Encyclopedia of Complexity and Systems Science

2009 Edition
| Editors: Robert A. Meyers (Editor-in-Chief)

Drug Design with Artificial Intelligence Methods

  • Ovidiu Ivanciuc
Reference work entry
DOI: https://doi.org/10.1007/978-0-387-30440-3_133

Definition of theSubject

Drug design and development represents a complex andexpensive process that is based on the creative application ofscientific results from various disciplines, including genomics,chemistry, biology, computational chemistry, pharmacology,toxicology, and clinical studies. The average cost of bringinga new drug to market is currently around US$800 million,with a large part of the cost coming from chemicalcompounds that fail in different stages ofdevelopment. Computational simulation of biochemical processesmay guide the drug discovery process through reliable in silicomodels of biochemical properties (aqueous solubility,octanol‐water partition, intestinal absorption,blood‐brain barrier transport, excretion), prediction ofenzyme‐ligand interactions, simulations of cells, tissuesand organisms. In this chapter we review the most importantapplications of artificial intelligence instructure‐activity relationships (SAR) and quantitativestructure‐activity relationships...

This is a preview of subscription content, log in to check access.


  1. 1.
    HollandJ (1975) Adaptation in Natural and Artificial Systems.University of Michigan Press, AnnArborGoogle Scholar
  2. 2.
    GoldbergDE (1989) Genetic Algorithms in Search, Optimization &Machine Learning. Addison Wesley,ReadingzbMATHGoogle Scholar
  3. 3.
    JonesG (1998) Genetic and evolutionary algorithms. In: Schleyer PvR,Allinger NL, Clark T, Gasteiger J, Kollman PA, Schaefer III HF,Schreiner PR (eds) The Encyclopedia of Computational Chemistry.Wiley, Chichester,pp 1127–1136Google Scholar
  4. 4.
    TerflothL, Gasteiger J (2001) Neural networks and genetic algorithms indrug design. Drug Discov Today6:S102–S108Google Scholar
  5. 5.
    vonHomeyer A (2003) Evolutionary algorithms and their applicationsin chemistry. In: Gasteiger J (ed) Handbook of Chemoinformatics,vol 3. Wiley-VCH, Weinheim,pp 1239–1280Google Scholar
  6. 6.
    DorigoM, Maniezzo V, Colorni A (1996) Ant system: Optimization bya colony of cooperating agents. IEEE Trans Syst Man CybernPart B Cybern 26:29–41Google Scholar
  7. 7.
    DorigoM, Gambardella LM (1997) Ant colony system: A cooperativelearning approach to the traveling salesman problem. IEEE TransEvol Comput 1:53–66Google Scholar
  8. 8.
    DorigoM, Di Caro G, Gambardella LM (1999) Ant algorithms for discreteoptimization. Artif Life5:137–172Google Scholar
  9. 9.
    DorigoM, Stützle T (2004) Ant Colony Optimization. MIT Press,CambridgeGoogle Scholar
  10. 10.
    DorigoM, Blum C (2005) Ant colony optimization theory: A survey.Theor Comput Sci 344:243–278MathSciNetzbMATHGoogle Scholar
  11. 11.
    KennedyJ, Eberhart R (1995) Particle swarm optimization. Proceedingsof IEEE International Conference on Neural Networks, vol 4.pp 1942–1948Google Scholar
  12. 12.
    BanksA, Vincent J, Anyakoha C (2007) A review of particle swarmoptimization Part I: background and development. Nat Comput6:467–484MathSciNetzbMATHGoogle Scholar
  13. 13.
    BanksA, Vincent J, Anyakoha C (2008) A review of particle swarmoptimization Part II: hybridisation, combinatorial,multicriteria and constrained optimization, and indicativeapplications. Nat Comput7:109–124MathSciNetzbMATHGoogle Scholar
  14. 14.
    ChuangLY, Chang HW, Tu CJ, Yang CH (2008) Improved binary PSO forfeature selection using gene expression data. Comput Biol Chem32:29–38zbMATHGoogle Scholar
  15. 15.
