cost of new drug development: is itreally 802 million dollars? Health Aff 25:420–428Google Scholar
  2. 2.
    Agrafiotis DK, Cedeño W (2002) Feature selection for structure‐activitycorrelation using binary particle swarms. J Med Chem 45:1098–1107Google Scholar
  3. 3.
    Anzali S, Gasteiger J, Holzgrabe U, Polanski J, Sadowski J, Teckentrup A,Wagener M (1998) The use of self‐organizing neural networks in drug design. Perspect Drug Discov Design9–11:273–299Google Scholar
  4. 4.
    Balaban AT, Ivanciuc O (1999) Historical development of topological indices. In:Devillers J, Balaban AT (eds) Topological Indices and Related Descriptors in QSAR and QSPR. Gordon and Breach Science Publishers, Amsterdam,pp 21–57Google Scholar
  5. 5.
    Baldi P, Pollastri G (2004) The principled design of large-scale recursiveneural network architectures‐DAG-RNNs and the protein structure prediction problem. J Mach Learn Res 4:575–602zbMATHGoogle Scholar
  6. 6.
    Basak SC, Grunwald GD, Host GE, Niemi GJ, Bradbury SP (1998) A comparativestudy of molecular similarity, statistical, and neural methods for predicting toxic modes of action. Environ Toxicol Chem17:1056–1064Google Scholar
  7. 7.
    Baskin II, Palyulin VA, Zefirov NS (1997) A neural device for searchingdirect correlations between structures and properties of chemical compounds. J Chem Inf Comput Sci 37:715–721Google Scholar
  8. 8.
    Bernazzani L, Duce C, Micheli A, Mollica V, Sperduti A, Starita A, Tiné MR(2006) Predicting physical‐chemical properties of compounds from molecular structures by recursive neural networks. J Chem Inf Model46:2030–2042Google Scholar
  9. 9.
    Berndt ER, Gottschalk AHB, Strobeck MW (2005) Opportunities for improving thedrug development process: Results from a survey of industry and the FDA. National Bureau of Economic Research Workshop on Innovation Policy and theEconomy, NBER Working Paper No 11425, Washington, DCGoogle Scholar
  10. 10.
    Bishop CM (1996) Neural Networks for Pattern Recognition. Oxford UniversityPress, Oxford, 504 ppzbMATHGoogle Scholar
  11. 11.
    Boiani M, Cerecetto H, M González, Gasteiger J (2008) Modelinganti‐Trypanosoma cruzi activity of N‑oxide containing heterocycles, J Chem Inf Model48:213–219Google Scholar
  12. 12.
    Bonchev D (1983) Information Theoretic Indices for Characterization ofChemical Structure. Research Studies Press, ChichesterGoogle Scholar
  13. 13.
    Bonchev D, Rouvray DH (eds) (1991) Chemical Graph Theory. Introduction andFundamentals. Abacus Press/Gordon & Breach Science Publishers, New YorkzbMATHGoogle Scholar
  14. 14.
    Bruneau P, McElroy NR (2006) logD \( { _{7.4} } \)Modeling using Bayesian regularized neural networks. Assessment and correction of the errors of prediction. J Chem Inf Model46:1379–1387Google Scholar
  15. 15.
    Bulsari AB (1995) Neural Networks for Chemical Engineers. Elsevier, Amsterdam,609 ppGoogle Scholar
  16. 16.
    Caballero J, Tundidor‐Camba A, Fernández M (2007) Modeling of theinhibition constant (K i) of some cruzain ketone‐basedinhibitors using 2D spatial autocorrelation vectors and data‐diverse ensembles of Bayesian‐regularized genetic neural networks. QSAR Comb Sci26:27–40Google Scholar
  17. 17.
    Choi S (2003) Nefazodone (Serzone) withdrawn because of hepatotoxicity. CanMed Assoc J 169:1187–1187Google Scholar
  18. 18.
    Crum-Brown A, Frazer T (1868–1869) On the connection between chemicalconstitution and physiological action. Part 1. On the physiological action of the ammonium bases, derived from Strychia, Brucia, Thebaia, Codeia, Morphiaand Nicotia. Trans Royal Soc Edinburgh 25:257–274Google Scholar
  19. 19.
