Encyclopedia of Complexity and Systems Science

2009 Edition
| Editors: Robert A. Meyers (Editor-in-Chief)

Distributed Robotic Teams: A Framework for Simulated and Real-World Modeling

  • Michael Janssen
  • Andrew Drenner
  • Nikolaos Papanikolopoulos
Reference work entry
DOI: https://doi.org/10.1007/978-0-387-30440-3_130

Definition of the Subject

The field of robotics covers devices that are in use in a wide variety of applications frominterplanetary exploration [56] to performing common household tasks (such as vacuuming yourfloor) [23]. Definitions of what is and is not a robot can vary wildly. Generally speaking,a robot is a device with the ability to sense and interact with its environment. Usually there is some degree of intelligence or autonomy ina robotic system, but this can vary as well from a tele‐robotic device which is completely controlledby operators from a remote location [58] to a fully autonomousrobot which can be given a goal and will reach that goal without any human intervention [5]. The phrase distributed robotics deals with teams of robots used to accomplish tasks that a single robot either could not achieve or could not achievewithin some constraint (cost of the system, time alloted, etc.).

Robotics is an important field because it allows for the collection of information while...

This is a preview of subscription content, log in to check access.

Notes

Acknowledgment

This work has been supported in part by National Science Foundation through grants#IIS-0219863, #CNS-0224363, #CNS-0324864, #CNS-0420836, #IIP-0443945, #IIP-0726109, and #CNS-0708344