    NamasivayamV, Günther R (2007) PSO@AUTODOCK: A fast flexible moleculardocking program based on swarm intelligence. Chem Biol Drug Des70:475–484Google Scholar
  16. 16.
    AgrafiotisDK, Cedeño W (2002) Feature selection for structure-activitycorrelation using binary particle swarms. J Med Chem45:1098–1107Google Scholar
  17. 17.
    HuangJ, Ma G, Muhammad I, Cheng Y (2007) Identifying P-glycoproteinsubstrates using a support vector machine optimized bya particle swarm. J Chem Inf Model47:1638–1647Google Scholar
  18. 18.
    ShenQ, Shi WM, Yang XP, Ye BX (2006) Particle swarm algorithmtrained neural network for QSAR studies of inhibitors ofplatelet-derived growth factor receptor phosphorylation. Eur JPharm Sci 28:369–376ADSGoogle Scholar
  19. 19.
    HuntJE, Cooke DE (1996) Learning using an artificial immune system.J Netw Comput Appl 19:189–212Google Scholar
  20. 20.
    deCastro LN, Von Zuben FJ (1999) Artificial immune systems: Part IBasic theory and applications. FEEC/UNICAMP,BrazilGoogle Scholar
  21. 21.
    deCastro LN, Von Zuben FJ (2000) Artificial immune systems: PartII A survey of applications. FEEC/UNICAMP,BrazilGoogle Scholar
  22. 22.
    TimmisJ, Neal M, Hunt J (2000) An artificial immune system for dataanalysis. Biosystems55:143–150Google Scholar
  23. 23.
    ChaoDL, Forrest S (2003) Information immune systems. Genet ProgrammEvolv Mach 4:311–331Google Scholar
  24. 24.
    deCastro LN, Timmis JI (2003) Artificial immune systems asa novel soft computing paradigm. Soft Comput7:526–544Google Scholar
  25. 25.
    MusilekP, Lau A, Reformat M, Wyard-Scott L (2006) Immune programming.Inf Sci 176:972–1002MathSciNetzbMATHGoogle Scholar
  26. 26.
    TimmisJ (2007) Artificial immune systems – Today andtomorrow. Nat Comput 6:1–18MathSciNetzbMATHGoogle Scholar
  27. 27.
    ForrestS, Beauchemin C (2007) Computer immunology. Immunol Rev216:176–197Google Scholar
  28. 28.
    DasguptaD (1999) Artificial Immune Systems and Their Applications.Springer, BerlinzbMATHGoogle Scholar
  29. 29.
    deCastro LN, Timmis J (2002) Artificial Immune Systems: A NewComputational Intelligence Approach. Springer,BerlinzbMATHGoogle Scholar
  30. 30.
    TarakanovAO, Skormin VA, Sokolova SP (2003) Immunocomputing: Principlesand Applications. Springer, BerlinzbMATHGoogle Scholar
  31. 31.
    IshidaY (2004) Immunity-Based Systems. Springer,BerlinGoogle Scholar
  32. 32.
    TimmisJ, Bentley P, Hart E (2003) Artificial Immune Systems: SecondInternational Conference, ICARIS 2003, Edinburgh, September1–3. Lecture Notes in Computer Science, vol 2787.Springer, BerlinGoogle Scholar
  33. 33.
    NicosiaG, Cutello V, Bentley PJ, Timmis JI (2004) Artificial ImmuneSystems: Third International Conference, ICARIS 2004, Catania,September 13–16. Lecture Notes in Computer Science, vol 3239. Springer, BerlinGoogle Scholar
  34. 34.
    JacobC, Pilat ML, Bentley PJ, Timmis J (2005) Artificial ImmuneSystems: 4th International Conference, ICARIS 2005, Banff,August 14–17. Lecture Notes in Computer Science, vol 3627. Springer, BerlinGoogle Scholar
  35. 35.
    BersiniH, Carneiro J (2006) Artificial Immune Systems: 5thInternational Conference, ICARIS 2006, Oeiras, September4–6. Lecture Notes in Computer Science, vol 4163.Springer, BerlinGoogle Scholar
  36. 36.
