Skip to main content

DNA Computing

  • Reference work entry

Definition of the Subject

DNA computing (or, more generally, biomolecular computing) is a relatively new field of study that is concerned with the use of biologicalmolecules as fundamental components of computing devices. It draws on concepts and expertise from fields as diverse as chemistry, computer science,molecular biology, physics and mathematics. Although its theoretical history dates back to the late 1950s, the notion of computing with molecules was onlyphysically realized in 1994, when Leonard Adleman demonstrated in the laboratory the solution of a small instance of a well‐known problemin combinatorics using standard tools of molecular biology. Since this initial experiment, interest in DNA computing has increased dramatically, and it isnow a well‐established area of research. As we expand our understanding of how biological and chemical systems process information,opportunities arise for new applications of molecular devices in bioinformatics, nanotechnology, engineering, the...

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   3,499.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

DNA:

Deoxyribonucleic acid. Molecule that encodes the genetic information of cellular organisms.

Enzyme:

Protein that catalyzes a biochemical reaction.

Nanotechnology:

Branch of science and engineering dedicated to the construction of artifacts and devices at the nanometer scale.

RNA:

Ribonucleic acid. Molecule similar to DNA, which helps in the conversion of genetic information to proteins.

Satisfiability (SAT):

Problem in complexity theory. An instance of the problem is defined by a Boolean expression with a number of variables, and the problem is to identify a set of variable assignments that makes the whole expression true.

Bibliography

Primary Literature

  1. Adleman LM (1994) Molecular computation of solutions to combinatorial problems. Science 266:1021–1024

    ADS  Google Scholar 

  2. Adleman LM (1995) On constructing a molecular computer. Draft, University of Southern California

    Google Scholar 

  3. Amos M (2005) Theoretical and Experimental DNA Computation. Springer, Berlin

    MATH  Google Scholar 

  4. Amos M, Gibbons A, Hodgson D (1996) Error‐resistant implementation of DNA computations. In: Landweber LF, Baum EB (eds) 2nd Annual Workshop on DNA Based Computers. Princeton University, NJ, 10–12 June 1996. American Mathematical Society

    Google Scholar 

  5. Arkin A, Ross J (1994) Computational functions in biochemical reaction networks. Biophys J 67:560–578

    Google Scholar 

  6. Benenson Y, Adam R, Paz-Livneh T, Shapiro E (2003) DNA molecule provides a computing machine with both data and fuel. Proc Natl Acad Sci 100:2191–2196

    ADS  Google Scholar 

  7. Benenson Y, Paz-Elizur T, Adar R, Keinan E, Livneh Z, Shapiro E (2001) Programmable and autonomous computing machine made of biomolecules. Nature 414:430–434

    ADS  Google Scholar 

  8. Bennett CH (1982) The thermodynamics of computation – a review. Int J Theor Phys 21:905–940

    Google Scholar 

  9. Braich RS, Chelyapov N, Johnson C, Rothemund PWK, Adleman L (2002) Solution of a 20‑variable 3‑SAT problem on a DNA computer. Science 296:499–502

    ADS  Google Scholar 

  10. Bray D (1995) Protein molecules as computational elements in living cells. Nature 376:307–312

    ADS  Google Scholar 

  11. Breslauer KJ, Frank R, Blocker H, Marky LA (1986) Predicting DNA duplex stability from the base sequence. Proc Natl Acad Sci 83(11):3746–3750

    ADS  Google Scholar 

  12. Brown TA (1993) Genetics: A Molecular Approach. Chapman and Hall, New York

    Google Scholar 

  13. Campbell-Kelly M, Aspray W (2004) Computer: A History of the Information Machine, 2nd edn. Westview Press, Colorado

    Google Scholar 

  14. Conrad M (1985) On design principles for a molecular computer. Commun ACM 28:464–480

    Google Scholar 

  15. Conrad M, Liberman EA (1982) Molecular computing as a link between biological and physical theory. J Theor Biol 98:239–252

    Google Scholar 

  16. Cook S (1971) The complexity of theorem proving procedures. Proceedings of the 3rd Annual ACM Symposium on Theory of Computing, pp 151–158

    Google Scholar 

  17. Faulhammer D, Cukras AR, Lipton RJ, Landweber LF (2000) Molecular computation: RNA solutions to chess problems. Proc Nat Acad Sci 97:1385–1389

    ADS  Google Scholar 

  18. Feynman RP (1961) There's plenty of room at the bottom. In: Gilbert D (ed) Miniaturization. Reinhold, New York, pp 282–296

    Google Scholar 

  19. Garey MR, Johnson DS (1979) Computers and Intractability: A Guide to the Theory of NP‐Completeness. WH Freeman and Company, New York

    MATH  Google Scholar 

  20. Gibbons AM (1985) Algorithmic Graph Theory. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  21. Guarnieri F, Fliss M, Bancroft C (1996) Making DNA add. Science 273:220–223

    ADS  Google Scholar 

  22. Hartmanis J (1995) On the weight of computations. Bull Euro Assoc Theor Comput Sci 55:136–138

    MATH  Google Scholar 

  23. Hjelmfelt A, Schneider FW, Ross J (1993) Pattern recognition in coupled chemical kinetic systems. Science 260:335–337

    ADS  Google Scholar 

  24. Hjelmfelt A, Weinberger ED, Ross J (1991) Chemical implementation of neural networks and Turing machines. Proc Nat Acad Sci 88:10983–10987