    Cruz JA, Wishart DS (2006) Applications of machine learning in cancerprediction and prognosis. Cancer Inform 2:59–78Google Scholar
  20. 20.
    DiMasi JA (2002) The value of improving the productivity of the drugdevelopment process: faster times and better decisions. Pharmacoeconomics 20(S3):1–10Google Scholar
  21. 21.
    DiMasi JA, Hansen RW, Grabowski HG (2003) The price of innovation: newestimates of drug development costs. J Health Econ 22:151–185Google Scholar
  22. 22.
    Dieppe PA, Ebrahim S, Martin RM, Jüni P (2004) Lessons from the withdrawal ofrofecoxib. Br Med J 329:867–868Google Scholar
  23. 23.
    Duce C, Micheli A, Solaro R, Starita A, Tiné MR (2006) Prediction ofchemical‐physical properties by neural networks for structures. Macromol Symp 234:13–19Google Scholar
  24. 24.
    Duce C, Micheli A, Starita A, Tiné MR, Solaro R (2006) Prediction of polymerproperties from their structure by recursive neural networks. Macromol Rapid Commun 27:711–715Google Scholar
  25. 25.
    Faich GA, Moseley RH (2001) Troglitazone (Rezulin) and hepaticinjury. Pharmacoepidemiol Drug Saf 10:537–547Google Scholar
  26. 26.
    Filter M, Eichler‐Mertens M, Bredenbeck A, Losch FO, Sharav T, GivehchiA, Walden P, Wrede P (2006) A strategy for the identification of canonical and non‐canonical MHC I‑binding epitopes using an ANN-basedepitope prediction algorithm. QSAR Comb Sci 25:350–358Google Scholar
  27. 27.
    Fujita T, Iwasa J, Hansch C (1964) A new substituent constant, π,derived from partition coefficients. J Am Chem Soc 86:5175–5180Google Scholar
  28. 28.
    Furberg CD, Pitt B (2001) Withdrawal of cerivastatin from the worldmarket. Curr Control Trials Cardivasc Med 2:205–207Google Scholar
  29. 29.
    Ghafourian T, Cronin MTD (2006) The effect of variable selection on thenon‐linear modelling of oestrogen receptor binding. QSAR Comb Sci 25:824–835Google Scholar
  30. 30.
    Gini G, Craciun MV, König C, Benfenati E (2004) Combining unsupervised andsupervised artificial neural networks to predict aquatic toxicity. J Chem Inf Comput Sci 44:1897–1902Google Scholar
  31. 31.
    Gleeson MP, Waters NJ, Paine SW, Davis AM (2006) In silico human and ratV ss quantitative structure‐activity relationshipmodels. J Med Chem 49:1953–1963Google Scholar
  32. 32.
    Goulon‐Sigwalt‐Abram A, Duprat A, Dreyfus G (2005) From Hopfieldnets to recursive networks to graph machines: Numerical machine learning for structured data. Theor Comput Sci344:298–334Google Scholar
  33. 33.
    Hall LH, Story CT (1996) Boiling point and critical temperature ofa heterogeneous data set: QSAR with atom type electrotopological state indices using artificial neural networks. J Chem InfComput Sci 36:1004–1014Google Scholar
  34. 34.
    Hall LH, Story CT (1997) Boiling point of a set of alkanes, alcohols andchloroalkanes: QSAR with atom type electrotopological state indices using artificial neural networks. SAR QSAR Environ Res6:139–161Google Scholar
  35. 35.
    Hansch C (1969) A quantitative approach to biochemicalstructure‐activity relationships. Acc Chem Res 2:232–239Google Scholar
  36. 36.
    Hansch C, Fujita T (1964) \( { \rho -\sigma -\pi } \) analysis. A method for the correlation of biological activityand chemical structure. J Am Chem Soc 86:1616–1626Google Scholar
  37. 37.
    Hansch C, Maloney PP, Fujita T, Muir RM (1962) Correlation of biologicalactivity of phenoxyacetic acids with Hammett substituent constants and partition coefficients. Nature 194:178–180ADSGoogle Scholar
  38. 38.