    AndoS, Iba H (2004) Classification of gene expression profile usingcombinatory method of evolutionary computation and machinelearning. Genet Programm Evolv Mach5:145–156Google Scholar
  37. 37.
    BezerraGB, Cançado GMA, Menossi M, de Castro LN, Von Zuben FJ(2005) Recent advances in gene expression data clustering:A case study with comparative results. Genet Mol Res4:514–524Google Scholar
  38. 38.
    TsankovaD, Georgieva V, Kasabov N (2005) Artificial immune networks asa paradigm for classification and profiling of geneexpression data. J Comput Theor Nanosci2:543–550Google Scholar
  39. 39.
    ŞahanS, Polat K, Kodaz H, Güneş S (2007) A new hybrid methodbased on fuzzy-artificial immune system and k-nn algorithm forbreast cancer diagnosis. Comput Biol Med37:415–423Google Scholar
  40. 40.
    PolatK, Güneş S (2008) Computer aided medical diagnosis system basedon principal component analysis and artificial immunerecognition system classifier algorithm. Expert Syst Appl34:773–779Google Scholar
  41. 41.
    PolatK, Şahan S, Güneş S (2006) A new method to medicaldiagnosis: Artificial immune recognition system (AIRS) withfuzzy weighted pre‐processing and application to ECGarrhythmia. Expert Syst Appl31:264–269Google Scholar
  42. 42.
    LatifogluF, Şahan S, Kara S, Güneş S (2007) Diagnosis of atherosclerosisfrom carotid artery Doppler signals as a real-world medicalapplication of artificial immune systems. Expert Syst Appl33:786–793Google Scholar
  43. 43.
    CutelloV, Nicosia G, Pavone M, Timmis J (2007) An immune algorithm forprotein structure prediction on lattice models. IEEE Trans EvolComput 11:101–117Google Scholar
  44. 44.
    AnileAM, Cutello V, Narzisi G, Nicosia G, Spinella S (2007)Determination of protein structure and dynamics combining immunealgorithms and pattern search methods. Nat Comput6:55–72MathSciNetzbMATHGoogle Scholar
  45. 45.
    MorrisGM, Goodsell DS, Halliday RS, Huey R, Hart WE, Belew RK, OlsonAJ (1998) Automated docking using a Lamarckian geneticalgorithm and an empirical binding free energy function. J Comput Chem 19:1639–1662Google Scholar
  46. 46.
    WangR, Gao Y, Lai LH (2000) LigBuilder: A multi-purpose programfor structure-based drug design. J Mol Model6:498–516Google Scholar
  47. 47.
    SoSS, Karplus M (1996) Evolutionary optimization in quantitativestructure-activity relationship: An application of geneticneural networks. J Med Chem39:1521–1530Google Scholar
  48. 48.
    VenkatasubramanianV, Chan K, Caruthers JM (1995) Evolutionary design of moleculeswith desired properties using the genetic algorithm. J Chem InfComput Sci 35:188–195Google Scholar
  49. 49.
    SundaramA, Venkatasubramanian V (1998) Parametric sensitivity andsearch-space characterization studies of genetic algorithms forcomputer-aided polymer design. J Chem Inf Comput Sci38:1177–1191Google Scholar
  50. 50.
    GilletVJ, Willett P, Bradshaw J, Green DVS (1999) Selectingcombinatorial libraries to optimize diversity and physicalproperties. J Chem Inf Comput Sci39:169–177Google Scholar
  51. 51.
    IvanciucO, Ivanciuc T, Cabrol-Bass D (2002) QSAR for dihydrofolatereductase inhibitors with molecular graph structuraldescriptors. J Mol Struct (Theochem)582:39–51Google Scholar
  52. 52.
    WegnerJK, Fröhlich H, Zell A (2004) Feature selection for descriptorbased classification models, 2. Human intestinal absorption(HIA). J Chem Inf Comput Sci44:931–939Google Scholar
  53. 53.
    WeberL (1998) Evolutionary combinatorial chemistry: application ofgenetic algorithms. Drug Discov Today3:379–385Google Scholar
  54. 54.