Bibliography

Primary Literature

  1. 1.
    Albro JV, Bobrow J (2004) Motion generation for a tumbling robot using a general contact model. In: Proceedings of the 2004 IEEE International Conference on Robotics and Automation, IEEE, New Orleans, pp 3270–3275Google Scholar
  2. 2.
    Bird N, Atev S, Caramelli N, Martin R, Papanikolopoulos N (2006) Real-time, online detection of abandoned objects in public areas. In: Proceedings of the 2006 IEEE International Conference on Robotics and Automation, Orlando, pp 3775–3780Google Scholar
  3. 3.
    Bird N, Masoud O, Papanikolopoulos N, Isaacs A (2005) Detection of loitering individuals in public transportation areas. IEEE Trans Intell Transp Syst 6(2):167–177Google Scholar
  4. 4.
    Bodor R (2005) Multi‐camera human activity recognition in unconstrained indoor and outdoor environments. Ph D thesis, University of MinnesotaGoogle Scholar
  5. 5.
    Broggi A, Caraffi C, Fedriga RI, Grisleri P (2005) Obstacle detection with stereo vision for off-road vehicle navigation. In: Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Diego, vol 3, p 65Google Scholar
  6. 6.
    Burgard W, Moors M, Stachniss C, Schneider FE (2005) Coordinated multi-robot exploration. IEEE Trans Robotics 21(3):376–386 Google Scholar
  7. 7.
    Christopoulos VN, Roumeliotis S (2005) Adaptive sensing for instantaneous gas release parameter estimation. In: Proceedings of the 2005 IEEE International Conference on Robotics and Automation, Barcelona, Spain, pp 4450–4456Google Scholar
  8. 8.
    Collett TH, MacDonald BA, Gerkey BP (2005) Player 2.0: Toward a practical robot programming framework. In: Proceedings of the Australasian Conference on Robotics and Automation. http://www.araa.asn.au/acra/acra2005/papers/collet.pdf. Accessed 6 June 2008
  9. 9.
    Comport A, Malis E, Rives P (2007) Accurate quadrifocal tracking for robust 3D visual odometry. In: Proceedings of the 2007 IEEE International Conference on Robotics and Automation, IEEE, Roma, Italy, pp 40–45Google Scholar
  10. 10.
    Correll N, Martinoli A (2007) Robust distributed coverage using a swarm of miniature robots. In: Proceedings of the 2007 IEEE International Conference on Robotics and Automation, IEEE, Roma, Italy, pp 379–384Google Scholar
  11. 11.
    Craighead J, Murphy R, Burke J, Goldiez B (2007) A survey of commercial & open source unmanned vehicle simulators. In: Proceedings of the 2007 IEEE International Conference on Robotics and Automation, IEEE, Roma, Italy, pp 852–857Google Scholar
  12. 12.
    Das AK, Fierro R, Kumar V, Ostrowski JP, Spletzer J, Taylor CJ (2002) A vision‐based formation control framework. IEEE Trans Robotics Autom 18(5):813–825Google Scholar
  13. 13.
    Dellaert F, Balch T, Kaess M, Ravichandran R, Alegre F, Berhault M, McGuire R, Merrill E, Moshkina L, Walker D (2002) The Georgia Tech yellow jackets: A marsupial team for urban search and rescue. In: AAAI Mobile Robot Competition Workshop, Edmonton, Alberta, pp 44–49Google Scholar
  14. 14.
    Drenner A, Burt I, Kratochvil B, Nelson BJ, Papanikolopoulos N, Yeşsin KB (2002) Communication and mobility enhancements to the scout robot. In: Proceedings of the 2002 IEEE/RSJ International Conference on Intelligent Robots and Systems, Lausanne, SwitzerlandGoogle Scholar
  15. 15.
    Fenwick JW, Newman PM, Leonard JJ (2002) Cooperative concurrent mapping and localization. In: Proceedings of the 2002 IEEE International Conference on Robotics and Automation, IEEE, Washington, DC, pp 1810–1817Google Scholar
  16. 16.
    Franchi A, Freda L, Oriolo G, Vendittelli M (2007) A randomized strategy for cooperative robot exploration. In: Proceedings of the 2007 IEEE International Conference on Robotics and Automation, IEEE, Roma, Italy, pp 768–774Google Scholar
  17. 17.
    Gage A, Murphy RR (2004) Affective recruitment of distributed heterogenous agents. In: Proceedings of the 19th National Conference on Artificial Intelligence, San Jose, pp 14–19Google Scholar
  18. 18.
    Gage DW (1993) Randomized search strategies with imperfect sensors. In: Proceedings of SPIE Mobile Robots VIII, Boston, vol 2058, pp 270–279Google Scholar
  19. 19.
    Hada Y, Yuta S (2000) A first experiment of long term activity of autonomous mobile robot – result of repetitive base‐docking over a week. In: Proceedings of the ISER 2000 7th International Symposium on Experimental Robotics, Waikiki, pp 235–244Google Scholar
  20. 20.
    Hougen DF, Bonney JC, Budenske JR, Dvorak M, Gini M, Krantz DG, Malver F, Nelson B, Papanikolopoulos N, Rybski PE, Stoeter SA, Voyles R, Yesin KB (2000) Reconfigurable robots for distributed robotics. In: Government Microcircuit Applications Conf., Anaheim, CA, pp 72–75Google Scholar
  21. 21.