    He L, Jurs PC, Kreatsoulas C, Custer LL, Durham SK, Pearl GM (2005)Probabilistic neural network multiple classifier system for predicting the genotoxicity of quinolone and quinoline derivatives. Chem Res Toxicol18:428–440Google Scholar
  39. 39.
    Hecht‐Nielsen R (1987) Counterpropagation networks. Appl Optics26:4979–4984Google Scholar
  40. 40.
    Hecht‐Nielsen R (1988) Applications of counterpropagationnetworks. Neural Netw 1:131–139Google Scholar
  41. 41.
    Hecht‐Nielsen R (1990) Neurocomputing, Addison‐Wesley,ReadingGoogle Scholar
  42. 42.
    Hogan V (2000) Pemoline (Cylert): market withdrawal. Can Med Assoc J162:106–106Google Scholar
  43. 43.
    Hopfield JJ (1982) Neural networks and physical systems with emergentcollective computational abilities. Proc Natl Acad Sci USA 79:2554–2558MathSciNetADSGoogle Scholar
  44. 44.
    Hristozov D, Da Costa FB, Gasteiger J (2007) Sesquiterpenelactones‐based classification of the family Asteraceae using neural networks and k‑nearestneighbors. J Chem Inf Model 47:9–19Google Scholar
  45. 45.
    Huuskonen J (2003) QSAR modeling with the electrotopological state indices:Predicting the toxicity of organic chemicals. Chemosphere 50:949–953Google Scholar
  46. 46.
    Huuskonen J, Rantanen J, Livingstone D (2000) Prediction of aqueous solubilityfor a diverse set of organic compounds based on atom-type electrotopological state indices. Eur J Med Chem35:1081–1088Google Scholar
  47. 47.
    Ivanciuc O (1998) Artificial neural networks applications, Part 9. MolNetprediction of alkane boiling points. Rev Roum Chim 43:885–894Google Scholar
  48. 48.
    Ivanciuc O (1999) Artificial neural networks applications. Part 11. MolNetprediction of alkane densities. Rev Roum Chim 44:619–631Google Scholar
  49. 49.
    Ivanciuc O (1999) Molecular graph descriptors used in neural networkmodels. In: Devillers J, Balaban AT (eds) Topological Indices and Related Descriptors in QSAR and QSPR. Gordon and Breach Science Publishers, Amsterdam,pp 697–777Google Scholar
  50. 50.
    Ivanciuc O (1999) The neural network MolNet prediction of alkane enthalpies.Anal Chim Acta 384:271–284Google Scholar
  51. 51.
    Ivanciuc O (2000) Artificial neural networks applications. Part 12. Theprediction of alkane heat capacities with the MolNet neural network. Rev Roum Chim 45:391–403Google Scholar
  52. 52.
    Ivanciuc O (2001) New neural networks for structure‐property models. In:Diudea MV (ed) QSPR/QSAR Studies by Molecular Descriptors. Nova Science Publishers, Huntington, pp 213–231Google Scholar
  53. 53.
    Ivanciuc O (2003) Aquatic toxicity prediction for polar and nonpolar narcoticpollutants with support vector machines. Internet Electron J Mol Des 2:195–208Google Scholar
  54. 54.
    Ivanciuc O (2003) Graph theory in chemistry. In: Gasteiger J (ed) Handbook ofChemoinformatics, vol 1. Wiley-VCH, Weinheim, pp 103–138Google Scholar
  55. 55.
    Ivanciuc O (2003) Topological indices. In: Gasteiger J (ed) Handbook ofChemoinformatics, vol 3. Wiley-VCH, Weinheim, pp 981–1003Google Scholar
  56. 56.
    Ivanciuc O, Rabine J-P, Cabrol DB, Panaye A, Doucet JP (1996)13C NMR chemical shift prediction of sp2 carbon atoms in acyclic alkenes using neural networks. J Chem Inf Comput Sci 36:644–653Google Scholar
  57. 57.
    Ivanciuc O, Rabine J-P, Cabrol DB, Panaye A, Doucet JP (1997)13C NMR chemical shift prediction of the sp3 carbon atoms in the α position relative tothe double bond in acyclic alkenes. J Chem Inf Comput Sci 37:587–598Google Scholar
  58. 58.