    WeberL (2005) Current status of virtual combinatorial library design.QSAR Comb Sci 24:809–823Google Scholar
  55. 55.
    GallopMA, Barrett RW, Dower WJ, Fodor SPA, Gordon EM (1994)Applications of combinatorial technologies to drug discovery, 1.Background and peptide combinatorial libraries. J Med Chem37:1233–1251Google Scholar
  56. 56.
    GordonEM, Barrett RW, Dower WJ, Fodor SPA, Gallop MA (1994)Applications of combinatorial technologies to drug discovery, 2.Combinatorial organic-synthesis, library screening strategies,and future directions. J Med Chem37:1385–1401Google Scholar
  57. 57.
    WeberL (1998) Applications of genetic algorithms in moleculardiversity. Curr Opin Chem Biol2:381–385Google Scholar
  58. 58.
    IllgenK, Enderle T, Broger C, Weber L (2000) Simulated molecularevolution in a full combinatorial library. Chem Biol7:433–441Google Scholar
  59. 59.
    UgiI, Almstetter M, Bock H, Dömling A, Ebert B, Gruber B,Hanusch-Kompa C, Heck S, Kehagia-Drikos K, Lorenz K, PapathomaS, Raditschnig R, Schmid T, Werner B, von Zychlinski A (1998)MCR XVII. Three types of MCRs and the libraries –Their chemistry of natural events and preparative chemistry.Croat Chem Acta 71:527–547Google Scholar
  60. 60.
    WeberL (2002) Multi-component reactions and evolutionary chemistry.Drug Discov Today 7:143–147Google Scholar
  61. 61.
    GlobusA, Lawtonb J, Wipke T (1999) Automatic molecular design usingevolutionary techniques. Nanotechnology10:290–299ADSGoogle Scholar
  62. 62.
    BrownN, McKay B, Gilardoni F, Gasteiger J (2004) A graph-basedgenetic algorithm and its application to the multiobjectiveevolution of median molecules. J Chem Inf Comput Sci44:1079–1087Google Scholar
  63. 63.
    BrownN, McKay B, Gasteiger J (2006) A novel workflow for theinverse QSPR problem using multiobjective optimization. J Comput Aided Mol Des20:333–341ADSGoogle Scholar
  64. 64.
    LewisRA (2005) A general method for exploiting QSAR models inlead optimization. J Med Chem48:1638–1648Google Scholar
  65. 65.
    IzrailevS, Agrafiotis D (2001) A novel method for buildingregression tree models for QSAR based on artificial ant colonysystems. J Chem Inf Comput Sci41:176–180Google Scholar
  66. 66.
    IzrailevS, Agrafiotis DK (2002) Variable selection for QSAR byartificial ant colony systems. SAR QSAR Environ Res13:417–423Google Scholar
  67. 67.
    ShelokarPS, Jayaraman VK, Kulkarni BD (2004) An ant colony approach forclustering. Anal Chim Acta509:187–195Google Scholar
  68. 68.
    HeY, Chen D, Zhao W (2006) Ensemble classifier system based on antcolony algorithm and its application in chemical patternclassification. Chemom Intell Lab Syst80:39–49Google Scholar
  69. 69.
    KorbO, Stützle T, Exner TE (2006) PLANTS: Application of ant colonyoptimization to structure-based drug design. Ant ColonyOptimization and Swarm Intelligence. Proceedings. LNCS, vol 4150. Springer, Berlin, pp 247–258Google Scholar
  70. 70.
    ShenQ, Jiang JH, Tao JC, Shen GL, Yu RQ (2005) Modified ant colonyoptimization algorithm for variable selection in QSAR modeling:QSAR studies of cyclooxygenase inhibitors. J Chem Inf Model45:1024–1029Google Scholar
  71. 71.
    GunturiSB, Narayanan R, Khandelwal A (2006) In silico ADME modelling 2:Computational models to predict human serum albumin bindingaffinity using ant colony systems. Bioorg Med Chem14:4118–4129Google Scholar
  72. 72.
