Encyclopedia of Complexity and Systems Science

2009 Edition
| Editors: Robert A. Meyers (Editor-in-Chief)

Dispersion Phenomena in Partial Differential Equations

  • Piero D'Ancona
Reference work entry
DOI: https://doi.org/10.1007/978-0-387-30440-3_128

Definition of the Subject

In a very broad sense, dispersion can be defined as the spreading of a fixed amount of matter, or energy, over a volume whichincreases with time. This intuitive picture suggests immediately the most prominent feature of dispersive phenomena: as matter spreads, its size, definedin a suitable sense, decreases at a certain rate. This effect should be contrasted with dissipation, which might be defined as an actual loss ofenergy, transferred to an external system (heat dissipation being the typical example).

This rough idea has been made very precise during the last 30 years for most evolution equations of mathematical physics. For the classical,linear, constant coefficient equations like the wave, Schrödinger, Klein–Gordon and Dirac equations, the decay of solutions can be measured in theLpnorms, and sharp estimates are available. In addition,detailed information on the profile of the solutions can be obtained, producing an accurate description of the...

This is a preview of subscription content, log in to check access.


  1. 1.
    Artbazar G, Yajima K (2000) The \( { L\sp p } \)-continuity of wave operators for one dimensional Schrödinger operators. J MathSci Univ Tokyo 7(2):221–240MathSciNetzbMATHGoogle Scholar
  2. 2.
    Beals M (1994) Optimal \( { L\sp \infty } \) decay for solutions to the wave equation with a potential. CommPartial Diff Eq 19(7/8):1319–1369MathSciNetzbMATHGoogle Scholar
  3. 3.
    Ben-Artzi M, Trèves F (1994) Uniform estimates for a class of evolutionequations. J Funct Anal 120(2):264–299Google Scholar
  4. 4.
    Bergh J, Löfström J (1976) Interpolation spaces. An introduction. Grundlehrender mathematischen Wissenschaften, No 223. Springer, BerlinGoogle Scholar
  5. 5.
    Bouclet J-M, Tzvetkov N (2006) On global strichartz estimates for non trappingmetrics.Google Scholar
  6. 6.
    Bourgain J (1993) Fourier transform restriction phenomena for certain latticesubsets and applications to nonlinear evolution equations. I. Schrödinger equations. Geom Funct Anal 3(2):107–156MathSciNetzbMATHGoogle Scholar
  7. 7.
    Bourgain J (1995) Some new estimates on oscillatory integrals. In: (1991) Essayson Fourier analysis in honor of Elias M. Stein. Princeton Math Ser vol. 42. Princeton Univ Press, Princeton,pp 83–112Google Scholar
  8. 8.
    Bourgain J (1995) Estimates for cone multipliers. In: Geometric aspects offunctional analysis. Oper Theory Adv Appl, vol 77. Birkhäuser, Basel, pp 41–60Google Scholar
  9. 9.
    Bourgain J (1998) Refinements of Strichartz' inequality and applications to2D-NLS with critical nonlinearity. Int Math Res Not 5(5):253–283MathSciNetGoogle Scholar
  10. 10.
    Brenner P (1975) On \( { L\sb{p}-L\sb{p\sp{\prime}} } \) estimates for the wave‐equation. Math Z145(3):251–254MathSciNetzbMATHGoogle Scholar
  11. 11.
    Brenner P (1977) \( { L\sb{p}-L\sb{p^{\prime}} } \)-estimates for Fourier integral operators related tohyperbolic equations. Math Z 152(3):273–286MathSciNetzbMATHGoogle Scholar
  12. 12.
    Burq N, Gérard P, Tzvetkov N (2003) The Cauchy problem for the nonlinearSchrödinger equation on a compact manifold. J Nonlinear Math Phys 10(1):12–27Google Scholar
  13. 13.
    Cazenave T (2003) Semilinear Schrödinger equations. Courant Lecture Notes inMathematics, vol 10. New York University Courant Institute of Mathematical Sciences, New YorkGoogle Scholar
