Encyclopedia of Complexity and Systems Science

2009 Edition
| Editors: Robert A. Meyers (Editor-in-Chief)

Distributed Controls of Multiple Robotic Systems, An Optimization Approach

  • John T. Feddema
  • David A. Schoenwald
  • Rush D. Robinett
  • Raymond H. Byrne
Reference work entry
DOI: https://doi.org/10.1007/978-0-387-30440-3_129

Definition of the Subject

This chapter describes an integrated approach for designing communication, sensing, and control systems for mobile distributedsystems. A three‐step process is used to create locally optimal distributed controls for multiple robot vehicles. The first step is to definea global performance index whose extremum produces a desired cooperative result. The second step is to partition and eliminate terms in theperformance index so that only terms of local neighbors are included. This step minimizes communication amongst robots and improves system robustness. The thirdstep is to define a control law that is the gradient of the partitioned performance index. This control drives the system towards the local extremum of thepartitioned performance index. Graph theoretic methods are then used to analyze the input/output reachability and structural controllability and observabilityof the decentralized system. Connective stability of the resulting controls is evaluated with...

This is a preview of subscription content, log in to check access.

Notes

Acknowledgments

The authors greatly appreciate the help of Steven Eskridge, John Hurtado,Chris Lewis, John Harrington, and Nekton Research, LLC, in implementing andtesting these algorithms on a variety of robot platforms.This work was supported in part by the Sandia National Laboratories. Sandiais a multiprogram laboratory operated by Sandia Corporation, a LockheedMartin Company, for the United States Department of Energy under contractDE–AC04–94AL85000. In addition, this research was partially funded by theInformation Processing Technology Office and Microsystems Technology Officeof the Defense Advanced Research Projects Agency.