    ShiWM, Shen Q, Kong W, Ye BX (2007) QSAR analysis of tyrosinekinase inhibitor using modified ant colony optimization andmultiple linear regression. Eur J Med Chem42:81–86Google Scholar
  73. 73.
    KarpenkoO, Shi J, Dai Y (2005) Prediction of MHC class II binders usingthe ant colony search strategy. Artif Intell Med35:147–156Google Scholar
  74. 74.
    HernandezP, Gras R, Frey J, Appel RD (2003) Popitam: Towards newheuristic strategies to improve protein identification fromtandem mass spectrometry data. Proteomics3:870–878Google Scholar
  75. 75.
    ShenQ, Shi WM, Kong W, Ye BX (2007) A combination of modifiedparticle swarm optimization algorithm and support vector machinefor gene selection and tumor classification. Talanta71:1679–1683Google Scholar
  76. 76.
    CallST, Zubarev DY, Boldyrev AI (2007) Global minimum structuresearches via particle swarm optimization. J Comput Chem28:1177–1186Google Scholar
  77. 77.
    ChangBCH, Ratnaweera A, Halgamuge SK, Watson HC (2004) Particle swarmoptimisation for protein motif discovery. Genet Programm EvolvMach 5:203–214Google Scholar
  78. 78.
    ChenK, Li T, Cao T (2006) Tribe-PSO: A novel globaloptimization algorithm and its application in molecular docking.Chemom Intell Lab Syst82:248–259Google Scholar
  79. 79.
    ChenHM, Liu BF, Huang HL, Hwang SF, Ho SY (2007) SODOCK: Swarmoptimization for highly flexible protein-ligand docking. J Comput Chem 28:612–623Google Scholar
  80. 80.
    CedeñoW, Agrafiotis DK (2003) Using particle swarms for thedevelopment of QSAR models based on K-nearest neighbor andkernel regression. J Comput Aided Mol Des17:255–263Google Scholar
  81. 81.
    LüJX, Shen Q, Jiang JH, Shen GL, Yu RQ (2004) QSAR analysis ofcyclooxygenase inhibitor using particle swarm optimization andmultiple linear regression. J Pharm Biomed Anal35:679–687Google Scholar
  82. 82.
    ShenQ, Jiang JH, Jiao CX, Shen GL, Yu RQ (2004) Modified particleswarm optimization algorithm for variable selection in MLR andPLS modeling: QSAR studies of antagonism of angiotensin IIantagonists. Eur J Pharm Sci22:145–152Google Scholar
  83. 83.
    LinWQ, Jiang JH, Shen Q, Shen GL, Yu RQ (2005) Optimized block-wisevariable combination by particle swarm optimization for partialleast squares modeling in quantitative structure-activityrelationship studies. J Chem Inf Model45:486–493Google Scholar
  84. 84.
    LinL, Lin WQ, Jiang JH, Shen GL, Yu RQ (2005) QSAR analysis ofsubstituted bis[(acridine‐4‐carboxamide)propyl]methylamines using optimized block-wisevariable combination by particle swarm optimization for partialleast squares modeling. Eur J Pharm Sci25:245–254Google Scholar
  85. 85.
    HuL, Wu H, Lin W, Jiang J, Yu R (2007) Quantitativestructure-activity relationship studies for the bindingaffinities of imidazobenzodiazepines for the α6benzodiazepine receptor isoform utilizing optimized blockwisevariable combination by particle swarm optimization for partialleast squares modeling. QSAR Comb Sci26:92–101Google Scholar
  86. 86.
    ShenQ, Jiang JH, Jiao CX, Huan SY, Shen GL, Yu RQ (2004) Optimizedpartition of minimum spanning tree for piecewise modeling byparticle swarm algorithm. QSAR studies of antagonism ofangiotensin II antagonists. J Chem Inf Comput Sci44:2027–2031Google Scholar
  87. 87.
    LinWQ, Jiang JH, Shen Q, Wu HL, Shen GL, Yu RQ (2005) Piecewisehypersphere modeling by particle swarm optimization in QSARstudies of bioactivities of chemical compounds. J Chem InfModel 45:535–541Google Scholar
  88. 88.