    Izrailev S, Agrafiotis DK (2002) Variable selection for QSAR by artificial antcolony systems. SAR QSAR Environ Res 13:417–423Google Scholar
  59. 59.
    Jezierska A, Vračko M, Basak SC (2004) Counter‐propagationartificial neural networks as a tool for the independent variable selection: Structure‐mutagenicity study on aromatic amines. Mol Divers8:371–377Google Scholar
  60. 60.
    Jurs P (2003) Quantitative structure‐property relationships. In:Gasteiger J (ed) Handbook of Chemoinformatics, vol 3. Wiley-VCH, Weinheim, pp 1314–1335Google Scholar
  61. 61.
    Kaiser KLE (2003) The use of neural networks in QSARs for acute aquatictoxicological endpoints. J Mol Struct (Theochem) 622:85–95ADSGoogle Scholar
  62. 62.
    Katritzky AR, Pacureanu LM, Dobchev DA, Fara DC, Duchowicz PR, Karelson M(2006) QSAR modeling of the inhibition of glycogen synthase kinase-3. Bioorg Med Chem 14:4987–5002Google Scholar
  63. 63.
    Keyhani S, Diener‐West M, Powe N (2006) Are development times forpharmaceuticals increasing or decreasing? Health Aff 25:461–468Google Scholar
  64. 64.
    Khan J, Wei JS, Ringnér M, Saal LH, Ladanyi M, Westermann F, Berthold F,Schwab M, Antonescu CR, Peterson C, Meltzer PS (2001) Classification and diagnostic prediction of cancers using gene expression profiling and artificialneural networks. Nature Med 7:673–679Google Scholar
  65. 65.
    Kier LB, Hall LH (1976) Molecular Connectivity in Chemistry and DrugResearch. Academic Press, New YorkGoogle Scholar
  66. 66.
    Kier LB, Hall LH (1986) Molecular Connectivity in Structure‐ActivityAnalysis. Research Studies Press, LetchworthGoogle Scholar
  67. 67.
    Kier LB, Hall LH (1999) Molecular Structure Description. TheElectrotopological State. Academic Press, San DiegoGoogle Scholar
  68. 68.
    Kim H-J, Choo H, Cho YS, Koh HY, No KT, Pae AN (2006) Classification ofdopamine, serotonin, and dual antagonists by decision trees. Bioorg Med Chem 14:2763–2770Google Scholar
  69. 69.
    Kireev DB (1995) ChemNet: A novel neural network based method forgraph/property mapping. J Chem Inf Comput Sci 35:175–180Google Scholar
  70. 70.
    Ko D, Xu W, Windle B (2005) Gene function classification using NCI-60 cellline gene expression profiles. Comput Biol Chem 29:412–419zbMATHGoogle Scholar
  71. 71.
    Kohonen T (1989) Self‐Organization and Associative Memory, 3edn. Springer, BerlinGoogle Scholar
  72. 72.
    Kohonen T (1995) Self‐Organizing Maps. Springer,BerlinGoogle Scholar
  73. 73.
    Kola I, Landis J (2004) Can the pharmaceutical industry reduce attritionrates? Nat. Rev. Drug Discov 3:711–715Google Scholar
  74. 74.
    Kopp H (1844) Ueber den Zusammenhang zwischen der chemischen Constitution undeinigen physikalischen Eigen‐schaften bei flüssigen Verbindungen. Ann Chem Pharm 50:71–144Google Scholar
  75. 75.
    Kozioł J (2002) Neural network modeling of melting temperatures forsulfur‐containing organic compounds. Internet Electron J Mol Des 1:80–93Google Scholar
  76. 76.
    Lasser KE, Allen PD, Woolhandler SJ, Himmelstein DU, Wolfe SN, Bor DH (2002)Timing of new black box warnings and withdrawals for prescription medications. J Am Med Assoc 287:2215–2220Google Scholar
  77. 77.
    Li H, Ung CY, Yap CW, Xue Y, Li ZR, Cao ZW, Chen YZ (2005) Prediction ofgenotoxicity of chemical compounds by statistical learning methods. Chem Res Toxicol 18:1071–1080Google Scholar
  78. 78.