Bibliography

  1. 1.
    Arai T, Pagello E, Parker PE (2002)Guest Editorial: Advances in Multirobot Systems.IEEE Trans Robot Autom 18(5):655–659Google Scholar
  2. 2.
    Bonabeau E, Dorigo M, Theraulaz G (1999)Swarm Intelligence: From Natural to Artificial Systems.Oxford University Press, New YorkzbMATHGoogle Scholar
  3. 3.
    Arkin RC (1992)Cooperation Without Communication: Multiagent Schema-Based Robot Navigation.J Robotic Syst 9(3):351–364Google Scholar
  4. 4.
    Balch T, Arkin RC (1998)Behavior-Based Formation Control for Multirobot Teams.IEEE Trans Robot Autom 14(6):926–939Google Scholar
  5. 5.
    Kube RC, Zhang H (1993)Collective Robotics: From Social Insects to Robots.Adapt Behav 2(2):189–218Google Scholar
  6. 6.
    Parker LE (1998)ALLIANCE: An Architecture for Fault Tolerant Multirobot Cooperation.IEEE Trans Robot Autom 14(2):220–240Google Scholar
  7. 7.
    Di Marco M, Carulli A, Giannitrapani A, Vicino A (2003)Simultaneous Localization and Map Building for a Team of Cooperating Robots: A Set Membership Approach.IEEE Trans Robot 19(2):238–249Google Scholar
  8. 8.
    Burgard W, Moors M, Stanchniss C, Schneider FE (2005)Coordinated Multi-Robot Exploration.IEEE Trans Robot 21(3):376–386Google Scholar
  9. 9.
    Cortes J, Martinez S, Karatas T, Bullo F (2004)Coverage Control for Mobile Sensing Networks.IEEE Trans Robot Autom 20(2):865–875Google Scholar
  10. 10.
    Tang Z, Ozguner U (2005)Motion Planning for Multitarget Surveillance With Mobile Sensor Agents.IEEE Trans Robot 21(5):898–908Google Scholar
  11. 11.
    Vidal R, Shakernia O, Kim HJ, Shim DH,Sastry S (2002) Probabilistic Pursuit-Evasion Games: Theory, Implementation, and Experimental Evaluation. IEEE TransRobot Autom 18(5):662–669Google Scholar
  12. 12.
    Isler V, Kannan S, Khanna S (2005)Randomized Pursuit-Evasion in a Polygonal Environment.IEEE Trans Robot 21(5):875–894Google Scholar
  13. 13.
    Cao Z, Tan M, Li L, Gu N, Wang S (2006)Cooperative Hunting by Distributed Mobile Robots Based on Local Interaction.IEEE Trans Robot 22(2):403–407Google Scholar
  14. 14.
    Bopardikar SD, Bullo F, Hespanha JP (2007)Cooperative Pursuit with Sensing Limitations. In:Proceedings of the 2007 American Control Conference. IEEE, Minneapolis Google Scholar
  15. 15.
    Fua CH, Ge SS (2005)COBOS: Cooperative Backoff Adaptive Scheme for Multirobot Task Allocation.IEEE Trans Robot 21(6):1168–1178Google Scholar
  16. 16.
    Daigle MJ, Koutsoukos XD, Biswas G (2007)Distributed Diagnosis in Formations of Mobile Robots.IEEE Trans Robot 23(2):353–369Google Scholar
  17. 17.
    Crandall JW, Cummings ML (2007)Identifying Predictive Metrics for Supervisory Control of Multiple Robots.IEEE Trans Robot 23(5):942–951Google Scholar
  18. 18.
    Chen Q, Luh JYS (1994)Coordination and Control of a Group of Small Mobile Robots. In:Proceedings of the IEEE International Conference on Robotics and Automation,vol 3. pp 2315–2320. IEEE, San DiegoGoogle Scholar
  19. 19.
    Yamaguchi H, Arai T (1994)Distributed and Autonomous Control Method for Generating Shape of Multiple Mobile Robot Group. In:Proceedings of the IEEE International Conference on Intelligent Robots and Systems,vol 2. pp 800–807. IEEE, MunichGoogle Scholar
  20. 20.
    Yamaguchi H, Burdick JW (1998)Asymptotic Stabilization of Multiple Nonholonomic Mobile Robots Forming Group Formations. In:Proceedings of the 1998 Conference on Robotics & Automation.Leuven, Belgium, pp 3573–3580Google Scholar
  21. 21.
    Yoshida E, Arai T, Ota J, Miki T (1994)Effect of Grouping in Local Communication System of Multiple Mobile Robots. In:Proceedings of the IEEE International Conference on Intelligent Robots and Systems,vol. 2. pp 808–815. IEEE, MunichGoogle Scholar
  22. 22.
    Molnar P, Starke J (2000)Communication Fault Tolerance in Distributed Robotic Systems.In: Parker LE, Bekey G, Barhen J (eds) Distributed Autonomous Robotic Systems4. Springer, Berlin, pp 99–108Google Scholar
  23. 23.