    LinL, Lin WQ, Jiang JH, Zhou YP, Shen GL, Yu RQ (2005) QSARanalysis of a series of2-aryl(heteroaryl)-2,5-dihydropyrazolo[4,3-c]quinolin-3-(3H)-onesusing piecewise hyper-sphere modeling by particle swarmoptimization. Anal Chim Acta552:42–49Google Scholar
  89. 89.
    XuL, Jiang JH, Lin WQ, Zhou YP, Wu HL, Shen GL, Yu RQ (2007)Optimized sample-weighted partial least squares. Talanta71:561–566Google Scholar
  90. 90.
    ShenQ, Jiang JH, Jiao CX, Lin WQ, Shen GL, Yu RQ (2004) Hybridizedparticle swarm algorithm for adaptive structure training ofmultilayer feed-forward neural network: QSAR studies ofbioactivity of organic compounds. J Comput Chem25:1726–1735Google Scholar
  91. 91.
    ZhouYP, Jiang JH, Lin WQ, Zou HY, Wu HL, Shen GL, Yu RQ (2006)Adaptive configuring of radial basis function network by hybridparticle swarm algorithm for QSAR studies of organic compounds.J Chem Inf Model 46:2494–2501Google Scholar
  92. 92.
    ZhouYP, Jiang JH, Lin WQ, Xu L, Wu HL, Shen GL, Yu RQ (2007)Artificial neural network-based transformation for nonlinearpartial least-square regression with application to QSARstudies. Talanta 71:848–853Google Scholar
  93. 93.
    MeissnerM, Schmuker M, Schneider G (2006) Optimized Particle SwarmOptimization (OPSO) and its application to artificial neuralnetwork training. BMC Bioinformatics7:125Google Scholar
  94. 94.
    IvanciucO (2007) Applications of support vector machines inchemistry. In: Lipkowitz KB, Cundari TR (eds) Reviews inComputational Chemistry, vol 23. Wiley-VCH, Weinheim,pp 291–400Google Scholar
  95. 95.
    LinWQ, Jiang JH, Zhou YP, Wu HL, Shen GL, Yu RQ (2007) Supportvector machine based training of multilayer feedforward neuralnetworks as optimized by particle swarm algorithm: Applicationin QSAR studies of bioactivity of organic compounds. J ComputChem 28:519–527Google Scholar
  96. 96.
    TangLJ, Zhou YP, Jiang JH, Zou HY, Wu HL, Shen GL, Yu RQ (2007)Radial basis function network-based transform fora nonlinear support vector machine as optimized bya particle swarm optimization algorithm with application toQSAR studies. J Chem Inf Model47:1438–1445Google Scholar
  97. 97.
    deCastro LN (2004) Dynamics of an artificial immune network. J Exp Theor Artif Intell16:19–39zbMATHGoogle Scholar
  98. 98.
    BezerraGB, de Castro LN, Von Zuben FJ (2004) A hierarchical immunenetwork applied to gene expression data. In: Nicosia G, CutelloV, Bentley PJ, Timmis JI (eds) Artificial Immune Systems: ThirdInternational Conference, ICARIS 2004. Catania, September13–16. LNCS, vol 3239. Springer,Berlin, pp 14–27Google Scholar
  99. 99.
    WatkinsA, Timmis J, Boggess L (2004) Artificial immune recognitionsystem (AIRS): An immune-inspired supervised learning algorithm.Genet Programm Evolv Mach5:291–317Google Scholar
  100. 100.
    MengL, van der Putten P, Wang H (2005) A comprehensivebenchmark of the artificial immune recognition system (AIRS).Advanced Data Mining and Applications, Proceedings Lecture Notesin Artificial Intelligence, vol 3584. pp 575–582Google Scholar
  101. 101.
    WatkinsAB (2001) AIRS: A resource limited artificial immuneclassifier. Department of Computer Science, vol MS.Mississippi State University,pp 81Google Scholar
  102. 102.