    Li H, Ung CY, Yap CW, Xue Y, Li ZR, Chen YZ (2006) Prediction of estrogenreceptor agonists and characterization of associated molecular descriptors by statistical learning methods. J Mol Graph Modell25:313–323Google Scholar
  79. 79.
    Li H, Yap CW, Ung CY, Xue Y, Cao ZW, Chen YZ (2005) Effect of selection ofmolecular descriptors on the prediction of blood-brain barrier penetrating and nonpenetrating agents by statistical learning methods. J Chem Inf Model45:1376–1384Google Scholar
  80. 80.
    Lin HH, Han LY, Yap CW, Xue Y, Liu XH, Zhu F, Chen YZ (2007) Prediction offactor Xa inhibitors by machine learning methods. J Mol Graph Modell 26:505–518Google Scholar
  81. 81.
    Lohninger H (1993) Evaluation of neural networks based on radial basisfunctions and their application to the prediction of boiling points from structural parameters. J Chem Inf Comput Sci33:736–744Google Scholar
  82. 82.
    Lü WJ, Chen YL, Ma WP, Zhang XY, Luan F, Liu MC, Chen XG, Hu ZD (2008) QSARstudy of neuraminidase inhibitors based on heuristic method and radial basis function network. Eur J Med Chem43:569–576Google Scholar
  83. 83.
    Mazurek S, Ward TR, Novič M (2007) Counter propagation artificial neuralnetworks modeling of an enantioselectivity of artificial metalloenzymes. Mol Divers 11:141–152Google Scholar
  84. 84.
    McCulloch WS, Pitts WH (1943) A logical calculus of the ideas immanent innervous activity. Bull Math Biophys 7:115–133MathSciNetGoogle Scholar
  85. 85.
    Meissner M, Schmuker M, Schneider G (2006) Optimized Particle SwarmOptimization (OPSO) and its application to artificial neural network training. BMC Bioinformatics 7:125Google Scholar
  86. 86.
    Melagraki G, Afantitis A, Makridima K, Sarimveis H, Igglessi‐MarkopoulouO (2006) Prediction of toxicity using a novel RBF neural network training methodology. J Mol Model 12:297–305Google Scholar
  87. 87.
    Melagraki G, Afantitis A, Sarimveis H, Igglessi‐Markopoulou O,Alexandridis A (2006) A novel RBF neural network training methodology to predict toxicity to Vibrio fischeri. Mol Divers10:213–221Google Scholar
  88. 88.
    MeyerH (1899) Zur Theorie der Alkoholnarkose, welche Eigenschaft der Anästhetica bedingt ihre narkotische Wirkung. Arch Exp Pathol Pharmakol42:109–118Google Scholar
  89. 89.
    Micheli A, Portera F, Sperduti A (2005) A preliminary empiricalcomparison of recursive neural networks and tree kernel methods on regression tasks for tree structured domains. Neurocomputing64:73–92Google Scholar
  90. 90.
    Micheli A, Sperduti A, Starita A (2007) An introduction to recursive neuralnetworks and kernel methods for cheminformatics. Curr Pharm Design 13:1469–1495Google Scholar
  91. 91.
    Micheli A, Sperduti A, Starita A, Bianucci AM (2001) Analysis of the internalrepresentations developed by neural networks for structures applied to quantitative structure‐activity relationship studies of benzodiazepines. J Chem Inf Comput Sci 41:202–218Google Scholar
  92. 92.
    Minsky ML, Papert SA (1969) Perceptrons. MIT Press,CambridgezbMATHGoogle Scholar
  93. 93.
    Moody J, Darken CJ (1989) Fast learning in networks of locally‐tunedprocessing units. Neural Comput 1:281–294Google Scholar
  94. 94.
    Muresan S, Sadowski J (2005) “In-house likeness”: Comparison oflarge compound collections using artificial neural networks. J Chem Inf Model 45:888–893Google Scholar
  95. 95.
    Niwa T (2003) Using general regression and probabilistic neural networks topredict human intestinal absorption with topological descriptors derived from two‐dimensional chemical structures. J Chem Inf Comput Sci43:113–119Google Scholar
  96. 96.
    Niwa T (2004) Prediction of biological targets using probabilistic neuralnetworks and atom-type descriptors. J Med Chem 47:2645–2650Google Scholar
  97. 97.
