Skip to main content

DNA-Templated Self-Assembly of Protein Arrays and Highly Conductive Nanowires

  • Reference work entry
Book cover Encyclopedia of Complexity and Systems Science
  • 489 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 3,499.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

DNA:

Deoxyribonucleic acid, is a nucleic acid molecule that contains the genetic instructions used in the development and functioning of all living organisms. Chemically, DNA is a long polymer of simple units called nucleotides, which are held together by a backbone made of alternating sugars and phosphate groups. Attached to each sugar is one of four types of molecules called bases: Adenine (A), Thymine (T), Guanine (G) and Cytosine (C).

Double‐crossover (DX) motif:

The DX motif consists of two DNA double helices linked in two different places. These molecules are related to intermediates in genetic recombination but, in the molecules used in DNA self‐assembly, the linkages are usually between strands of opposite polarity, rather than the same polarity.

Paranemic‐crossover DNA:

A DNA motif that can be formed by reciprocal exchange between strands of the same polarity on two DNA double helices at every possible position.

Bibliography

  1. Seeman NC (2003) DNA in a material world. Nature421:427–431

    MathSciNet  ADS  Google Scholar 

  2. Seeman NC, Lukeman PS (2005) Nucleic acid nanostructures: Bottom-up control ofgeometry on the nanoscale. Rep Prog Phys 68:237–270

    ADS  Google Scholar 

  3. Reif JH (2002) Introduction to self‐assembling DNA nanostructures forcomputation and nanofabrication In: Wang JTL, Wu CH, Wang PP (eds) Computational biology and genome informatics. World Scientific, RiverEdge

    Google Scholar 

  4. Winfree E, Liu F, Wenzler LA, Seeman NC (1998) Design and self‐assembly oftwo‐dimensional DNA crystal. Nature 394:539–544

    ADS  Google Scholar 

  5. LaBean T, Yan H, Kopatsch J, Liu F, Winfree E, Reif JH, Seeman NC (2000) Theconstruction, analysis, ligation and self‐assembly of DNA triple crossover complexes. J Am Chem Soc122:1848–1860

    Google Scholar 

  6. Mao C, Sun W, Seeman NC (1999) Two‐dimensional DNA hollliday junctionarrays visualized by atomic force microscopy. J Am Chem Soc 121:5437–5443

    Google Scholar 

  7. Mao C, Sun W, Shen Z, Seeman NC (1999) A DNA nanomechanical device based onthe B-Z transition. Nature 397:144–146

    ADS  Google Scholar 

  8. Yurke B, Turberfield AJ, Mills AP Jr, Simmel FC, Newmann JL (2000)A DNA‐fuelled molecular machine made of DNA. Nature 406:605–608

    ADS  Google Scholar 

  9. Yan H, Zhang X, Shen Z, Seeman NC (2002) A robust DNA mechanical devicecontrolled by hybridization topology. Nature 415:62–65

    ADS  Google Scholar 

  10. Li JJ, Tan W (2002) A single DNA molecule nanomotor. Nano Lett2(4):315–318

    MathSciNet  ADS  Google Scholar 

  11. Sherman WB, Seeman NC (2004) A precisely controlled DNA biped walkingdevice. Nano Lett 4:1203–1207

    ADS  Google Scholar 

  12. Ding B, Seeman NC (2007) Operation of a DNA robot arm inserted intoa 2D DNA crystalline substrate. Science 314:1583–1585

    ADS  Google Scholar 

  13. Adleman LM (1994) Molecular computation of solution to combinatorialproblems. Science 266:1021–1024

    ADS  Google Scholar 

  14. Liu Q, Wang L, Frutos AG, Condon AE, Corn RM, Smith LM (2000) DNA computing onsurfaces. Nature 403:175–179

    ADS  Google Scholar 

  15. Mao C, Labean TH, Reif JH, Seeman NC (2000) Logical computation usingalgorithmic self‐assembly of DNA triple crossover molecules. Nature 407:493–496

    ADS  Google Scholar 

  16. Yan H, Park SH, Finkelstein G, Reif JH, LaBean TH (2003) DNA‐tempatedself‐assembly of protein arrays and highly conductive nanowires. Science 301:1882–1884

    ADS  Google Scholar 

  17. Ding B, Sha R, Seeman NC (2004) Pseudohexagonal 2D DNA crystals from doublecrossover cohesion. J Am Chem Soc 126:10230–10231

    Google Scholar 

  18. Rothemund PWK (2006) Folding DNA to create nanoscale shapes andpatterns. Nature 440:297–302

    ADS  Google Scholar 

  19. Douglas SM, Chou JJ, Shih WM (2007) DNA‐nanotube‐induced alignmentof membrane proteins for NMR structure determination. Proc Nat Acad Sci USA 104:6644–6648

    ADS  Google Scholar 

  20. Li H, Park SH, Rief J, LaBean TH, Yan H (2004) DNA templatedself‐assembly of protein and nanoparticle linear arrays. J Am Chem Soc 126:418–419

    Google Scholar 

  21. Park SH, Yin P, Liu Y, Reif JH, LaBean TH, Yan H (2005) Programmable DNAself‐assemblies for nanoscale organization of ligands and proteins. Nano Lett 5(4):729–733

    ADS  Google Scholar 

  22. William BAR, Lund K, Liu Y, Yan H, Chaput JC (2007) Self‐assembledpeptide nanoarrays: An approach to studying protein‐protein interactions. Angew Chem Int Ed 46:3051–3054

    Google Scholar 

  23. Mirkin CA, Letsinger RL, Mucic RC, Storhoff JJ (1996) A DNA-based methodfor rationally assembling nanoparticles into macroscopic materials. Nature 382:607–609

    ADS  Google Scholar 

  24. Alivisatos AP, Johnsson KP, Peng X, Wilson TE, Loweth TCJ, Bruchez MP, SchultzPG (1996) Organization of ‘nanocrystal molecules’ using DNA. Nature 382:609–611

    ADS  Google Scholar 

  25. Pinto YY, Le JD, Seeman NC, Musier‐Forsyth K, Taton TA, Kiehl RA (2005)Sequence‐encoded self‐assembly of multiple‐nanocomponent arrays by 2D DNA scaffolding. Nano Lett5(12):2399–2402

    Google Scholar 

  26. Zheng J, Constantinou PE, Micheel C, Alivisatos AP, Kiehl RA, Seeman NC (2006)Two‐dimensional nanoparticle arrays show the organizational power of robust DNA motifs. Nano Lett 6(7):1502–1504

    ADS  Google Scholar 

  27. Braun E, Eichen Y, Sivan U, Ben‐Yoseph G (1998) DNA‐templatedassembly and electrode attachment of a conducting silver wire. Nature 391:775–778

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag

About this entry

Cite this entry

Ding, B., Liu, Y., Rinker, S., Yan, H. (2009). DNA-Templated Self-Assembly of Protein Arrays and Highly Conductive Nanowires. In: Meyers, R. (eds) Encyclopedia of Complexity and Systems Science. Springer, New York, NY. https://doi.org/10.1007/978-0-387-30440-3_132

Download citation

Publish with us

Policies and ethics