    WatkinsAB (2005) Exploiting immunological metaphors in the developmentof serial, parallel and distributed learning algorithms. Ph D, University of Kent,pp 314Google Scholar
  103. 103.
    deCastro LN, Von Zuben FJ (2000) The clonal selection algorithmwith engineering applications. In: Whitley D, Goldberg D,Cantu-Paz E, Spector L, Parmee I, Beyer HG (eds) GECCO-2000:Proceedings of the Genetic and Evolutionary ComputationConference, July 10–12. Las Vegas, Morgan Kaufmann,pp 36–37Google Scholar
  104. 104.
    deCastro LN, Von Zuben FJ (2002) Learning and optimization usingthe clonal selection principle. IEEE Trans Evol Comput6:239–251Google Scholar
  105. 105.
    BrownleeJ (2005) Clonal selection theory & CLONAG. The clonalselection classification algorithm (CSCA). Centre forIntelligent Systems and Complex Processes (CISCP), Faculty ofInformation and Communication Technologies (ICT), SwinburneUniversity of Technology (SUT).VictoriaGoogle Scholar
  106. 106.
    CarterJH (2000) The immune system as a model for patternrecognition and classification. J Am Med Inf Assoc7:28–41Google Scholar
  107. 107.
    BrownleeJ (2005) Immunos-81. The misunderstood artificial immune system.Centre for Intelligent Systems and Complex Processes (CISCP),Faculty of Information and Communication Technologies (ICT),Swinburne University of Technology (SUT).VictoriaGoogle Scholar
  108. 108.
    WittenIH, Frank E (2005) Data Mining: Practical Machine Learning Toolsand Techniques, 2nd edn. Morgan Kaufmann, San Francisco,pp 525Google Scholar
  109. 109.
    BrownleeJ (2005) Artificial immune recognition system(AIRS). A review and analysis. Centre for IntelligentSystems and Complex Processes (CISCP), Faculty of Informationand Communication Technologies (ICT), Swinburne University ofTechnology (SUT). VictoriaGoogle Scholar
  110. 110.
    WatkinsA, Timmis J (2002) Artificial immune recognition system (AIRS):Revisions and refinements. Artificial Immune Systems: FirstInternational Conference, ICARIS 2002. University of Kent atCanterbury, pp 173–181Google Scholar
  111. 111.
    FenichelRR, Malik M, Antzelevitch C, Sanguinetti M, Roden DM, Priori SG,Ruskin JN, Lipicky RJ, Cantilena LR (2004) Drug-induced torsadesde pointes and implications for drug development. J CardiovascElectrophysiol 15:475–495Google Scholar
  112. 112.
    IvanciucO (2006) Artificial immune system classification of drug-inducedtorsade de pointes with AIRS (artificial immune recognitionsystem). Internet Electron J Mol Des5:488–502Google Scholar
  113. 113.
    IvanciucO (2007) Artificial immune systems in drug design:Structure-activity relationships for torsade de pointes withAIRS (artificial immune recognition system). Internet ElectronJ Mol Des 6:47–62Google Scholar
  114. 114.
    StenbergP, Luthman K, Artursson P (2000) Virtual screening of intestinaldrug permeability. J Control Release65:231–243Google Scholar
  115. 115.
    PonceYM, Pérez MAC, Zaldivar VR, Sanz MB, Mota DS, Torrens F (2005)Prediction of intestinal epithelial transport of drug in(Caco-2) cell culture from molecular structure using in silicoapproaches during early drug discovery. Internet Electron J MolDes 4:124–150Google Scholar
  116. 116.
    LinnankoskiJ, Makela JM, Ranta VP, Urtti A, Yliperttula M (2006)Computational prediction of oral drug absorption based onabsorption rate constants in humans. J Med Chem49:3674–3681Google Scholar
  117. 117.
    IyerM, Tseng YJ, Senese CL, Liu J, Hopfinger AJ (2007) Predictionand mechanistic interpretation of human oral drug absorptionusing MI-QSAR analysis. Mol Pharmaceutics4:218–231Google Scholar
  118. 118.
    IvanciucO (2006) Artificial immune system prediction of the humanintestinal absorption of drugs with AIRS (artificial immunerecognition system). Internet Electron J Mol Des5:515–529Google Scholar
  119. 119.
