Encyclopedia of Complexity and Systems Science

2009 Edition
| Editors: Robert A. Meyers (Editor-in-Chief)

DNA-Templated Self-Assembly of Protein Arrays and Highly Conductive Nanowires

  • Baoquan Ding
  • Yan Liu
  • Sherri Rinker
  • Hao Yan
Reference work entry
DOI: https://doi.org/10.1007/978-0-387-30440-3_132

Definition of the Subject

DNA self‐assembly is a very useful and powerful tool for bottom-upnanofabrication . It consists of combining unusual DNA motifs by specific structurallywell‐defined cohesive interactions (sticky ends) to produce target materials with predictable 3D structure. This method hasgenerated versatile DNA nanostructures including polyhedral catenanes, robust nanomechanical devices, and a variety of periodic and aperiodic arraysin two dimensions. DNA self‐assembled structures have been used as the template for different guest functional molecules such as proteins, metallicnano‐particles, DNA based nano‐devices and highly conductive nanowires. Regular lattices made of DNA could hold copies of large biologicalmolecules in a highly ordered array for x-ray crystallography to determine their structure, an important step in the “rational” design ofdrugs. Alternatively, the lattices could serve as scaffolding for nanoelectronic components, either as a working device or as...

This is a preview of subscription content, log in to check access.

Bibliography

  1. 1.
    Seeman NC (2003) DNA in a material world. Nature421:427–431MathSciNetADSGoogle Scholar
  2. 2.
    Seeman NC, Lukeman PS (2005) Nucleic acid nanostructures: Bottom-up control ofgeometry on the nanoscale. Rep Prog Phys 68:237–270ADSGoogle Scholar
  3. 3.
    Reif JH (2002) Introduction to self‐assembling DNA nanostructures forcomputation and nanofabrication In: Wang JTL, Wu CH, Wang PP (eds) Computational biology and genome informatics. World Scientific, RiverEdgeGoogle Scholar
  4. 4.
    Winfree E, Liu F, Wenzler LA, Seeman NC (1998) Design and self‐assembly oftwo‐dimensional DNA crystal. Nature 394:539–544ADSGoogle Scholar
  5. 5.
    LaBean T, Yan H, Kopatsch J, Liu F, Winfree E, Reif JH, Seeman NC (2000) Theconstruction, analysis, ligation and self‐assembly of DNA triple crossover complexes. J Am Chem Soc122:1848–1860Google Scholar
  6. 6.
    Mao C, Sun W, Seeman NC (1999) Two‐dimensional DNA hollliday junctionarrays visualized by atomic force microscopy. J Am Chem Soc 121:5437–5443Google Scholar
  7. 7.
    Mao C, Sun W, Shen Z, Seeman NC (1999) A DNA nanomechanical device based onthe B-Z transition. Nature 397:144–146ADSGoogle Scholar
  8. 8.
    Yurke B, Turberfield AJ, Mills AP Jr, Simmel FC, Newmann JL (2000)A DNA‐fuelled molecular machine made of DNA. Nature 406:605–608ADSGoogle Scholar
  9. 9.
    Yan H, Zhang X, Shen Z, Seeman NC (2002) A robust DNA mechanical devicecontrolled by hybridization topology. Nature 415:62–65ADSGoogle Scholar
  10. 10.
    Li JJ, Tan W (2002) A single DNA molecule nanomotor. Nano Lett2(4):315–318MathSciNetADSGoogle Scholar
  11. 11.
    Sherman WB, Seeman NC (2004) A precisely controlled DNA biped walkingdevice. Nano Lett 4:1203–1207ADSGoogle Scholar
  12. 12.
    Ding B, Seeman NC (2007) Operation of a DNA robot arm inserted intoa 2D DNA crystalline substrate. Science 314:1583–1585ADSGoogle Scholar
  13. 13.
    Adleman LM (1994) Molecular computation of solution to combinatorialproblems. Science 266:1021–1024ADSGoogle Scholar
  14. 14.
    Liu Q, Wang L, Frutos AG, Condon AE, Corn RM, Smith LM (2000) DNA computing onsurfaces. Nature 403:175–179ADSGoogle Scholar
  15. 15.
    Mao C, Labean TH, Reif JH, Seeman NC (2000) Logical computation usingalgorithmic self‐assembly of DNA triple crossover molecules. Nature 407:493–496ADSGoogle Scholar
  16. 16.
    Yan H, Park SH, Finkelstein G, Reif JH, LaBean TH (2003) DNA‐tempatedself‐assembly of protein arrays and highly conductive nanowires. Science 301:1882–1884ADSGoogle Scholar
  17. 17.
    Ding B, Sha R, Seeman NC (2004) Pseudohexagonal 2D DNA crystals from doublecrossover cohesion. J Am Chem Soc 126:10230–10231Google Scholar
  18. 18.
    Rothemund PWK (2006) Folding DNA to create nanoscale shapes andpatterns. Nature 440:297–302ADSGoogle Scholar
  19. 19.
    Douglas SM, Chou JJ, Shih WM (2007) DNA‐nanotube‐induced alignmentof membrane proteins for NMR structure determination. Proc Nat Acad Sci USA 104:6644–6648ADSGoogle Scholar
  20. 20.
    Li H, Park SH, Rief J, LaBean TH, Yan H (2004) DNA templatedself‐assembly of protein and nanoparticle linear arrays. J Am Chem Soc 126:418–419Google Scholar
  21. 21.
    Park SH, Yin P, Liu Y, Reif JH, LaBean TH, Yan H (2005) Programmable DNAself‐assemblies for nanoscale organization of ligands and proteins. Nano Lett 5(4):729–733ADSGoogle Scholar
  22. 22.
    William BAR, Lund K, Liu Y, Yan H, Chaput JC (2007) Self‐assembledpeptide nanoarrays: An approach to studying protein‐protein interactions. Angew Chem Int Ed 46:3051–3054Google Scholar
  23. 23.
    Mirkin CA, Letsinger RL, Mucic RC, Storhoff JJ (1996) A DNA-based methodfor rationally assembling nanoparticles into macroscopic materials. Nature 382:607–609ADSGoogle Scholar
  24. 24.
    Alivisatos AP, Johnsson KP, Peng X, Wilson TE, Loweth TCJ, Bruchez MP, SchultzPG (1996) Organization of ‘nanocrystal molecules’ using DNA. Nature 382:609–611ADSGoogle Scholar
  25. 25.
    Pinto YY, Le JD, Seeman NC, Musier‐Forsyth K, Taton TA, Kiehl RA (2005)Sequence‐encoded self‐assembly of multiple‐nanocomponent arrays by 2D DNA scaffolding. Nano Lett5(12):2399–2402Google Scholar
  26. 26.
    Zheng J, Constantinou PE, Micheel C, Alivisatos AP, Kiehl RA, Seeman NC (2006)Two‐dimensional nanoparticle arrays show the organizational power of robust DNA motifs. Nano Lett 6(7):1502–1504ADSGoogle Scholar
  27. 27.
    Braun E, Eichen Y, Sivan U, Ben‐Yoseph G (1998) DNA‐templatedassembly and electrode attachment of a conducting silver wire. Nature 391:775–778Google Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Baoquan Ding
    • 1
  • Yan Liu
    • 2
  • Sherri Rinker
    • 2
  • Hao Yan
    • 2
  1. 1.Molecular FoundryLawrence Berkeley National LabBerkeleyUSA
  2. 2.Department of Chemistry and Biochemistry and Biodesign InstituteArizona State UniversityTempeUSA