Skip to main content

4.7 Ion Transport and Energy Metabolism

  • Reference work entry
  • First Online:
Handbook of Neurochemistry and Molecular Neurobiology

Abstract:

There is an intimate relationship between ion transport and energy metabolism in the brain. All ion transport is driven directly or indirectly by ATP, and the support of ion homeostasis represents the largest demand on energy production in the brain. Failure of ion homeostasis because of the interruption of energy generation has devastating consequences. This chapter reviews the principal mechanisms responsible for maintaining homeostasis of Na+, K+, and Ca2+, and the mechanisms controlling Zn2+ as an example of trace metal transport. The chapter also discusses the interplay between ion loads and energy production. Finally, we present a description of some of the mechanisms that link pathophysiological states with alterations in ion transport and energy metabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

[Ca2+]e, [Na+]e, [K+]e, [Clu]e :

extracellular concentrations of Ca2+, Na+, K+ and glutamate

[Ca2+]c, [Na+]c, [Zn2+]c :

cytosolic concentrations of Ca2+, Na+, Zn2+

pHi :

intracellular pH

[ATP]i :

intracellular ATP concentration

Na+/K+-ATPase:

sodium/potassium ATPase

Na+/Ca2+ :

sodium/potassium exchanger

Na+/H+ :

sodium/proton exchanger

ER:

endoplasmic reticulum

PMCA:

plasma membrane Ca2+ ATPase

SERCA:

sarco(endo)plasmic reticulum Ca2+ ATPase

RyR:

ryanodine receptor

IP3 :

1,4,5-inositol trisphosphate

IP3R:

1,4,5-inositol trisphosphate receptor

CCE:

capacitative Ca2+ entry

ΔΨm :

mitochondrial membrane potential

ROS:

reactive oxygen species

NMDA:

N-methyl-d-aspartate

FCCP:

carbonyl cyanide p-trifluoromethoxyphenyl hydrazone

MK801:

(+)5-methyl-10-11-dihydro-5N-dibenzocyclohepten-5,10-imine

CNQX:

6-cyano-7-nitroquinoxaline-2,3-dione

CDF:

cation diffusion facilitator

GAPDH:

glyceraldehyde-3-phosphate dehydrogenase

KGDHC:

alpha-ketoglutarate dehydrogenase complex

LAPD:

lipoamide dehydrogenase

MT:

metallothionein

ROS:

reactive oxygen species

ZIP:

zinc-responsive transporter-, iron-responsive transporter-like protein

ZnT:

zinc transporter

VCaCh:

voltage-gated Ca2+ channel

VNaCh:

voltage-gated sodium channel

LGCh:

ligand-gated channel

KCh:

potassium channel

MCaU:

mitochondrial calcium uniporter

References

  • Aizenman E, Stout AK, Hartnett KA, Dineley KE, McLaughlin B, et al. 2000. Induction of neuronal apoptosis by thiol oxidation: Putative role of intracellular zinc release. J Neurochem 75: 1878–1888.

    PubMed  CAS  Google Scholar 

  • Ames A 3rd. 2000. CNS energy metabolism as related to function. Brain Res Rev 34: 42–68.

    PubMed  CAS  Google Scholar 

  • Aoki C, Milner TA, Sheu KF, Blass JP, Pickel VM. 1987. Regional distribution of astrocytes with intense immunoreactivity for glutamate dehydrogenase in rat brain: Implications for neuron–glia interactions in glutamate transmission. J Neurosci 7: 2214–2231.

    PubMed  CAS  Google Scholar 

  • Attwell D, Laughlin SB. 2001. An energy budget for signaling in the grey matter of the brain. J Cereb Blood Flow Metab 21: 1133–1145.

    PubMed  CAS  Google Scholar 

  • Baba-Aissa F, Raeymaekers L, Wuytack F, De Greef C, Missiaen L, et al. 1996. Distribution of the organellar Ca2+ transport ATPase SERCA2 isoforms in the cat brain. Brain Res 743: 141–153.

