Skip to main content

Optical Methods for Acoustics and Vibration Measurements

  • Reference work entry
Springer Handbook of Acoustics

Part of the book series: Springer Handbooks ((SHB))

Abstract

Modern optical methods applicable to vibration analysis, monitoring bending-wave propagation in plates and shells as well as propagating acoustic waves in transparent media such as air and water are described. Field methods, which capture the whole object field in one recording, and point measuring (scanning) methods, which measure at one point (small area) at a time (but in that point as a function of time), will be addressed. Temporally, harmonic vibrations, multi-frequency repetitive motions and transient or dynamic motions are included.

Interferometric methods, such as time-average and real-time holographic interferometry, speckle interferometry methods such as television (TV) holography, pulsed TV holography and laser vibrometry, are addressed. Intensity methods such as speckle photography or speckle correlation methods and particle image velocimetry (PIV) will also be treated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 399.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CCD:

charge-coupled device

DSP:

digital signal processing

DSP:

digital speckle photography

DSPI:

digital speckle-pattern interferometry

EOH:

electro-optic holography

ESPI:

electronic speckle-pattern interferometry

LDA:

laser Doppler anemometry

LDV:

laser Doppler vibrometry

LP:

long-play vinyl record

NDT:

nondestructive testing

ODS:

operating deflexion shape

PC:

phase conjugation

PIV:

particle image velocimetry

PLIF:

planar laser-induced fluorescent

PM:

phase modulation

PS:

peak systolic

PS:

phase stepping

SI:

speckle interferometry

SP:

speckle photography

TR:

time reversal

TR:

treble ratio

References

  1. E.F.F. Chladni: Die Akustik (Breitkopf and Härtel, Leipzig 1802)

    Google Scholar 

  2. Lord Rayleigh: Theory of Sound, Vol. I and II (Dover, New York 1945)

    Google Scholar 

  3. F. Zernike: Das Phasenkontrastverfahren bei der Mikroskopischen Beobachtung, Tech. Phys. 16, 454 (1935)

    Google Scholar 

  4. M. Cagnet, M. Francon, J.C. Thrierr: Atlas de Phénomènes dʼOptique (Atlas of Optical Phenomena) (Springer, Berlin Heidelberg New York 1962)

    Google Scholar 

  5. M. Van Dyke: An Album of Fluid Motion (Parabolic, Stanford 1982)

    Google Scholar 

  6. G.S. Settles: Schlieren and Shadowgraph Techniques (Springer, Berlin Heidelberg New York 2001)

    MATH  Google Scholar 

  7. M.H. Horman: An application of wavefront reconstruction to Interferometry, Appl. Opt. 4, 333–336 (1965)

    Article  ADS  Google Scholar 

  8. J. Burch: The application of lasers in production engineering, Prod. Eng. 211, 282 (1965)

    Google Scholar 

  9. R.L. Powell, K.A. Stetson: Interferometric analysis by wavefront reconstruction, J. Opt. Soc. Am. 55, 1593–1598 (1965)

    Article  ADS  Google Scholar 

  10. K.A. Stetson, R.L. Powell: Interferometric hologram evaluation and real-time vibration analysis of diffuse objects, J. Opt. Soc. Am. 55, 1694–1695 (1965)

    Article  Google Scholar 

  11. D. Gabor: Microscopy by reconstructed wavefronts, Proc. R. Soc. London A 197, 454–487 (1949)

    Article  MATH  ADS  Google Scholar 

  12. C.M. Vest: Holographic Interferometry (Wiley, New York 1979)

    Google Scholar 

  13. K. Suzuki, B.P. Hildebrandt: Holographic Interferometry with Acoustic Waves. In: Acoustical Holography, ed. by N. Booth (Plenum, New York 1975) pp. 577–595

    Google Scholar 

  14. R.K. Erf (Ed.): Speckle Metrology (Academic, New York 1978)

    Google Scholar 

  15. J.N. Butters, J.A. Leendertz: Holographic and videotechniques applied to engineering measurements, J. Meas. Control 4, 349–354 (1971)

    Google Scholar 

  16. O. Schwomma: Austrian patent no. 298830 (1972)

    Google Scholar 

  17. A. Mocovski, D. Ramsey, L.F. Schaefer: Time lapse interferometry and contouring using television systems, Appl. Opt. 10, 2722–2727 (1971)

    Article  ADS  Google Scholar 

  18. G.Å.  Slettemoen: Electronic speckle pattern interferometric systems based on a speckle reference beam, Appl. Opt. 19, 616–623 (1980)