    Howard A, Matarić M, Sukhatme G (2002) An incremental deployment algorithm for mobile robot teams. In: Proceeedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, EPFL, Switzerland, vol 3, pp 2849–2854Google Scholar
  22. 22.
    Hu H, Kelly I, Keating D, Vinagre D (1998) Coordination of multiple robots via communication. In: Proceedings of SPIE, Boston, pp 94–103Google Scholar
  23. 23.
    iRobot corporation (2008) iRobot Roomba® Vacuuming Robot. http://irobot.com/sp.cfm?pageid=122. Accessed 6 June 2008
  24. 24.
    Iv DL, Srinivasa S, Lee-Shue V (2002) Towards sensor based coverage with robot teams. In: Proceedings of the 2002 IEEE International Conference on Robotics and Automation, Washington, DC, vol 1, pp 961–967Google Scholar
  25. 25.
    Jacoff A, Messina E, Evans J (2000) A standard test course for urban search and rescue robots. In: Proceedings of the 2000 performance metrics for intelligent system workshop, Gaithersburg, August 2000Google Scholar
  26. 26.
    Janssen M, Papanikolopoulos N (2007) Enabling complex behavior by simulating marsupial actions. In: Proceedings of the 15th Mediterranean Conference on Control and Automation, Athens, GreeceGoogle Scholar
  27. 27.
    Kadioglu E, Papanikolopoulos N (2003) A method for transporting a team of miniature robots. In: Proceedings of the 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems, Las Vegas, NV, vol 3, pp 2297–2302Google Scholar
  28. 28.
    Kamath S, Meisner E, Isler V (2007) Triangulation based multi target tracking with mobile sensor networks. In: Proceedings of the 2007 IEEE International Conference on Robotics and Automation, IEEE, Roma, Italy, pp 3283–3288Google Scholar
  29. 29.
    Kelly I, Holland O, Melhuish C (2000) Slugbot: A robotic predator in the natural world. In: Proceedings of the 5th International Symposium on Artificial Life and Robotics for Human Welfare and Artificial Liferobotics, Oita, Japan, pp 470–475Google Scholar
  30. 30.
    Ko J, Stewart B, Fox D, Konolige K, Limketkai B (2003) A practical, decision‐theoretic approach to multi-robot mapping and exploration. In: Proceedings of the 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems, IEEE, Las Vegas, NV, vol 4, pp 3232–3238Google Scholar
  31. 31.
    Koenig S, Szymanski B, Liu Y (2001) Efficient and inefficient ant coverage methods. Ann Math Artif Intell 31(1):41–76Google Scholar
  32. 32.
    Konolige K, Fox D, Limketkai B, Ko J, Stewart B (2003) Map merging for distributed robot navigation. In: Proceedings of the 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems, IEEE, Las Vegas, NV, pp 212–217Google Scholar
  33. 33.
    Kurazume R, Hirose S (2000) An experimental study of a cooperative positioning system. Autonomous Robots 8(1):43–52Google Scholar
  34. 34.
    Kwolek B (2007) Visual odometry based on gabor filters and sparse bundle adjustment. In: Proceedings of the 2007 IEEE International Conference on Robotics and Automation, IEEE, Roma, Italy, pp 3573–3578Google Scholar
  35. 35.
    Lagoudakis MG, Markakis E, Kempe D, Keskinocak P, Kleywegt A, Koenig S, Tovey C, Meyerson A, Jain S (2005) Auction‐based multi-robot routing. In: Proceedings of Robotics: Science and Systems, Cambridge, USAGoogle Scholar
  36. 36.
    Lau H (2003) Behavioural approach for multi-robot exploration. In: Proceedings of 2003 Australasian Conference on Robotics and Automation, Brisbane, AustraliaGoogle Scholar
  37. 37.
    McMillen C, Stubbs K, Rybski PE, Stoeter SA, Gini M, Papanikolopoulos N (2002) Resource scheduling and load balancing in distributed robotic control systems. In: The 7th international conference on intelligent autonomous systems, Marina del Rey, pp 223–230Google Scholar
  38. 38.
    Min HJ, Drenner A, Papanikolopoulos N (2007) Autonomous docking for an erosi robot based on a vision system with points clustering. In: Proceedings of the 15th Mediterranean Conference on Control and Automation, Athens, GreeceGoogle Scholar
  39. 39.
    Mosteo AR, Montano L (2007) Comparative experiments on optimization criteria and algorithms for auction based multi-robot task allocation. In: Proceedings of the 2007 IEEE International Conference on Robotics and Automation, IEEE, Roma, Italy, pp 3345–3350Google Scholar
  40. 40.
    Murphy RR (2000) Marsupial and shape‐shifting robots for urban search and rescue. IEEE Intell Syst 15(2):14–19Google Scholar
  41. 41.
    Nanjanath M, Gini M (2006) Dynamic task allocation for robots via auctions. In: Proceedings of the 2006 IEEE International Conference on Robotics and Automation, Orlando, FL, pp 2781–2786Google Scholar
  42. 42.
    Ngo TD, Raposo H, Schioler H (2007) Being sociable: Multirobots with self‐sustained energy. In: Proceedings of the 15th Mediterranean Conference on Control and Automation, Athens, GreeceGoogle Scholar