    PubMed  CAS  Google Scholar 

  • Babcock DF, Herrington J, Goodwin PC, Park YB, Hille B. 1997. Mitochondrial participation in the intracellular Ca2+ network. J Cell Biol 136: 833–844.

    PubMed  CAS  Google Scholar 

  • Baker PF, Blaustein MP, Hodgkin AL, Steinhardt RA. 1969. The influence of calcium on sodium efflux in squid axons. J Physiol 200: 431–458.

    PubMed  CAS  Google Scholar 

  • Bano D, Young KW, Guerin CJ, Lefeuvre R, Rothwell NJ, et al. 2005. Cleavage of the plasma membrane Na+/Ca2+ exchanger in excitotoxicity. Cell 120: 275–285.

    PubMed  CAS  Google Scholar 

  • Beattie JH, Wood AM, Newman AM, Bremner I, Choo KH, et al. 1998. Obesity and hyperleptinemia in metallothionein (-I and -II) null mice. Proc Natl Acad Sci USA 95: 358–363.

    PubMed  CAS  Google Scholar 

  • Beauge L. 1978. Activation by lithium ions of the inside sodium sites in Na+/K+-ATPase. Biochim Biophys Acta 527: 472–484.

    PubMed  CAS  Google Scholar 

  • Benham CD, Evans ML, McBain CJ. 1992. Ca2+ efflux mechanisms following depolarization evoked calcium transients in cultured rat sensory neurons. J Physiol 455: 567–583.

    PubMed  CAS  Google Scholar 

  • Benveniste H, Drejer J, Schousboe A, Diemer NH. 1984. Elevation of the extracellular concentrations of glutamate and aspartate in rat hippocampus during transient cerebral ischemia monitored by intracerebral microdialysis. J Neurochem 43: 1369–1374.

    PubMed  CAS  Google Scholar 

  • Berberian G, Asteggiano C, Pham C, Roberts S, Beauge L. 2002. MgATP and phosphoinositides activate Na+/Ca2+ exchange in bovine brain vesicles. Comparison with other Na+/Ca2 + exchangers. Pflugers Arch 444: 677–684.

    CAS  Google Scholar 

  • Blaustein MP, Lederer WJ. 1999. Sodium/calcium exchange: Its physiological implications. Physiol Rev 79: 763–854.

    PubMed  CAS  Google Scholar 

  • Blaustein MP, Santiago EM. 1977. Effects of internal and external cations and of ATP on sodium–calcium and calcium–calcium exchange in squid axons. Biophys J 20: 79–111.

    PubMed  CAS  Google Scholar 

  • Blaustein MP, Juhaszova M, Golovina VA, Church PJ, Stanley EF. 2002. Na/Ca exchanger and PMCA localization in neurons and astrocytes: Functional implications. Ann N Y Acad Sci 976: 356–366.

    PubMed  CAS  Google Scholar 

  • Boitier E, Rea R, Duchen MR. 1999. Mitochondria exert a negative feedback on the propagation of intracellular Ca2+ waves in rat cortical astrocytes. J Cell Biol 145: 795–808.

    PubMed  CAS  Google Scholar 

  • Boron WF, Hogan E, Russell JM. 1988. pH-sensitive activation of the intracellular pH regulation system in squid axons by ATP-γ-S. Nature 332: 262–265.

    PubMed  CAS  Google Scholar 

  • Bozym RA, Thompson RB, Stoddard AK, Fierke C. 2006. Measuring picomolar intracellular exchangeable zinc in PC-12 cells using a ratiometric fluorescence biosensor. ACS Chem Biol 1: 103–111.

    PubMed  CAS  Google Scholar 

  • Brines ML, Robbins RJ. 1993. Cell-type specific expression of Na+/K+-ATPase catalytic subunits in cultured neurons and glia: Evidence for polarized distribution in neurons. Brain Res 631: 1–11.