    Schneider FE, Wildermuth D, Wolf HL (2000)Motion Coordination in Formations of Multiple Robots Using a Potential Field Approach.In: Parker LE, Bekey G, Barhen J (eds) Distributed Autonomous Robotic Systems 4.Springer, Berlin, pp 305–314Google Scholar
  24. 24.
    Stankovic SS, Stanojevic MJ, Siljak DD (2000)Decentralized Overlapping Control of a Platoon of Vehicles.IEEE Trans Control Syst Technol 8:816–832Google Scholar
  25. 25.
    Seiler P, Pant A, Hedrick K (2004)Disturbance Propagation in Vehicle StringsIEEE Trans Autom Control 29:1835–1841Google Scholar
  26. 26.
    Barooah P, Mehta PG, Hespanha JP (2007)Control of Large Vehicular Platoons: Improving Closed Loop Stability by Mistuning. In:Proceedings of the 2007 American Control Conference. IEEE, MinneapolisGoogle Scholar
  27. 27.
    Ogren P, Egerstedt M, Hu X (2002)A Control Lyapunov Function Approach to Multiagent Coordination.IEEE Trans Robot Autom 18(5):847–851Google Scholar
  28. 28.
    Lawton JRT, Beard RW (2003)A Decentralized Approach to Formation Maneuvers.IEEE Trans Robot Autom 19(6):933–941Google Scholar
  29. 29.
    Tanner HG, Pappas GJ, Kumar V (2004)Leader-to-Formation Stability.IEEE Trans Robot Autom 20(3):443–455Google Scholar
  30. 30.
    Tabuada P, Pappas GJ, Lima P (2005)Motion Feasibility of Multi-Agent Formations.IEEE Trans Robot 21(3):387–392Google Scholar
  31. 31.
    Antonelli G, Chiaverini S (2006)Kinematic Control of Platoons of Autonomous Vehicles.IEEE Trans Robot 22(6):1285–1292Google Scholar
  32. 32.
    Beni G, Liang P (1996)Pattern Reconfiguration in Swarms – Convergence of a Distributed Asynchronous and Bounded Iterative Algorithm.IEEE Trans Robot Autom 12(3):485–490Google Scholar
  33. 33.
    Liu Y, Passino K, Polycarpou M (2001)Stability Analysis of One-Dimensional Asynchronous Swarms.American Control Conference, Arlington, pp 25–27, 716–721Google Scholar
  34. 34.
    Winfield A (2000)Distributed Sensing and Data Collection via Broken Ad Hoc Wireless Connected Networks of Mobile Robots.In: Parker LE, Bekey G, Barhen J (eds) Distributed Autonomous Robotic Systems 4.Springer, Berlin, pp 273–282Google Scholar
  35. 35.
    Desai JP, Ostrowski J, Kumar V (1998) Controlling Formations of Multiple MobileRobots. In: Proceedings of the 1998 IEEE Conference on Robotics & Automation. IEEE, Leuven,pp 2864–2869Google Scholar
  36. 36.
    Desai JP, Kumar V, Ostrowski J (2001)Modeling and Control of Formations of Nonholonomic Mobile Robots.IEEE Trans Robot Autom 17(6):905–908Google Scholar
  37. 37.
    Ji M, Egerstedt M (2007)Distributed Coordination Control of Multiagent Systems While Preserving Connectedness.IEEE Trans Robot 23(4):693–703Google Scholar
  38. 38.
    Zavlanos MM, Pappas GJ (2007)Potential Fields for Maintaining Connectivity of Mobile Networks.IEEE Trans Robot 23(4):812–816Google Scholar
  39. 39.
    Belta C, Kumar V (2004)Abstraction and Control of Groups of Robots.IEEE Trans Robot Autom 20(5):865–875Google Scholar
  40. 40.
    Ge SS, Fua CH (2005)Queues and Artificial Potential Trenches for Multrobot Formations.IEEE Trans Robot 21(4):646–656Google Scholar
  41. 41.
    Milutinovic D, Lima P (2006)Modeling and Optimal Centralized Control of a Large-Size Robotic Population.IEEE Trans Robot 22(6):1280–1285Google Scholar
  42. 42.
    Kloetzer M, Belta C (2007)Temporal Logic Planning and Control of Robotic Swarms by Hierarchical Abstractions.IEEE Trans Robot 23(2):320–330Google Scholar
  43. 43.
    Tanner HG, Loizou SG, Kyriakopoulos KJ (2003)Nonholonomic Navigation and Control of Cooperating Mobile Manipulators.IEEE Trans Robot Autom 19(1):53–64Google Scholar
  44. 44.
    Yamashita A, Arai T, Ota J, Asama H (2003)Motion Planning of Multiple Mobile Robots for Cooperative Manipulation and Transportation.IEEE Trans Robot Autom 19(2):223–237Google Scholar
  45. 45.
    Bonaventura CS, Jablokow KW (2005)A Modular Approach to the Dynamics of Complex Multirobot Systems.IEEE Trans Robot 21(1):26–37Google Scholar
  46. 46.