    IvanciucO (2007) Feature Selection in AIRS (Artificial ImmuneRecognition System) Structure-Activity Relationships. InternetElectron J Mol Des 6:331–344Google Scholar
  120. 120.
    CrivoriP, Reinach B, Pezzetta D, Poggesi I (2006) Computational modelsfor identifying potential P-glycoprotein substrates andinhibitors. Mol Pharmaceutics3:33–44Google Scholar
  121. 121.
    KaiserD, Terfloth L, Kopp S, Schulz J, de Laet R, Chiba P, Ecker GF,Gasteiger J (2007) Self-organizing maps for identification of newinhibitors of P-glycoprotein. J Med Chem50:1698–1702Google Scholar
  122. 122.
    IvanciucO (2006) Artificial immune systems in drug design: Recognitionof P-glycoprotein substrates with AIRS (artificial immunerecognition system). Internet Electron J Mol Des5:542–554Google Scholar
  123. 123.
    IvanciucO (2006) Structure-activity relationships with artificial immunesystems: Classification of benzodiazepine receptor ligands withAIRS, CLONALG, CSCA, and IMMUNOS. Internet Electron J Mol Des5:585–604Google Scholar
  124. 124.
    VerhaarHJM, Solbé J, Speksnijder J, van Leeuwen CJ, Hermens JLM (2000)Classifying environmental pollutants: Part 3. Externalvalidation of the classification system. Chemosphere40:875–883Google Scholar
  125. 125.
    IvanciucO (2003) Aquatic toxicity prediction for polar and nonpolarnarcotic pollutants with support vector machines. InternetElectron J Mol Des 2:195–208Google Scholar
  126. 126.
    IvanciucO (2007) Artificial immune systems in aquatic toxicology:Structure-activity relationships for the mechanism of toxicaction with AIRS (artificial immune recognition system).Internet Electron J Mol Des6:13–28Google Scholar
  127. 127.
    IvanciucO (2007) Drug design with artificial immune systems:Structure-activity relationships for glycogen phosphorylase Binhibitors with CLONALG (clonal selection algorithm). InternetElectron J Mol Des 6:311–319Google Scholar
  128. 128.
    IvanciucO (2007) Structure-activity relationships in aquatic toxicologywith artificial immune systems: Mechanism of toxic actionclassification of polar and nonpolar narcotic pollutants withCLONALG (clonal selection algorithm). Internet Electron J MolDes 6:106–114Google Scholar
  129. 129.
    IvanciucO (2007) Artificial immune systems structure-activityrelationships for estrogen receptor ligands with CSCA (clonalselection classification system). Internet Electron J Mol Des6:81–89Google Scholar
  130. 130.
    IvanciucO (2007) Artificial immune systems in the virtual screening ofdihydrofolate reductase inhibitors with CSCA (clonal selectionclassification system). Internet Electron J Mol Des6:253–261Google Scholar
  131. 131.
    IvanciucO (2007) Drug design with artificial immune systems:Classification of angiotensin converting enzyme inhibitors withCSCA (clonal selection classification system). InternetElectron J Mol Des 6:135–143Google Scholar
  132. 132.
    IvanciucO (2007) Artificial immune systems in structure-activityrelationships: Classification of thermolysin inhibitors withCSCA (clonal selection classification system). InternetElectron J Mol Des 6:209–217Google Scholar
  133. 133.
    IvanciucO (2007) Structure-activity relationships foracetylcholinesterase inhibitors with the IMMUNOS artificialimmune system. Internet Electron J Mol Des6:167–175Google Scholar
  134. 134.
    IvanciucO (2007) Virtual screening of cyclooxygenase-2 inhibitors withthe IMMUNOS artificial immune system. Internet Electron J MolDes 6:200–208Google Scholar
  135. 135.
    IvanciucO (2007) Structure-activity relationships with the IMMUNOSartificial immune system for thrombin inhibitors. InternetElectron J Mol Des 6:262–270Google Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Ovidiu Ivanciuc
    • 1
  1. 1.Department of Biochemistry and Molecular BiologyUniversity of Texas Medical BranchGalvestonUSA