  43. 43.
    Nistér D, Naroditsky O, Bergen J (2004) Visual odometry. In: Proceedings of the 2004 IEEE International Conference on Computer Vision and Pattern Recognition, IEEE, vol 1, Washington DC, pp 652–659Google Scholar
  44. 44.
    O'Rourke J (1987) Art Gallery Theorems and Algorithms. Oxford University Press, New YorkzbMATHGoogle Scholar
  45. 45.
    Ota Y, Kuga T, Yoneda K (2006) Deformation compensation for continuous force control of a wall climbing quadruped with reduced‐dof. In: Proceedings of the 2006 IEEE International Conference on Robotics and Automation, IEEE, Orlando, FL, pp 468–474Google Scholar
  46. 46.
    Perkins CE, Royer EM (1999) Ad-hoc on‐demand distance vector routing. In: Proceedings of the 2nd IEEE Workshop on Mobile Computer Systems and Applications, New Orleans, p 90Google Scholar
  47. 47.
    Pongas D, Mistry M, Schaal S (2007) A robust quadruped walking gait for traversing rough terrain. In: Proceedings of the 2007 IEEE International Conference on Robotics and Automation, IEEE, Roma, Italy, pp 1474–1479Google Scholar
  48. 48.
    Pugh J, Martinoli A (2007) The cost of reality: Effects of real‐worlde factors on multi-robot search. In: Proceedings of the 2007 IEEE International Conference on Robotics and Automation, IEEE, Roma, Italy, pp 397–404Google Scholar
  49. 49.
    Rekleitis I, Lee-Shue V, New AP, Choset H (2004) Limited communication, multi-robot team based coverage. In: Proceedings of the 2004 IEEE International Conference on Computer Vision and Pattern Recognition, New Orleans, LA, pp 3462–3468Google Scholar
  50. 50.
    Roumeliotis SI, Bekey GA (2002) Distributed multi-robot localization. IEEE Trans Robotics Autom 18(5):781–795 Google Scholar
  51. 51.
    Rybski PE, Larson A, Veeraraghavan H, LaPoint M, Gini M (2004) Communication strategies in multi-robot search and retrieval: Experiences with minDART. In: DARS 2004, Toulouse, France, pp 301–310Google Scholar
  52. 52.
    Shillcutt KJ (2000) Solar based navigation for robotic explorers. Ph D thesis, Carnegie Mellon UniversityGoogle Scholar
  53. 53.
    Silverman MC, Nies D, Jung B, Sukatme GS (2002) Staying alive: A docking station for autonomous robot recharging. In: Proceedings of the 2002 IEEE International Conference on Robotics and Automation, Washington, DC, pp 1050–1055Google Scholar
  54. 54.
    Simmons R, Apfelbaum D, Burgard W, Fox D, Moors M, Thrun S, Younes H (2000) Coordination for multi-robot exploration and mapping. In: Proceedings of the 17th National Conference on Artificial Intelligence and 12th Conference on Innovative Applications of Artificial Intelligence, 0-262-51112-6, Austin, pp 852–858Google Scholar
  55. 55.
    Singh K, Fujimura K (1993) Map making by cooperating mobile robots. In: Proceedings of the 1993 IEEE International Conference on Robotics and Automation, IEEE, Atlanta, pp 254–259Google Scholar
  56. 56.
    Southard L, Hoeg TM, Palmer DW, Antol J, Kolacinski RM, Quinn RD (2007) Exploring mars using a group of tumbleweed rovers. In: IEEE international converence on robotics and automation, Roma, Italy, pp 775–780Google Scholar
  57. 57.
    Stoeter SA (2003) Vision‐based control of miniature jumping scout robots. Ph D thesis, University of MinnesotaGoogle Scholar
  58. 58.
    Whittaker W, Champeny L (1988) Conception and developmet of two mobile teleoperated systems for TMI-2. In: Proceedings of the international meeting and topicam meeting TMI-2 accident. American Nuclear Society, Washington DCGoogle Scholar
  59. 59.
    Yamauchi B (1998) Frontier‐based exploration using multiple robots. In: Proceedings of the 2nd international converence on autonomous agents, Mineapolis/St. Paul, pp 47–53Google Scholar
  60. 60.
    Zlot R, Stentz A, Dias MB, Thayer S (2002) Multi-robot exploration controlled by a market economy. In: Proceedings of the 2002 IEEE international conference on robotics and automation, IEEE, Washington DC, pp 3016–3023Google Scholar

Books and Reviews

  1. 61.
    Bräunl T (2006) Embedded robotics: Mobile robot design and applications with embedded systems. Springer, BerlinGoogle Scholar
  2. 62.
    Dudek G, Jenkin M (2000) Computational principles of mobile robotics. Cambridge University Press, CambridgezbMATHGoogle Scholar
  3. 63.
    Schultz AC, Parker LE (eds) (2002) Multi‐robot systems: From swarms to intelligent automata. Kluwer Academic, DordrechtGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Michael Janssen
    • 1
  • Andrew Drenner
    • 1
  • Nikolaos Papanikolopoulos
    • 1
  1. 1.Center for Distributed Robotics, Department of Computer Science and EngineeringUniversity of MinnesotaMinneapolisUSA