    PubMed  CAS  Google Scholar 

  • Brines ML, Gulanski BI, Gilmore- Hebert M, Greene AL, Benz EJ Jr, et al. 1991. Cytoarchitectural relationships between [3H]ouabain binding and mRNA for isoforms of the sodium pump catalytic subunit in rat brain. Brain Res Mol Brain Res 10: 139–150.

    PubMed  CAS  Google Scholar 

  • Brown AM, Fern R, Jarvinen JP, Kaila K, Ransom BR. 1998. Changes in [Ca2+]0 during anoxia in CNS white matter. Neuroreport 9: 1997–2000.

    PubMed  CAS  Google Scholar 

  • Brown AM, Kristal BS, Effron MS, Shestopalov AI, Ullucci PA, et al. 2000. Zn2+ inhibits α-ketoglutarate-stimulated mitochondrial respiration and the isolated α-ketoglutarate dehydrogenase complex. J Biol Chem 275: 13441–13447.

    PubMed  CAS  Google Scholar 

  • Budd SL, Nicholls DG. 1996a. A reevaluation of the role of mitochondria in neuronal Ca2+ homeostasis. J Neurochem 66: 403–411.

    CAS  Google Scholar 

  • Budd SL, Nicholls DG. 1996b. Mitochondria, calcium regulation, and acute glutamate excitotoxicity in cultured cerebellar granule cells. J Neurochem 67: 2282–2291.

    CAS  Google Scholar 

  • Burette A, et al. 2003. Isoform-specific distribution of the plasma membrane Ca2+ ATPase in the rat brain. J Comp Neurol 467(4): 464–476.

    PubMed  CAS  Google Scholar 

  • Carafoli E. 1994. Biogenesis: Plasma membrane calcium ATPase: 15 years of work on the purified enzyme. FASEB J 8: 993–1002.

    PubMed  CAS  Google Scholar 

  • Carafoli E. 2002. Calcium signaling: A tale for all seasons. Proc Natl Acad Sci USA 99: 1115–1122.

    PubMed  CAS  Google Scholar 

  • Carafoli E, Garcia-Martin E, Guerini D. 1996. The plasma membrane calcium pump: Recent developments and future perspectives. Experientia 52: 1091–1100.

    PubMed  CAS  Google Scholar 

  • Carriedo SG, Yin HZ, Sensi SL, Weiss JH. 1998. Rapid Ca2+ entry through Ca2+-permeable AMPA/kainate channels triggers marked intracellular Ca2+ rises and consequent oxygen radical production. J Neurosci 18: 7727–7738.

    PubMed  CAS  Google Scholar 

  • Castilho RF, Hansson O, Ward MW, Budd SL, Nicholls DG. 1998. Mitochondrial control of acute glutamate excitotoxicity in cultured cerebellar granule cells. J Neurosci 18: 10277–10286.

    PubMed  CAS  Google Scholar 

  • Castilho RF, Ward MW, Nicholls DG. 1999. Oxidative stress, mitochondrial function, and acute glutamate excitotoxicity in cultured cerebellar granule cells. J Neurochem 72: 1394–1401.

    PubMed  CAS  Google Scholar 

  • Chang DT, Honick AS, Reynolds IJ. 2006. Mitochondrial trafficking to synapses in cultured primary cortical neurons. J Neurosci 26: 7035–7045.

    PubMed  CAS  Google Scholar 

  • Chaudhary J, Walia M, Matharu J, Escher E, Grover AK. 2001. Caloxin: A novel plasma membrane Ca2+ pump inhibitor. Am J Physiol Cell Physiol 280: C1027–C1030.

    PubMed  CAS  Google Scholar 

  • Chen NH, Reith ME, Quick MW. 2004. Synaptic uptake and beyond: The sodium- and chloride-dependent neurotransmitter transporter family SLC6. Pflugers Arch 447: 519–531.

    PubMed  CAS  Google Scholar 

  • Cheng C, Reynolds IJ. 1998. Calcium-sensitive fluorescent dyes can report increases in intracellular free zinc concentration in cultured forebrain neurons. J Neurochem 71: 2401–2410.