    Article  ADS  Google Scholar 

  19. O. J Lökberg, G.Å. Slettemoen: Improved fringe definition by speckle averaging in ESPI, ICO-13 Proceedings (Sapporo 1984) pp. 116–117

    Google Scholar 

  20. O.J. Lökberg: Sound in flight: measurement of sound fields by use of TV holography, Appl. Opt. 33(13), 2574–2584 (1994)

    Article  ADS  Google Scholar 

  21. K. Högmoen, O.J. Lökberg: Detection and measurement of small vibrations using electronic speckle pattern interferometry, Appl. Opt. 16, 1869–1875 (1976)

    Article  Google Scholar 

  22. K. Creath: Phase-shifting speckle interferometry, Appl. Opt 13, 2693–2703 (1985)

    Google Scholar 

  23. T.M. Kreis: Computer-aided evaluation of fringe patterns, Opt. Lasers Eng. 19, 221–240 (1993)

    Article  Google Scholar 

  24. J.M. Huntley: Automated analysis of speckle interferograms. In: Digital Speckle Interferometry and Related Techniques, ed. by K. Rastogi (Wiley, New York 2001), Chap. 2

    Google Scholar 

  25. K.A. Stetson, W.R. Brohinsky: Electro-optic holography and its application to hologram interferometry, Appl. Opt. 24, 3631–3637 (1985)

    Article  ADS  Google Scholar 

  26. R. Spooren: Double-pulse subtraction TV holography, Opt. Eng. 32, 1000–1007 (1992)

    Article  ADS  Google Scholar 

  27. G. Pedrini, B. Pfister, H.J. Tiziani: Double-pulse electronic speckle interferometry, J. Mod. Opt. 40, 89–96 (1993)

    Article  ADS  Google Scholar 

  28. A. Davila, D. Kerr, G.H. Kaufmann: Fast electro-optical system for pulsed ESPI carrier fringe generation, Opt. Commun. 123, 457–464 (1996)

    Article  ADS  Google Scholar 

  29. Y. Y. Hung, C.E. Taylor: Speckle-shearing interferometric camera – a tool for measurement of derivatives of surface displacements, Soc. Photo-Opt. Instrum. Eng. 41, 169–175 (1973)

    Google Scholar 

  30. Y.Y. Hung, C.Y. Liang: Image-shearing camera for direct measurement of surface strain, Appl. Opt. 18, 1046–1051 (1979)

    Article  ADS  Google Scholar 

  31. Y. Y Hung: Electronic Shearography versus ESPI for Nondestructive Evaluation, Moire Techniques, Holographic Interferometry, Optical NDT and Applications to Fluid Dynamics proc. Soc. Photo-Opt. Instr. Eng. 1554B, 692–700 (1991)

    Google Scholar 

  32. N.K. Mohan, H. Saldner, N.E. Molin: Electronic speckle pattern interferometry for simultaneous measurement of out-of-plane displacement and slope, Opt. Lett. 18(21), 1861–1863 (1993)

    Article  ADS  Google Scholar 

  33. N.K. Mohan, H.O. Saldner, N.-E. Molin: Electronic shearography applied to static and vibrating objects, Opt. commun. 108, 197–202 (1994)

    Article  ADS  Google Scholar 

  34. Y. Yeh, H.Z. Cummings: Localized fluid flow measurements with a He-Ne laser spectrometer, Appl. Phys. Lett. 4, 176–178 (1964)

    Article  ADS  Google Scholar 

  35. L.E. Drain: Laser Doppler Technique (Wiley Interscience, New York 1980)

    Google Scholar 

  36. P. Castellini, G.M. Revel, E.P. Tomasini: Laser doppler vibrometry: a review of advances and applications, Shock Vib. Dig. 30(6), 443–456 (1998)