    Overton CE (1901) Studien über die Narkose. Zugleich ein Beitrag zurAllgemeinen Pharmakologie. Gustav Fisher Verlag, JenaGoogle Scholar
  98. 98.
    Papa E, Villa F, Gramatica P (2005) Statistically validated QSARs, based ontheoretical descriptors, for modeling aquatic toxicity of organic chemicals in Pimephales promelas (fathead minnow). J Chem Inf Model45:1256–1266Google Scholar
  99. 99.
    Patankar SJ, Jurs PC (2002) Prediction of glycine/NMDA receptor antagonistinhibition from molecular structure. J Chem Inf Comput Sci 42:1053–1068Google Scholar
  100. 100.
    Patankar SJ, Jurs PC (2003) Classification of inhibitors of protein tyrosinephosphatase 1B using molecular structure based descriptors. J Chem Inf Comput Sci 43:885–899Google Scholar
  101. 101.
    Pitts WH, McCulloch WS (1947) How we know universals: The perception ofauditory and visual forms. Bull Math Biophys 9:127–147Google Scholar
  102. 102.
    Plewczynski D, Spieser SAH, Koch U (2006) Assessing different classificationmethods for virtual screening. J Chem Inf Model 46:1098–1106Google Scholar
  103. 103.
    Rabow AA, Shoemaker RH, Sausville EA, Covell DG (2002) Mining the NationalCancer Institute's tumor‐screening database: Identification of compounds with similar cellular activities. J Med Chem45:818–840Google Scholar
  104. 104.
    Ripley BD (2008) Pattern Recognition and Neural Networks. CambridgeUniversity Press, Cambridge, 416 ppzbMATHGoogle Scholar
  105. 105.
    Roche O, Trube G, Zuegge J, Pflimlin P, Alanine A, Schneider G (2002)A virtual screening method for prediction of the hERG potassium channel liability of compound libraries. Chem Bio Chem3:455–459Google Scholar
  106. 106.
    Rosenblatt F (1962) Principles of Neurodynamics: Perceptrons and the Theoryof Brain Mechanisms. Spartan Books, WashingtonzbMATHGoogle Scholar
  107. 107.
    Rumelhart DE, Hinton GE, Williams RJ (1986) Learning representations byback‐propagating errors. Nature 323:533–536ADSGoogle Scholar
  108. 108.
    Rumelhart DE, McClelland JL (eds) (1986) Parallel DistributedProcessing. MIT Press, Cambridge, 344 ppGoogle Scholar
  109. 109.
    Saxena AK, Schaper K-J (2006) QSAR analysis of the time- anddose‐dependent anti‐inflammatory in vivo activity of substituted imidazo[1:2-a]pyridines using artificialneural networks. QSAR Comb Sci 25:590–597Google Scholar
  110. 110.
    Seierstad M, Agrafiotis DK (2006) A QSAR model of hERG binding usinga large, diverse, and internally consistent training set. Chem Biol Drug Des 67:284–296Google Scholar
  111. 111.
    Selaru FM, Xu Y, Yin J, Zou T, Liu TC, Mori Y, Abraham JM, Sato F, Wang S,Twigg C, Olaru A, Shustova V, Leytin A, Hytiroglou P, Shibata D, Harpaz N, Meltzer SJ (2002) Artificial neural networks distinguish among subtypes ofneoplastic colorectal lesions. Gastroenterology 122:606–613Google Scholar
  112. 112.
    Shen Q, Jiang J-H, Jiao C-X, Lin W-Q, Shen G-L, Yu R-Q (2004) Hybridizedparticle swarm algorithm for adaptive structure training of multilayer feed‐forward neural network: QSAR studies of bioactivity of organiccompounds. J Comput Chem 25:1726–1735Google Scholar
  113. 113.
    Shen Q, Shi W-M, Yang X-P, Ye B-X (2006) Particle swarm algorithm trainedneural network for QSAR studies of inhibitors of platelet‐derived growth factor receptor phosphorylation. Eur J Pharm Sci28:369–376ADSGoogle Scholar
  114. 114.