    PubMed  CAS  Google Scholar 

  • Chinopoulos C, Gerencser AA, Doczi J, Fiskum G, Adam-Vizi V. 2004. Inhibition of glutamate-induced delayed calcium deregulation by 2-APB and La3+ in cultured cortical neurones. J Neurochem 91: 471–483.

    PubMed  CAS  Google Scholar 

  • Choi DW. 1987. Ionic dependence of glutamate neurotoxicity. J Neurosci 7: 369–379.

    PubMed  CAS  Google Scholar 

  • Choi DW, Koh JY. 1998. Zinc and brain injury. Annu Rev Neurosci 21: 347–375.

    PubMed  CAS  Google Scholar 

  • Choi DW, Koh JY, Peters S. 1988. Pharmacology of glutamate neurotoxicity in cortical cell culture: Attenuation by NMDA antagonists. J Neurosci 8: 185–196.

    PubMed  CAS  Google Scholar 

  • Clausen T, Van Hardeveld C, Everts ME. 1991. Significance of cation transport in control of energy metabolism and thermogenesis. Physiol Rev 71: 733–774.

    PubMed  CAS  Google Scholar 

  • Cole TB, Martyanova A, Palmiter RD. 2001. Removing zinc from synaptic vesicles does not impair spatial learning, memory, or sensorimotor functions in the mouse. Brain Res 891: 253–265.

    PubMed  CAS  Google Scholar 

  • Cole TB, Robbins CA, Wenzel HJ, Schwartzkroin PA, Palmiter RD. 2000. Seizures and neuronal damage in mice lacking vesicular zinc. Epilepsy Res 39: 153–169.

    PubMed  CAS  Google Scholar 

  • Cole TB, Wenzel HJ, Kafer KE, Schwartzkroin PA, Palmiter RD. 1999. Elimination of zinc from synaptic vesicles in the intact mouse brain by disruption of the ZnT3 gene. Proc Natl Acad Sci USA 96: 1716–1721.

    PubMed  CAS  Google Scholar 

  • Crane RK, Sols A. 1953. The association of hexokinase with particulate fractions of brain and other tissue homogenates. J Biol Chem 203: 273–292.

    PubMed  CAS  Google Scholar 

  • Dawis SM, Walseth TF, Deeg MA, Heyman RA, Graeff RM, et al. 1989. Adenosine triphosphate utilization rates and metabolic pool sizes in intact cells measured by transfer of 18O from water. Biophys J 55: 79–99.

    PubMed  CAS  Google Scholar 

  • de Erausquin GA, Manev H, Guidotti A, Costa E, Brooker G. 1990. Gangliosides normalize distorted single-cell intracellular free Ca2+ dynamics after toxic doses of glutamate in cerebellar granule cells. Proc Natl Acad Sci USA 87: 8017–8021.

    PubMed  CAS  Google Scholar 

  • Dean RD. 1941. Theories of electrolyte equilibrium in muscle. Biol Symp 3: 331–348.

    CAS  Google Scholar 

  • Deliconstantinos G. 1988. Structure–activity relationship of cholesterol and steroid hormones with respect to their effects on the Ca2+-stimulated ATPase and lipid fluidity of synaptosomal plasma membranes from dog and rabbit brain. Comp Biochem Physiol B 89: 585–594.

    PubMed  CAS  Google Scholar 

  • Devinney MJ 2nd, Reynolds IJ, Dineley KE. 2005. Simultaneous detection of intracellular free calcium and zinc using fura-2FF and FluoZin-3. Cell Calcium 37: 225–232.

    PubMed  CAS  Google Scholar 

  • Dineley KE, Malaiyandi LM, Reynolds IJ. 2002. A reevaluation of neuronal zinc measurements: Artifacts associated with high intracellular dye concentration. Mol Pharmacol 62: 618–627.

    PubMed  CAS  Google Scholar 

  • Dineley KE, Richards LL, Votyakova TV, Reynolds IJ. 2005. Zinc causes loss of membrane potential and elevates reactive oxygen species in rat brain mitochondria. Mitochondrion 5: 55–65.

