Encyclopedia of Complexity and Systems Science

2009 Edition
| Editors: Robert A. Meyers (Editor-in-Chief)

Disordered Elastic Media

  • Thierry Giamarchi
Reference work entry
DOI: https://doi.org/10.1007/978-0-387-30440-3_127

Definition of the Subject

Many seemingly different systems, with extremely different microscopic physics, ranging from magnets to superconductors, share the same essentialingredients and can be described under the unifying concept of disordered elastic media. In all these systems, an internal elastic structure, such as aninterface between regions of opposite magnetization in magnetic systems, is subject to the effects of disorder existing in the material. A speciallyinteresting feature of all these systems is that these disordered elastic structures can be set in motion by applying an external force on them(e. g. a magnetic field sets in motion a magnetic interface), and that motion will be drastically affected by the presence of thedisorder. What properties result from this competition between elasticity and disorder is a complicated problem which constitutes the essence of thephysics of disordered elastic media. The resulting physics present characteristics similar to those of...

This is a preview of subscription content, log in to check access.

Bibliography

Primary Literature

  1. 1.
    Lemerle S et al (1998) Phys Rev Lett 80:849ADSGoogle Scholar
  2. 2.
    Krusin‐Elbaum L et al (2001) Nature 410:444Google Scholar
  3. 3.
    Repain V et al (2004) Europhys Lett 68:460ADSGoogle Scholar
  4. 4.
    Metaxas PJ et al (2007) Phys Rev Lett 99:217208ADSGoogle Scholar
  5. 5.
    Yamanouchi M et al (2006) Phys Rev Lett 96:096601ADSGoogle Scholar
  6. 6.
    Yamanouchi M et al (2007) Science 317:1726ADSGoogle Scholar
  7. 7.
    Tybell T, Paruch P, Giamarchi T, Triscone JM (2002) Phys Rev Lett 89:97601ADSGoogle Scholar
  8. 8.
    Paruch P, Giamarchi T, Triscone JM (2005) Phys Rev Lett 94:197601ADSGoogle Scholar
  9. 9.
    Wilkinsion D, Willemsen JF (1983) J Phys A 16:3365MathSciNetADSGoogle Scholar
  10. 10.
    Moulinet S, Guthmann C, Rolley E (2002) Eur Phys J E 8:437Google Scholar
  11. 11.
    Barabasi A-L, Stanley HE (1995) In: Fractal Concepts in Surface Growth. Cambridge University Press, CambridgezbMATHGoogle Scholar
  12. 12.
    Bouchaud E et al (2002) J Mech Phys Solids 50:1703zbMATHADSGoogle Scholar
  13. 13.
    Alava M, Nukalaz PKVV, Zapperi S (2006) Adv Phys 55:349ADSGoogle Scholar
  14. 14.
    Blatter G et al (1994) Rev Mod Phys 66:1125ADSGoogle Scholar
  15. 15.
    Nattermann T, Scheidl S (2000) Adv Phys 49:607ADSGoogle Scholar
  16. 16.
    Giamarchi T, Bhattacharya S (2002) In: Berthier C et al (eds) High Magnetic Fields: Applications in Condensed Matter Physics and Spectroscopy. Springer, Berlin, p 314. arXiv:cond-mat/0111052
  17. 17.
    Grüner G (1988) Rev Mod Phys 60:1129Google Scholar
  18. 18.
    Nattermann T, Brazovskii S (2004) Adv Phys 53:177ADSGoogle Scholar
  19. 19.
    Seshadri R, Westervelt RM (1992) Phys Rev B 46:5150ADSGoogle Scholar
  20. 20.
    Murray CA, Sprenger WO, Wenk R (1990) Phys Rev B 42:688ADSGoogle Scholar
  21. 21.
    Coupier G, Guthmann C, Noat Y, Saint Jean M (2005) Phys Rev E 71:046105ADSGoogle Scholar
  22. 22.
    Andrei EY et al (1988) Phys Rev Lett 60:2765ADSGoogle Scholar
  23. 23.
    Giamarchi T (2004) In: Quantum phenomena in mesoscopic systems. IOS Press, Bologna. arXiv:cond-mat/0403531
  24. 24.
    Eskildsen MR et al (2002) Phys Rev Lett 89:187003ADSGoogle Scholar