    Article  Google Scholar 

  37. R.S. Sirohi (Ed.): Speckle Metrology (Marcel Decker, New York 1993)

    Google Scholar 

  38. R.K. Erf. (Ed.): Speckle Metrology (Academic, New York 1978)

    Google Scholar 

  39. P.M. Rastogi (Ed.): Digital Speckle Pattern Interferometry and Related Techniques (Wiley, Chichester 2001)

    Google Scholar 

  40. R. Jones, C. Wykes: Holographic and Speckle Interferometry, 2nd ed. (Cambridge Univ. Press, Cambridge 1989)

    Google Scholar 

  41. N.A. Fomin: Speckle Photography for Fluid Mechanics Measurements (Springer, Berlin Heidelberg New York 1998)

    MATH  Google Scholar 

  42. M. Raffel, C. Willert, J. Kompenhans: Particle Image Velocimetry (Springer, Berlin Heidelberg New York 1998)

    Google Scholar 

  43. Lord Rayleigh: On the Manufacture and Theory of Diffraction Gratings, Philos. Mag. XLVII, 193–205 (1874)

    Google Scholar 

  44. G. Indebetouw, R. Czarnek. (Eds.): Selected Papers on Optical Moiré and Applications (SPIE, Bellingham 1992)

    Google Scholar 

  45. C. Forno: Deformation measurement using high resolution Moiré photography, Opt. Lasers Eng. 7, 189–212 (1988)

    Article  ADS  Google Scholar 

  46. K.J. Gåsvik: Optical metrology, 3rd edn. (Wiley, New York 2002)

    Book  Google Scholar 

  47. T. Kreis: Holographic Interferometry Principles and Methods (Academie Verlag, Berlin 1996)

    Google Scholar 

  48. P. Hariharan: Optical Holography. Principles, Techniques and Applications (Cambridge Univ. Press, Cambridge 1996)

    Google Scholar 

  49. J.A. Lendertz: Interferometric displacement measurement on scattered surface utilizing speckle effects, J. Phys. E. 3, 214–218 (1970)

    Article  ADS  Google Scholar 

  50. N. Abramson: The Making and Evaluation of Holograms (Academic, New York 1981)

    Google Scholar 

  51. E. Jansson, N.-E. Molin, H. Sundin: Resonances of a Violin Body Studied by Hologram Interferometry and Acoustical Methods, Phys. Scripta 2, 243–256 (1970)

    Article  ADS  Google Scholar 

  52. L. Cremer: The Physics of the Violin (MIT Press, Cambridge 1984), (Physik der Geige (1981))

    Google Scholar 

  53. W. Reinecke, L. Cremer: J. Acoust. Soc. Am. 48, 988 (1970)

    Article  ADS  Google Scholar 

  54. E.N. Leith, J. Upatnieks: Reconstructed wave fronts and communication theory, J. Opt. Soc. Am. 52, 1123–1130 (1962)

    Article  ADS  Google Scholar 

  55. K. Biedermann, N.-E. Molin: Combining hypersensitization and in situ processing for time-average observation in real time hologram interferometry, J. Phys. E 3, 669–680 (1970)

    Article  ADS  Google Scholar 

  56. N.H. Fletcher, T.D. Rossing: The Physics of Musical Instruments, 2nd edn. (Springer, New York 1991)

    Google Scholar 

  57. E.V. Jansson: A study of acoustical and hologram interferometric measurements on the top plate vibrations of a guitar, Acustica 25, 95–100 (1971)

    Google Scholar 

  58. T.D. Rossing, F. Engström: Using TV holography with phase modulation to determine the deflection phase in a baritone guitar. In: Proceedings of the International Symposium on Musical Acoustics 1998 (ISMA-98), Leavenworth, Washington, USA, June 26-July, ed. by D. Keefe, T. Rossing, C. Schmidt (Acoust. Soc. Am., Sunnyside 1998)

    Google Scholar 

  59. K.A. Stetson.: Fringe-shifting technique for numerical analysis of time-average holograms of vibrating objects, J. Opt. Soc. Am. 5, 1472–1476 (1988)

    Article  ADS  Google Scholar 

  60. A. Runnemalm: Standing waves in a rectangular sound box recorded by TV holography, J Sound Vib. 224(4), 689–707 (1999)

    Article  ADS  Google Scholar 

  61. A. Runnemalm, N.-E. Molin: Operating deflection shapes of the plates and standing aerial waves in a violin and a guitar model, Acustica Acta Acust. 86(5), 883–890 (2000)

    Google Scholar 

  62. T. ten Volde: On the validity and application of reciprocity in acoustical mechano-acoustical and other systems, Acustica 28, 23–32 (1973)

    Google Scholar 

  63. H.O. Saldner, N.-E. Molin, E.V. Jansson: Sound distribution from forced vibration modes of a violin measured by reciprocity and TV holography, CAS J. 3(4), 10–16 (1997), (Ser. II)

    Google Scholar 

  64. G. Weinreich: Directional tone color, J. Acoust. Soc. Am. 101, 4 (1997)

    Article  Google Scholar 

  65. N.-E. Molin, A.O. Wåhlin, E.V. Jansson: Transient wave response of the violin body, J. Acoust. Soc. Am. 88(5), 2479–2481 (1990)