    PubMed  CAS  Google Scholar 

  • Dineley KE, Scanlon JM, Kress GJ, Stout AK, Reynolds IJ. 2000. Astrocytes are more resistant than neurons to the cytotoxic effects of increased [Zn2+]i. Neurobiol Dis 7: 310–320.

    PubMed  CAS  Google Scholar 

  • DiPolo R. 1978. Ca-pump driven by ATP in squid axons. Nature 274: 390–392.

    PubMed  CAS  Google Scholar 

  • DiPolo R, Beauge L. 2006. Sodium/calcium exchanger: Influence of metabolic regulation on ion carrier interactions. Physiol Rev 86: 155–203.

    PubMed  CAS  Google Scholar 

  • Dubinsky JM, Rothman SM. 1991. Intracellular calcium concentrations during “chemical hypoxia” and excitotoxic neuronal injury. J Neurosci 11: 2545–2551.

    PubMed  CAS  Google Scholar 

  • Duchen MR. 2004. Mitochondria in health and disease: Perspectives on a new mitochondrial biology. Mol Aspects Med 25: 365–451.

    PubMed  CAS  Google Scholar 

  • Dunham ET, Glynn IM. 1961. Adenosinetriphosphatase activity and the active movements of alkali metal ions. J Physiol 156: 274–293.

    PubMed  CAS  Google Scholar 

  • Dykens JA. 1994. Isolated cerebral and cerebellar mitochondria produce free radicals when exposed to elevated CA2+ and Na+: Implications for neurodegeneration. J Neurochem 63: 584–591.

    PubMed  CAS  Google Scholar 

  • Erecinska M, Dagani F. 1990. Relationships between the neuronal sodium/potassium pump and energy metabolism. Effects of K+, Na+, and adenosine triphosphate in isolated brain synaptosomes. J Gen Physiol 95: 591–616.

    PubMed  CAS  Google Scholar 

  • Erecinska M, Silver IA. 1989. ATP and brain function. J Cereb Blood Flow Metab 9: 2–19.

    PubMed  CAS  Google Scholar 

  • Erecinska M, Silver IA. 1994. Ions and energy in mammalian brain. Prog Neurobiol 43: 37–71.

    PubMed  CAS  Google Scholar 

  • Fliss H, Menard M. 1992. Oxidant-induced mobilization of zinc from metallothionein. Arch Biochem Biophys 293: 195–199.

    PubMed  CAS  Google Scholar 

  • Folke M, Sestoft L. 1977. Thyroid calorigenesis in isolated, perfused rat liver: Minor role of active sodium-potassium transport. J Physiol 269: 407–419.

    PubMed  CAS  Google Scholar 

  • Frederickson CJ, Koh JY, Bush AI. 2005. The neurobiology of zinc in health and disease. Nat Rev Neurosci 6: 449–462.

    PubMed  CAS  Google Scholar 

  • Gaither LA, Eide DJ. 2000. Functional expression of the human hZIP2 zinc transporter. J Biol Chem 275: 5560–5564.

    PubMed  CAS  Google Scholar 

  • Gaither LA, Eide DJ. 2001. Eukaryotic zinc transporters and their regulation. Biometals 14: 251–270.

    PubMed  CAS  Google Scholar 

  • Garrahan P, Rega A. 1990. Plasma Membrane Calcium Pump In: Intracellular calcium regulation. Felix Bronner, editor.New York: Wiley-Liss, pp. 271-303.

    Google Scholar 

  • Gazaryan IG, Krasnikov BF, Ashby GA, Thorneley RN, Kristal BS, et al. 2002. Zinc is a potent inhibitor of thiol oxidoreductase activity and stimulates reactive oxygen species production by lipoamide dehydrogenase. J Biol Chem 277: 10064–10072.

    PubMed  CAS  Google Scholar 

  • Glynn IM. 1985. The Na+/K+-transporting adenosine triphosphatase. The Enzymes of Biological Membranes. 2nd edition. Martonosi AN. editor. Plenum Press, New York, 3: 35–114.