    Lewis C, Feddema JT, Klarer P (1998)Robotic Perimeter Detection System. In: Proceedings of SPIE, vol 3577. Boston, pp 14–21Google Scholar
  47. 47.
    Feddema JT, Lewis C, Schoenwald DA (2002)Decentralized Control of Cooperative Robotic Vehicles: Theory and Application.IEEE Trans Robot Autom 18(5):852–864Google Scholar
  48. 48.
    Hurtado JE, Robinett III RD (2005)Convergence of Newton's Method via Lyapunov Analysis.AIAA J Guidance Control Dyn 28(2):363–365Google Scholar
  49. 49.
    Hurtado JE, Robinett III RD, Dohrmann CR, Goldsmith SY (2004)Decentralized Control for aSwarm of Vehicles Performing Source Localization.J Intell Robot Syst 41:1–18Google Scholar
  50. 50.
    Robinett RD, Hurtado JE (2004)Stability and Control of Collectives Systems.J Intell Robot Syst 39:43–55Google Scholar
  51. 51.
    Clauset A, Tanner B, Byrne R, Abdallah CT (2007)Controlling Across Complex Networks.Proceedings of the IFAC Time-delay Symposium, Nantes, pp 17–19Google Scholar
  52. 52.
    Hespanha JP, Naghshtabrizi P, Xu Y (2007)A Survey of Recent Results in Networked Control Systems.Proc IEEE Special Issue: Technol Netw Control Syst 95(1):138–162Google Scholar
  53. 53.
    Gelfand IM, Fomin SV (1963)Calculus of Variations. Prentice-Hall, New JerseyGoogle Scholar
  54. 54.
    Frieden BR (1998)Physics from Fischer Information.Cambridge University Press, CambridgeGoogle Scholar
  55. 55.
    Feddema JT, Robinett RD, Byrne RH (2003)An Optimization Approach to Distributed Controls of Multiple Robot Vehicles,Workshop on Control and Cooperation of Intelligent Miniature Robots.IEEE/RSJ Int Conf Intell Robot Syst. IEEE, Las Vegas Google Scholar
  56. 56.
    Censor Y, Zenios SA (1997)Parallel Optimization: Theory, Algorithms, and Applications.Oxford University Press, OxfordzbMATHGoogle Scholar
  57. 57.
    Luenberger DG (1984)Linear and Nonlinear Programming, 2nd edn.Addison Wesley, ReadingzbMATHGoogle Scholar
  58. 58.
    Schmitt DJ et al (2003)Intelligent Mobile Land Mine (IMLM) System, Sandia National Laboratories Report.SAND 2003–1186Google Scholar
  59. 59.
    Feddema JT, Schoenwald DA (2002)Stability Analysis of Decentralized Cooperative Controls. In: ShultzAC, Parker LE (eds) Multi-Robot Systems: From Swarms to IntelligentAutomata. Kluwer, Boston, pp 133–122Google Scholar
  60. 60.
    Feddema JT, Schoenwald DA (2002)Distributed Communication/Navigation Robot Vehicle Network. In:Proceedings of World Automation Congress, Orlando, pp 9–13. TSI Press, AlbuquerqueGoogle Scholar
  61. 61.
    Byrne RH, Adkins DR, Eskridge SE, Harrington JJ, Heller EJ, Hurtado JE (2002)Miniature Mobile Robots for Plume Tracking and Source Localization Research.J Micromechatronics 1(3):253–261Google Scholar
  62. 62.
    Byrne RH, Eskridge SE, Hurtado JE, Salvage EL (2003)Algorithms and Analysis of Underwater Vehicle Plume Tracing, Sandia National Laboratories Report.SAND pp 2003–2643Google Scholar
  63. 63.
    Siljak DD (1991)Decentralized Control of Complex Systems.Academic Press, San DiegoGoogle Scholar
  64. 64.
    Sezer ME, Siljak DD (1988)Robust Stability of Discrete Systems.Int J Control 48(5):2055–2063MathSciNetzbMATHGoogle Scholar
  65. 65.
    Smith GD (1985)Numerical Solution of Partial Differential Equations: Finite Difference Methods, 3rd edn.Oxford University Press, OxfordzbMATHGoogle Scholar
  66. 66.
    Basagni S, Bruschi D, Chlamtac I (1999)A Mobility-Transparent Deterministic Broadcast Mechanism for Ad Hoc Networks.IEEE/ACM Trans Netw 7(6):799–807Google Scholar
  67. 67.
    Kleinrock L (1975)Queueing Systems, Volume 1: Theory, 1st edn. Wiley, New YorkGoogle Scholar
  68. 68.
    Chlamtac I, Pinter SS (1987)Distributed Nodes Organization Algorithm for Channel Access in a Multihop Dynamic Radio Network.IEEE Trans Comput C 36(6):728–737Google Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • John T. Feddema
    • 1
  • David A. Schoenwald
    • 1
  • Rush D. Robinett
    • 1
  • Raymond H. Byrne
    • 1
  1. 1.Sandia National LaboratoriesAlbuquerqueUSA