  25. 25.
    Larkin AI (1970) Sov Phys JETP 31:784ADSGoogle Scholar
  26. 26.
    Mézard M, Parisi G, Virasoro MA (1987) Spin Glass Theory and beyond. World Scientific, SingaporeGoogle Scholar
  27. 27.
    Mézard M, Parisi G (1991) J de Phys I 4:809Google Scholar
  28. 28.
    Fisher DS (1986) Phys Rev Lett 56:1964ADSGoogle Scholar
  29. 29.
    Nature group (2007) Nature Material, vol. 6. Focus issue on MultiferroicsGoogle Scholar
  30. 30.
    Nattermann T (1983) J Phys C 16:4125ADSGoogle Scholar
  31. 31.
    Joanny JF, de Gennes PG (1984) J Chem Phys 81:552ADSGoogle Scholar
  32. 32.
    Gao H, Rice JR (1989) J Appl Mech 56:828zbMATHGoogle Scholar
  33. 33.
    Huse DA, Henley CL (1985) Phys Rev Lett 54:2708ADSGoogle Scholar
  34. 34.
    Kardar M (1985) Phys Rev Lett 55:2923ADSGoogle Scholar
  35. 35.
    Le Doussal P, Wiese K, Chauve P (2004) Phys Rev E 69:026112ADSGoogle Scholar
  36. 36.
    Giamarchi T, Kolton AB, Rosso A (2006) In: Miguel MC, Rubi JM (eds) Jamming, Yielding and Irreversible deformation in condensed matter. Springer, Berlin, p 91. arXiv:cond-mat/0503437
  37. 37.
    Yoshino H (1998) Phys Rev Lett 81:1493ADSGoogle Scholar
  38. 38.
    Rosso A, Krauth W (2002) Phys Rev B 65:12202ADSGoogle Scholar
  39. 39.
    Rosso A, Krauth W (2002) Phys Rev E 65:025101RADSGoogle Scholar
  40. 40.
    Petaja V et al (2006) Phys Rev E 73:94517ADSGoogle Scholar
  41. 41.
    Nelson DR (1978) Phys Rev B 18:2318ADSGoogle Scholar
  42. 42.
    Giamarchi T, Le Doussal P (1995) Phys Rev B 52:1242ADSGoogle Scholar
  43. 43.
    Fisher DS, Fisher MPA, Huse DA (1990) Phys Rev B 43:130ADSGoogle Scholar
  44. 44.
    Grier DG et al (1991) Phys Rev Lett 66:2270ADSGoogle Scholar
  45. 45.
    Kim P, Yao Z, Lieber CM (1996) Phys Rev Lett 77:5118ADSGoogle Scholar
  46. 46.
    Schilling A, Fisher RA, Crabtree GW (1996) Nature 382:791ADSGoogle Scholar
  47. 47.
    Nattermann T (1990) Phys Rev Lett 64:2454ADSGoogle Scholar
  48. 48.
    Korshunov SE (1993) Phys Rev B 48:3969ADSGoogle Scholar
  49. 49.
    Giamarchi T, Le Doussal P (1994) Phys Rev Lett 72:1530ADSGoogle Scholar
  50. 50.
    For a scalar displacement or isotropic elasticity the exponent is universal. When the full anistropy of the elastic constants is taken into account in the FRG equations [Bogner S, Emig T, Nattermann T (2001) Phys Rev B 63 174501] the possible variation of the exponent with the magnetic field is still less than a percent.Google Scholar
  51. 51.
    Carpentier D, Le Doussal P, Giamarchi T (1996) Europhys. Lett. 35:379ADSGoogle Scholar
  52. 52.
    Kierfeld J, Nattermann T, Hwa T (1997) Phys Rev B 55:626ADSGoogle Scholar
  53. 53.
    Fisher DS (1997) Phys Rev Lett 78:1964ADSGoogle Scholar
  54. 54.
    Gingras MJP, Huse DA (1996) Phys Rev B 53:15193ADSGoogle Scholar
  55. 55.
    Otterlo AV, Scalettar R, Zimányi G (1998) Phys Rev Lett 81:1497Google Scholar
  56. 56.
    Giamarchi T, Le Doussal P (1995) Phys Rev Lett 75:3372ADSGoogle Scholar
  57. 57.
    Yaron U et al (1994) Phys Rev Lett 73:2748ADSGoogle Scholar
  58. 58.
    Ling XS et al (2001) Phys Rev Lett 86:712ADSGoogle Scholar
  59. 59.
    Klein T et al (2001) Nature 413:404ADSGoogle Scholar
  60. 60.
    Ertas D, Nelson DR (1996) Phys C 272:79ADSGoogle Scholar
  61. 61.
    Giamarchi T, Le Doussal P (1997) Phys Rev B 55:6577ADSGoogle Scholar
  62. 62.
    Khaykovich B et al (1996) Phys Rev Lett 76:2555ADSGoogle Scholar
  63. 63.
    Deligiannis K et al (1997) Phys Rev Lett 79:2121ADSGoogle Scholar