    Google Scholar 

  • Glynn IM, Karlish SJ. 1975. The sodium pump. Annu Rev Physiol 37: 13–55.

    PubMed  CAS  Google Scholar 

  • Graf E, Verma AK, Gorski JP, Lopaschuk G, Niggli V, et al. 1982. Molecular properties of calcium-pumping ATPase from human erythrocytes. Biochemistry 21: 4511–4516.

    PubMed  CAS  Google Scholar 

  • Gray JH, Owen RP, Giacomini KM. 2004. The concentrative nucleoside transporter family, SLC28. Pflugers Arch 447: 728–734.

    PubMed  CAS  Google Scholar 

  • Grynkiewicz G, Poenie M, Tsien RY. 1985. A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem 260: 3440–3450.

    PubMed  CAS  Google Scholar 

  • Guerini D. 1998a. The Ca2+ pumps and the Na+/Ca2+ exchangers. Biometals 11: 319–330.

    CAS  Google Scholar 

  • Guerini D. 1998b. The significance of the isoforms of plasma membrane calcium ATPase. Cell Tissue Res 292: 191–197.

    CAS  Google Scholar 

  • Guerini D, Garcia-Martin E, Gerber A, Volbracht C, Leist M, et al. 1999. The expression of plasma membrane Ca2+ pump isoforms in cerebellar granule neurons is modulated by Ca2+. J Biol Chem 274: 1667–1676.

    PubMed  CAS  Google Scholar 

  • Hagenbuch B, Dawson P. 2004. The sodium bile salt cotransport family SLC10. Pflugers Arch 447: 566–570.

    PubMed  CAS  Google Scholar 

  • Hansen AJ. 1985. Effect of anoxia on ion distribution in the brain. Physiol Rev 65: 101–148.

    PubMed  CAS  Google Scholar 

  • Hao L, Rigaud JL, Inesi G. 1994. Ca2+/H+ countertransport and electrogenicity in proteoliposomes containing erythrocyte plasma membrane Ca-ATPase and exogenous lipids. J Biol Chem 269: 14268–14275.

    PubMed  CAS  Google Scholar 

  • Hartley Z, Dubinsky JM. 1993. Changes in intracellular pH associated with glutamate excitotoxicity. J Neurosci 13: 4690–4699.

    PubMed  CAS  Google Scholar 

  • Hasselbach W, Makinose M. 1961. The calcium pump of the “relaxing granules” of muscle and its dependence on ATP-splitting. Biochem Z 333: 518–528.

    PubMed  CAS  Google Scholar 

  • Hediger MA, Romero MF, Peng JB, Rolfs A, Takanaga H, et al. 2004. The ABCs of solute carriers: Physiological, pathological, and therapeutic implications of human membrane transport proteins. Introduction. Pflugers Arch 447: 465–468.

    CAS  Google Scholar 

  • Hertz L, Dienel GA. 2002. Energy metabolism in the brain. Int Rev Neurobiol 51: 1–102.

    PubMed  CAS  Google Scholar 

  • Hertz L, Peng L, Dienel GA. 2006. Energy metabolism in astrocytes: High rate of oxidative metabolism and spatiotemporal dependence on glycolysis/glycogenolysis. J Cereb Blood Flow Metab.

    Google Scholar 

  • Hevner RF, Duff RS, Wong- Riley MT. 1992. Coordination of ATP production and consumption in brain: Parallel regulation of cytochrome oxidase and Na+/K+-ATPase. Neurosci Lett 138: 188–192.

    PubMed  CAS  Google Scholar 

  • Hieber V, Siegel GJ, Fink DJ, Beaty MW, Mata M. 1991. Differential distribution of Na/K-ATPase α isoforms in the central nervous system. Cell Mol Neurobiol 11: 253–262.

    PubMed  CAS  Google Scholar 

  • Hilgemann DW, Matsuoka S, Nagel GA, Collins A. 1992. Steady-state and dynamic properties of cardiac sodium-calcium exchange. Sodium-dependent inactivation. J Gen Physiol 100: 905–932.