  14. 14.
    Choquet‐Bruhat Y (1950) Théorème d'existence pour les équations de lagravitation einsteinienne dans le cas non analytique. CR Acad Sci Paris 230:618–620Google Scholar
  15. 15.
    Christodoulou D, Klainerman S (1989) The nonlinear stability of the Minkowskimetric in general relativity. In: Bordeaux (1988) Nonlinear hyperbolic problems. Lecture Notes in Math, vol 1402. Springer, Berlin,pp 128–145Google Scholar
  16. 16.
    D'Ancona P, Fanelli L (2006) Decay estimates for the wave and dirac equationswith a magnetic potential. Comm Pure Appl Anal 29:309–323zbMATHGoogle Scholar
  17. 17.
    D'Ancona P, Fanelli L (2006) \( { {L}^p } \) – boundedness of the wave operator for the one dimensionalSchrödinger operator. Comm Math Phys 268:415–438MathSciNetzbMATHADSGoogle Scholar
  18. 18.
    D'Ancona P, Fanelli L (2008) Strichartz and smoothing estimates for dispersiveequations with magnetic potentials. Comm Partial Diff Eq 33(6):1082–1112MathSciNetzbMATHGoogle Scholar
  19. 19.
    D'Ancona P, Pierfelice V (2005) On the wave equation with a large roughpotential. J Funct Anal 227(1):30–77MathSciNetzbMATHGoogle Scholar
  20. 20.
    D'Ancona P, Georgiev V, Kubo H (2001) Weighted decay estimates for the waveequation. J Diff Eq 177(1):146–208MathSciNetzbMATHGoogle Scholar
  21. 21.
    Foschi D (2005) Inhomogeneous Strichartz estimates. J Hyperbolic Diff Eq2(1):1–24MathSciNetzbMATHGoogle Scholar
  22. 22.
    Ginibre J, Velo G (1985) The global Cauchy problem for the nonlinearSchrödinger equation revisited. Ann Inst Poincaré H Anal Non Linéaire 2(4):309–327Google Scholar
  23. 23.
    Ginibre J, Velo G (1995) Generalized Strichartz inequalities for the waveequation. J Funct Anal 133(1):50–68MathSciNetzbMATHGoogle Scholar
  24. 24.
    Hassell A, Tao T, Wunsch J (2006) Sharp Strichartz estimates on nontrappingasymptotically conic manifolds. Am J Math 128(4):963–1024MathSciNetzbMATHGoogle Scholar
  25. 25.
    Hörmander L (1997) Lectures on nonlinear hyperbolic differential equations.Mathématiques & Applications (Mathematics & Applications), vol 26. Springer, BerlinGoogle Scholar
  26. 26.
    John F (1979) Blow-up of solutions of nonlinear wave equations in three spacedimensions. Manuscr Math 28(1–3):235–268zbMATHGoogle Scholar
  27. 27.
    John F, Klainerman S (1984) Almost global existence to nonlinear waveequations in three space dimensions. Comm Pure Appl Math 37(4):443–455MathSciNetzbMATHGoogle Scholar
  28. 28.
    Journé J-L, Soffer A, Sogge CD (1991) Decay estimates for Schrödingeroperators. Comm Pure Appl Math 44(5):573–604Google Scholar
  29. 29.
    Kato T (1965/1966) Wave operators and similarity for somenon‐selfadjoint operators. Math Ann 162:258–279Google Scholar
  30. 30.
    Keel M, Tao T (1998) Endpoint Strichartz estimates. Am J Math120(5):955–980MathSciNetzbMATHGoogle Scholar
  31. 31.
    Klainerman S (1980) Global existence for nonlinear wave equations. Comm PureAppl Math 33(1):43–101MathSciNetzbMATHGoogle Scholar
  32. 32.
    Klainerman S (1981) Classical solutions to nonlinear wave equations andnonlinear scattering. In: Trends in applications of pure mathematics to mechanics, vol III. Monographs Stud Math, vol 11. Pitman, Boston,pp 155–162Google Scholar
  33. 33.
    Klainerman S (1982) Long-time behavior of solutions to nonlinear evolutionequations. Arch Rat Mech Anal 78(1):73–98MathSciNetzbMATHGoogle Scholar
  34. 34.
    Klainerman S (1985) Long time behaviour of solutions to nonlinear waveequations. In: Nonlinear variational problems. Res Notes in Math, vol 127. Pitman, Boston, pp 65–72Google Scholar
  35. 35.