  64. 64.
    Paltiel Y, Zeldov E, Myasoedov Y, Rappaport ML (2000) Phys Rev Lett 85:3712ADSGoogle Scholar
  65. 65.
    Avraham N et al (2001) Nature 411:451ADSGoogle Scholar
  66. 66.
    Zinn‐Justin J (1989) Quantum field theory and Critical Phenomena. Clarendon Press, OxfordGoogle Scholar
  67. 67.
    Kardar M, Parisi G, Zhang Y (1986) Phys Rev Lett 56:889zbMATHADSGoogle Scholar
  68. 68.
    Janssen HK (1976) Z Phys B 23:377ADSGoogle Scholar
  69. 69.
    Martin PC, Siggia ED, Rose HA (1973) Phys Rev A 8:423ADSGoogle Scholar
  70. 70.
    Larkin AI, Ovchinnikov YN (1979) J Low Temp Phys 34:409ADSGoogle Scholar
  71. 71.
    Nattermann T, Stepanow S, Tang LH, Leschhorn H (1992) J Phys 2:1483Google Scholar
  72. 72.
    Chauve P, Giamarchi T, Le Doussal P (2000) Phys Rev B 62:6241ADSGoogle Scholar
  73. 73.
    Fisher DS (1985) Phys Rev B 31:1396ADSGoogle Scholar
  74. 74.
    Narayan O, Fisher D (1993) Phys Rev B 48:7030ADSGoogle Scholar
  75. 75.
    Duemmer O, Krauth W (2005) arXiv:cond-mat/0501467
  76. 76.
    Kolton AB, Rosso A, Giamarchi T, Krauth W (2006) Phys Rev Lett 97:057001ADSGoogle Scholar
  77. 77.
    Bustingorry S, Kolton AB, Giamarchi T (2008) Europhys Lett 81:26005ADSGoogle Scholar
  78. 78.
    Larkin AI, Ovchinnikov YN (1974) Sov Phys JETP 38:854ADSGoogle Scholar
  79. 79.
    Schmidt A, Hauger W (1973) J Low Temp Phys 11:667ADSGoogle Scholar
  80. 80.
    Koshelev AE, Vinokur VM (1994) Phys Rev Lett 73:3580ADSGoogle Scholar
  81. 81.
    Giamarchi T, Le Doussal P (1996) Phys Rev Lett 76:3408ADSGoogle Scholar
  82. 82.
    Moon K et al (1997) Phys Rev Lett 77:2378Google Scholar
  83. 83.
    Kolton AB, Grønbech‐Jensen DDN (1999) Phys Rev Lett 83:3061Google Scholar
  84. 84.
    Fangohr H, Cox SJ, de Groot PAJ (2001) Phys Rev B 64:64505ADSGoogle Scholar
  85. 85.
    Pardo F et al (1998) Nature 396:348ADSGoogle Scholar
  86. 86.
    Balents L, Marchetti C, Radzihovsky L (1998) Phys Rev B 57:7705ADSGoogle Scholar
  87. 87.
    Le Doussal P, Giamarchi T (1998) Phys Rev B 57:11356ADSGoogle Scholar
  88. 88.
    Perruchot F et al (2000) Physica B 284:1984ADSGoogle Scholar
  89. 89.
    Anderson PW, Kim YB (1964) Rev Mod Phys 36:39ADSGoogle Scholar
  90. 90.
    Ioffe LB, Vinokur VM (1987) J Phys C 20:6149ADSGoogle Scholar
  91. 91.
    Nattermann T (1987) Europhys Lett 4:1241ADSGoogle Scholar
  92. 92.
    Feigelman M, Geshkenbein VB, Larkin AI, Vinokur V (1989) Phys Rev Lett 63:2303ADSGoogle Scholar
  93. 93.
    Chauve P, Giamarchi T, Le Doussal P (1998) Europhys Lett 44:110ADSGoogle Scholar
  94. 94.
    Kolton AB, Rosso A, Giamarchi T (2005) Phys Rev Lett 94:047002ADSGoogle Scholar
  95. 95.
    Fuchs DT et al (1998) Phys Rev Lett 80:4971ADSGoogle Scholar
  96. 96.
    Kolton AB, Rosso A, Giamarchi T (2005) Phys Rev Lett 95:180604ADSGoogle Scholar
  97. 97.
    Cugliandolo LF, Kurchan J, Bouchaud JP, Mezard M (1998) In: Young AP (ed) Spin Glasses and Random fields. World Scientific, SingaporeGoogle Scholar

Books and Reviews

  1. 98.
    Barabasi A-L, Stanley HE (1995) Fractal Concepts in Surface Growth. Cambridge University Press, CambridgezbMATHGoogle Scholar
  2. 99.
    Nelson DR (2002) Defects and Geometry in Condensed Matter Physics. Cambridge University Press, CambridgeGoogle Scholar
  3. 100.
    Young AP (ed) (1998) Spin Glasses and Random fields. World Scientific, SingaporeGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Thierry Giamarchi
    • 1
  1. 1.DPMC-MaNEPUniversity of GenevaGenevaSwitzerland