    Siu F-M, Che C-M (2006) Quantitative structure‐activity (affinity)relationship (QSAR) study on protonation and cationization of α‑amino acids. J Phys Chem A 110:12348–12354Google Scholar
  115. 115.
    So S-S, Karplus M (1996) Evolutionary optimization in quantitativestructure‐activity relationship: An application of genetic neural networks. J Med Chem 39:1521–1530Google Scholar
  116. 116.
    So S-S, Karplus M (1996) Genetic neural networks for quantitativestructure‐activity relationships: Improvements and application of benzodiazepine affinity for benzodiazepine/GABAA receptors. J Med Chem 39:5246–5256Google Scholar
  117. 117.
    Spycher S, Nendza M, Gasteiger J (2004) Comparison of differentclassification methods applied to a mode of toxic action data set. QSAR Comb Sci 23:779–791Google Scholar
  118. 118.
    Spycher S, Pellegrini E, Gasteiger J (2005) Use of structure descriptors todiscriminate between modes of toxic action of phenols. J Chem Inf Model 45:200–208Google Scholar
  119. 119.
    Statnikov A, Aliferis CF, Tsamardinos I, Hardin D, Levy S (2005)A comprehensive evaluation of multicategory classification methods for microarray gene expression cancer diagnosis. Bioinformatics21:631–643Google Scholar
  120. 120.
    Sutherland JJ, O'Brien LA, Weaver DF (2004) A comparison of methods formodeling quantitative structure‐activity relationships. J Med Chem 47:5541–5554Google Scholar
  121. 121.
    Taskinen J, Yliruusi J (2003) Prediction of physicochemical properties basedon neural network modelling. Adv Drug Deliv Rev 55:1163–1183Google Scholar
  122. 122.
    Terfloth L, Gasteiger J (2001) Neural networks and genetic algorithms indrug design. Drug Discov Today 6:S102–S108Google Scholar
  123. 123.
    Tetko IV, Tanchuk VY, Villa AEP (2001) Prediction of n‑octanol/water partition coefficients from PHYSPROP database using artificial neural networks and E-state indices. J ChemInf Comput Sci 41:1407–1421Google Scholar
  124. 124.
    Todeschini R, Consonni V (2003) Descriptors from molecular geometry. In:Gasteiger J (ed) Handbook of Chemoinformatics, vol 3. Wiley-VCH, Weinheim, pp 1004–1033Google Scholar
  125. 125.
    Trinajstić N (1992) Chemical Graph Theory. CRC Press, BocaRatonGoogle Scholar
  126. 126.
    Varnek A, Kireeva N, Tetko IV, Baskin II, Solov'ev VP (2007) Exhaustive QSPRstudies of a large diverse set of ionic liquids: How accurately can we predict melting points? J Chem Inf Model47:1111–1122Google Scholar
  127. 127.
    Votano JR, Parham M, Hall LH, Kier LB, Oloff S, Tropsha A, Xie Q, Tong W(2004) Three new consensus QSAR models for the prediction of Ames genotoxicity. Mutagenesis 19:365–377Google Scholar
  128. 128.
    Votano JR, Parham M, Hall LM, Hall LH, Kier LB, Oloff S, Tropsha A (2006)QSAR modeling of human serum protein binding with several modeling techniques utilizing structure‐information representation. J Med Chem49:7169–7181Google Scholar
  129. 129.
    Vracko M (2005) Kohonen artificial neural network and counter propagationneural network in molecular structure‐toxicity studies. Curr Comput‐Aided Drug Des 1:73–78Google Scholar
  130. 130.
    Wagner S, Hofmann A, Siedle B, Terfloth L, Merfort I, Gasteiger J (2006)Development of a structural model for NF-\( { \ifx\letex\relax\Kappa\else K\fi } \)B inhibition of sesquiterpene lactones using self‐organizing neural networks. J Med Chem49:2241–2252Google Scholar
  131. 131.
    Wan C, Harrington PB (1999) Self‐configuring radial basis functionneural networks for chemical pattern recognition. J Chem Inf Comput Sci 39:1049–1056Google Scholar
  132. 132.
    WangJ, Johannsen TH, Myklebost O, Hovig E (2003) Tumor classificationand marker gene prediction by feature selection and fuzzy c-means clustering using microarray data. BMC Bioinformatics 4:60Google Scholar
  133. 133.