    MATH  ADS  Google Scholar 

  25. Lipton RJ (1995) DNA solution of hard computational problems. Science 268:542–545

    ADS  Google Scholar 

  26. Liu Q, Wang L, Frutos AG, Condon AE, Corn RM, Smith LM (2000) DNA computing on surfaces. Nature 403:175–179

    ADS  Google Scholar 

  27. Mao C, LaBean TH, Reif JH, Seeman NC (2000) Logical computation using algorithmic self‐assembly of DNA triple‐crossover molecules. Nature 407:493–496

    ADS  Google Scholar 

  28. Mullis KB, Ferré F, Gibbs RA (eds) (1994) The Polymerase Chain Reaction. Birkhauser, Boston

    Google Scholar 

  29. Ogihara M, Ray A (2000) DNA computing on a chip. Nature 403:143–144

    ADS  Google Scholar 

  30. Ouyang Q, Kaplan PD, Liu S, Libchaber A (1997) DNA solution of the maximal clique problem. Science 278:446–449

    ADS  Google Scholar 

  31. Regalado A (2002) DNA computing. MIT Technology Review. http://www.technologyreview.com/articles/00/05/regalado0500.asp. Accessed 26 May 2008

  32. Rivest R, Shamir A, Adleman L (1978) A method for obtaining digital signatures and public key cryptosystems. Comm ACM 21:120–126

    MathSciNet  MATH  Google Scholar 

  33. Rothemund PWK (2006) Folding DNA to create nanoscale patterns. Nature 440:297–302

    ADS  Google Scholar 

  34. Roweis S, Winfree E, Burgoyne R, Chelyapov NV, Goodman MF, Rothemund PWK, Adleman LM (1996) A sticker based architecture for DNA computation. In: Landweber LF, Baum EB (eds) 2nd Annual Workshop on DNA Based Computers. Princeton University, NJ, 10–12 June 1996. American Mathematical Society

    Google Scholar 

  35. Sakamoto K, Gouzu H, Komiya K, Kiga D, Yokoyama S, Yokomori T, Hagiya M (2000) Molecular computation by DNA hairpin formation. Science 288:1223–1226

    ADS  Google Scholar 

  36. Smalley E (2005) Interview with Ned Seeman. Technology Research News, May 4

    Google Scholar 

  37. Smith LM (2006) Nanostructures: The manifold faces of DNA. Nature 440:283–284

    ADS  Google Scholar 

  38. Stubbe H (1972) History of Genetics – from Prehistoric times to the Rediscovery of Mendel's Laws. MIT Press, Cambridge

    Google Scholar 

  39. van Noort D, Gast F-U, McCaskill JS (2002) DNA computing in microreactors. In: Jonoska N, Seeman NC (eds) DNA Computing: 7th International Workshop on DNA‐Based Computers. LNCS, vol 2340. Springer, Berlin, pp 33–45

    Google Scholar 

  40. Watkins JJ (2004) Across the Board: The Mathematics of Chess Problems. Princeton University Press, Princeton

    Google Scholar 

  41. Watson JD, Crick FHC (1953) Genetical implications of the structure of deoxyribose nucleic acid. Nature 171:964

    ADS  Google Scholar 

  42. Watson JD, Crick FHC (1953) Molecular structure of nucleic acids: a structure for deoxyribose nucleic acid. Nature 171:737–738

    ADS  Google Scholar 

  43. Watson JD, Hopkins NH, Roberts JW, Steitz JA, Weiner AM (1987) Molecular Biology of the Gene, 4th edn. Benjamin/Cummings, Menlo Park

    Google Scholar 

  44. Winfree E, Liu F, Wenzler L, Seeman NC (1998) Design and self‐assembly of two‐dimensional DNA crystals. Nature 394:539–544

    ADS  Google Scholar 

  45. Winfree E (1998) Algorithmic self‐assembly of DNA. Ph D thesis, California Institute of Technology

    Google Scholar 

  46. Yan H, Park SH, Finkelstein G, Reif JH, LaBean TH (2003) DNA‐templated self‐assembly of protein arrays and highly conductive nanowires. Science 301:1882–1884

    ADS  Google Scholar 

Books and Reviews

  1. Adleman L (1998) Computing with DNA. Sci Am 279:54–61

    Google Scholar 

  2. Amos M (2006) Genesis Machines: The New Science of Biocomputing. Atlantic Books, London

    Google Scholar 

  3. Forbes N (2004) Imitation of Life: How Biology is Inspiring Computing. MIT Press, Cambridge

    Google Scholar 

  4. Gonick L, Wheelis M (1983) The Cartoon Guide to Genetics. Harper Perennial, New York

    Google Scholar 

  5. Jones R (2004) Soft Machines: Nanotechnology and Life. Oxford University Press, Oxford

    Google Scholar 

  6. Păun G, Rozenberg G, Salomaa A (1998) DNA Computing: New Computing Paradigms. Springer, Berlin

    Google Scholar 

  7. Pool R (1995) A boom in plans for DNA computing. Science 268:498–499

    ADS  Google Scholar 

  8. Watson J (2004) DNA: The Secret of Life. Arrow Books, London

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag

About this entry

Cite this entry

Amos, M. (2009). DNA Computing. In: Meyers, R. (eds) Encyclopedia of Complexity and Systems Science. Springer, New York, NY. https://doi.org/10.1007/978-0-387-30440-3_131

Download citation

Publish with us

Policies and ethics