    Article  ADS  Google Scholar 

  66. H. O. Saldner, N-E Molin, K. A. Stetson: Fourier-transform evaluation of phase data in spatially phase-biased TV holograms, Appl. Opt. 35(2), 332–336 (1996)

    Article  ADS  Google Scholar 

  67. P. Gren: Four-pulse interferometric recordings of transient events by pulsed TV holography, Opt. Lasers Eng. 40, 517–528 (2003)

    Article  Google Scholar 

  68. O.J. Lökberg, M. Espeland, H.M. Pedersen: Tomographic reconstruction of sound fields using TV holography, Appl. Opt. 34(10), 1640–1645 (1995)

    Article  ADS  Google Scholar 

  69. P. Gren, S. Schedin, X. Li: Tomographic reconstruction of transient acoustic fields recorded by pulsed TV holography, Appl. Opt. 37(5), 834–840 (1998)

    Article  ADS  Google Scholar 

  70. A.O. Wåhlin, P.O. Gren, N.-E. Molin: On structure-borne sound: Experiments showing the initial transient acoustic wave field generated by an impacted plate, J. Acoust. Soc. Am. 96(5), 2791–2797 (1994)

    Article  ADS  Google Scholar 

  71. S. Schedin, P. Gren, M. Finnström: Measurement of the density field around an airgun muzzle by pulsed TV holography, Proc. EOS/SPIE 3823, 13–19 (1999)

    Article  ADS  Google Scholar 

  72. N.-E. Molin, L. Zipser: Optical methods of today for visualize sound fields in musical acoustics, Acta Acust./Acustica 90, 618–628 (2004)

    Google Scholar 

  73. M. Sjödahl: Digital speckle photography. In: Digital Speckle Pattern Interferometry and Related Techniques, ed. by P.M. Rastogi (Wiley, Chichester 2001), (Chap. 5)

    Google Scholar 

  74. M. Sjödahl: Whole-field speckle strain sensor, ISCON99 Yokohama. SPIE 3740(84-87), 16–18 (1999)

    Google Scholar 

  75. E.-L.Johansson, L. Benckert, M. Sjödahl: Phase object data obtained from defocused laser speckle displacement, Appl. Opt. 43(16), 3229–3234 (2004)

    Article  ADS  Google Scholar 

  76. E.-L. Johansson, L. Benckert, M. Sjödahl: Phase object data obtained by pulsed TV holography and defocused laser speckle displacement, Appl. Opt. 43(16), 3235–3240 (2004)

    Article  ADS  Google Scholar 

  77. M. Raffel, C. Willert, J. Kompengans: Particle Image Velocimetry – A practical Guide (Springer, Berlin Heidelberg ew York 1998)

    Google Scholar 

  78. K.D. Hinsch: Particle image velocimetry, Speckle Metrology  ed. by R.J. Sirohi (Marcel Decker, New York 1993)

    Google Scholar 

  79. P. Synnergren, L. Larsson, T.S. Lundström: Digital speckle photography: visualization of mesoflow through clustered fiber networks, Appl. Opt. 41(7), 1368–1373 (2002)

    Article  ADS  Google Scholar 

  80. E.-L. Johansson, L. Benckert, P. Gren: Particle image velocimetry (PIV) measurements of velocity fields at an organ pipe labium, TRITA-TMH 2003:8 (2003)

    Google Scholar 

  81. D.J. Skulina, D.M Campbell, C.A. Greated: Measurement of the Termination Impedance of a tube Using Particle Image Velocimetry, TRITA-TMH 2003:8 (2003)

    Google Scholar 

  82. E. Espositi, M. Marassi: Quantitative assessment of air flow from professional bass reflex systems ports by particle image velocimetry and laser doppler anemometry, TRITA-TMH 2003:8 (2003)

    Google Scholar 

  83. T.R. Moore: A simple design for an electronic speckle pattern interferometer, Am. J. Phys. 72, 11 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nils-Erik Molin Dr. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science+Business Media, LLC New York

About this entry

Cite this entry

Molin, NE. (2007). Optical Methods for Acoustics and Vibration Measurements. In: Rossing, T. (eds) Springer Handbook of Acoustics. Springer Handbooks. Springer, New York, NY. https://doi.org/10.1007/978-0-387-30425-0_27

Download citation

Publish with us

Policies and ethics