    Wang Y-H, Li Y, Li Y-H, Yang S-L, Yang L (2005) Modeling K m values using electrotopological state: Substrates for cytochromeP450 3A4‐mediated metabolism. Bioorg Med Chem Lett 15:4076–4084Google Scholar
  134. 134.
    Wasserman PD (1989) Neural Computing. Van Nostrand Reinhold, New York, 230ppGoogle Scholar
  135. 135.
    Weinstein JN, Kohn KW, Grever MR, Viswanadhan VN, Rubinstein LV, Monks AP,Scudiero DA, Welch L, Koutsoukos AD, Chiausa AJ, Paull KD (1992) Neural computing in cancer drug development: Predicting mechanism of action. Science258:447–451ADSGoogle Scholar
  136. 136.
    Wessel MD, Jurs PC, Tolan JW, Muskal SM (1998) Prediction of humanintestinal absorption of drug compounds from molecular structure. J Chem Inf Comput Sci 38:726–735Google Scholar
  137. 137.
    Xiao Y-D, Clauset A, Harris R, Bayram E, Santago P, Schmitt JD (2005)Supervised self‐organizing maps in drug discovery, 1. Robust behavior with overdetermined data sets. J Chem Inf Model45:1749–1758Google Scholar
  138. 138.
    Xu Y, Selaru FM, Yin J, Zou TT, Shustova V, Mori Y, Sato F, Liu TC, Olaru A,Wang S, Kimos MC, Perry K, Desai K, Greenwald BD, Krasna MJ, Shibata D, Abraham JM, Meltzer SJ (2002) Artificial neural networks and gene filteringdistinguish between global gene expression profiles of Barrett's esophagus and esophageal cancer. Cancer Res62:3493–3497Google Scholar
  139. 139.
    Xue Y, Li H, Ung CY, Yap CW, Chen YZ (2006) Classification of a diverseset of Tetrahymena pyriformis toxicity chemical compounds from molecular descriptors by statistical learning methods. Chem Res Toxicol19:1030–1039Google Scholar
  140. 140.
    Xue Y, Yap CW, Sun LZ, Cao ZW, Wang JF, Chen YZ (2004) Prediction ofP‑glycoprotein substrates by a support vector machine approach. J Chem Inf Comput Sci 44:1497–1505Google Scholar
  141. 141.
    Yap CW, Li ZR, Chen YZ (2006) Quantitative structure‐pharmacokineticrelationships for drug clearance by using statistical learning methods. J Mol Graph Modell 24:383–395Google Scholar
  142. 142.
    Zheng G, Xiao M, Lu XH (2005) QSAR study on the Ah receptor‐bindingaffinities of polyhalogenated dibenzo-p‑dioxins using net atomic‐charge descriptors and a radial basisneural network. Anal Bioanal Chem 383:810–816Google Scholar
  143. 143.
    Zhou Y-P, Jiang J-H, Lin W-Q, Zou H-Y, Wu H-L, Shen G-L, Yu R-Q (2006)Adaptive configuring of radial basis function network by hybrid particle swarm algorithm for QSAR studies of organic compounds. J Chem Inf Model46:2494–2501Google Scholar
  144. 144.
    Zupan J (2003) Neural networks. In: Gasteiger J (ed) Handbook ofChemoinformatics, vol 3. Wiley-VCH, Weinheim, pp 1167–1215Google Scholar
  145. 145.
    Zupan J, Gasteiger J (1999) Neural Networks in Chemistry and DrugDesign. Wiley-VCH, WeinheimGoogle Scholar
  146. 146.
    Zupan J, Novič M, Gasteiger J (1995) Neural networks withcounter‐propagation learning‐strategy used for modeling. Chemometrics Intell Lab Syst 27:175–187Google Scholar
  147. 147.
    von Korff M, Hilpert K (2006) Assessing the predictive power of unsupervisedvisualization techniques to improve the identification of GPCR‐focused compound libraries. J Chem Inf Model46:1580–1587Google Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Ovidiu Ivanciuc
    • 1
  1. 1.Department of Biochemistry and Molecular BiologyUniversity of Texas Medical BranchGalvestonUSA