    Klainerman S, Nicolò F (1999) On local and global aspects of the Cauchyproblem in general relativity. Class Quantum Gravity 16(8):R73–R157Google Scholar
  36. 36.
    Marzuola J, Metcalfe J, Tataru D. Strichartz estimates and local smoothingestimates for asymptotically flat Schrödinger equations. To appear on J Funct AnalGoogle Scholar
  37. 37.
    Metcalfe J, Tataru D. Global parametrices and dispersive estimates forvariable coefficient wave equation. PreprintGoogle Scholar
  38. 38.
    Pecher H (1974) Die Existenz regulärer Lösungen für Cauchy- undAnfangs‐Randwert‐probleme nichtlinearer Wellengleichungen. Math Z 140:263–279 (in German)MathSciNetGoogle Scholar
  39. 39.
    Reed M, Simon B (1978) Methods of modern mathematical physics IV. In: Analysisof operators. Academic Press (Harcourt Brace Jovanovich), New YorkGoogle Scholar
  40. 40.
    Segal I (1968) Dispersion for non‐linear relativistic equations. II. AnnSci École Norm Sup 4(1):459–497Google Scholar
  41. 41.
    Shatah J (1982) Global existence of small solutions to nonlinear evolutionequations. J Diff Eq 46(3):409–425MathSciNetzbMATHGoogle Scholar
  42. 42.
    Shatah J (1985) Normal forms and quadratic nonlinear Klein–Gordonequations. Comm Pure Appl Math 38(5):685–696MathSciNetzbMATHGoogle Scholar
  43. 43.
    Shatah J, Struwe M (1998) Geometric wave equations. In: Courant Lecture Notesin Mathematics, vol 2. New York University Courant Institute of Mathematical Sciences, New YorkGoogle Scholar
  44. 44.
    Strichartz RS (1970) Convolutions with kernels having singularities ona sphere. Trans Am Math Soc 148:461–471MathSciNetzbMATHGoogle Scholar
  45. 45.
    Strichartz RS (1970) A priori estimates for the wave equation and someapplications. J Funct Anal 5:218–235MathSciNetzbMATHGoogle Scholar
  46. 46.
    Strichartz RS (1977) Restrictions of Fourier transforms to quadratic surfacesand decay of solutions of wave equations. J Duke Math 44(3):705–714MathSciNetzbMATHGoogle Scholar
  47. 47.
    Tao T (2000) Spherically averaged endpoint Strichartz estimates for thetwo‐dimensional Schrödinger equation. Comm Part Diff Eq 25(7–8):1471–1485zbMATHGoogle Scholar
  48. 48.
    Tao T (2003) Local well‐posedness of the Yang–Mills equation inthe temporal gauge below the energy norm. J Diff Eq 189(2):366–382zbMATHGoogle Scholar
  49. 49.
    Taylor ME (1991) Pseudodifferential operators and nonlinear PDE. Progr Math100. Birkhäuser, BostonGoogle Scholar
  50. 50.
    von Wahl W (1970) Über die klassische Lösbarkeit des Cauchy‐Problems fürnichtlineare Wellengleichungen bei kleinen Anfangswerten und das asymptotische Verhalten der Lösungen. Math Z114:281–299 (in German)MathSciNetzbMATHGoogle Scholar
  51. 51.
    Wolff T (2001) A sharp bilinear cone restriction estimate. Ann Math (2)153(3):661–698MathSciNetGoogle Scholar
  52. 52.
    Yajima K (1987) Existence of solutions for Schrödinger evolutionequations. Comm Math Phys 110(3):415–426MathSciNetzbMATHADSGoogle Scholar
  53. 53.
    Yajima K (1995) The \( { W\sp {k,p} } \)-continuity of wave operators for Schrödinger operators. J Math Soc Japan47(3):551–581MathSciNetzbMATHGoogle Scholar
  54. 54.
    Yajima K (1995) The \( { W\sp {k,p} } \)-continuity of wave operators for schrödinger operators. III.even‐dimensional cases \( { m\geq 4 } \). J Math Sci Univ Tokyo 2(2):311–346Google Scholar
  55. 55.
    Yajima K (1999) \( { L\sp p } \)-boundedness of wave operators for two‐dimensional schrödingeroperators. Comm Math Phys 208(1):125–152MathSciNetzbMATHADSGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Piero D'Ancona
    • 1
  1. 1.Dipartimento di MatematicaUnversità di Roma “La Sapienza”RomaItaly