    CAS  Google Scholar 

  • Hillman DE, Chen S, Bing R, Penniston JT, Llinas R. 1996. Ultrastructural localization of the plasmalemmal calcium pump in cerebellar neurons. Neuroscience 72: 315–324.

    PubMed  CAS  Google Scholar 

  • Hollenbeck PJ, Saxton WM. 2005. The axonal transport of mitochondria. J Cell Sci 118: 5411–5419.

    PubMed  CAS  Google Scholar 

  • Horisberger JD, Lemas V, Kraehenbuhl JP, Rossier BC. 1991. Structure–function relationship of Na/K-ATPase. Annu Rev Physiol 53: 565–584.

    PubMed  CAS  Google Scholar 

  • Hoyt KR, Arden SR, Aizenman E, Reynolds IJ. 1998. Reverse Na+/Ca2+ exchange contributes to glutamate-induced intracellular Ca2+ concentration increases in cultured rat forebrain neurons. Mol Pharmacol 53: 742–749.

    PubMed  CAS  Google Scholar 

  • Hyder F, Patel AB, Gjedde A, Rothman DL, Behar KL, et al. 2006. Neuronal–glial glucose oxidation and glutamatergic–GABAergic function. J Cereb Blood Flow Metab 26: 865–877.

    PubMed  CAS  Google Scholar 

  • Irwin RP, Lin SZ, Long RT, Paul SM. 1994. N-methyl-d-aspartate induces a rapid, reversible, and calcium-dependent intracellular acidosis in cultured fetal rat hippocampal neurons. J Neurosci 14: 1352–1357.

    PubMed  CAS  Google Scholar 

  • Isaev NK, Zorov DB, Stelmashook EV, Uzbekov RE, Kozhemyakin MB, et al. 1996. Neurotoxic glutamate treatment of cultured cerebellar granule cells induces Ca2+-dependent collapse of mitochondrial membrane potential and ultrastructural alterations of mitochondria. FEBS Lett 392: 143–147.

    PubMed  CAS  Google Scholar 

  • Ivanov AV, Gable ME, Askari A. 2004. Interaction of SDS with Na+/K+-ATPase: SDS-solubilized enzyme retains partial structure and function. J Biol Chem 279: 29832–29840.

    PubMed  CAS  Google Scholar 

  • Jekabsons MB, Nicholls DG. 2004. In situ respiration and bioenergetic status of mitochondria in primary cerebellar granule neuronal cultures exposed continuously to glutamate. J Biol Chem 279: 32989–33000.

    PubMed  CAS  Google Scholar 

  • Jensen TP, Buckby LE, Empson RM. 2004. Expression of plasma membrane Ca2+ ATPase family members and associated synaptic proteins in acute and cultured organotypic hippocampal slices from rat. Brain Res Dev Brain Res 152: 129–136.

    PubMed  CAS  Google Scholar 

  • Jiang LJ, Maret W, Vallee BL. 1998. The ATP–metallothionein complex. Proc Natl Acad Sci USA 95: 9146–9149.

    PubMed  CAS  Google Scholar 

  • John LM, Lechleiter JD, Camacho P. 1998. Differential modulation of SERCA2 isoforms by calreticulin. J Cell Biol 142: 963–973.

    PubMed  CAS  Google Scholar 

  • Jouaville LS, Ichas F, Holmuhamedov EL, Camacho P, Lechleiter JD. 1995. Synchronization of calcium waves by mitochondrial substrates in Xenopus laevis oocytes. Nature 377: 438–441.

    PubMed  CAS  Google Scholar 

  • Juhaszova M, Church P, Blaustein MP, Stanley EF. 2000. Location of calcium transporters at presynaptic terminals. Eur J Neurosci 12: 839–846.

    PubMed  CAS  Google Scholar 

  • Kambe T, Yamaguchi-Iwai Y, Sasaki R, Nagao M. 2004. Overview of mammalian zinc transporters. Cell Mol Life Sci 61: 49–68.

    PubMed  CAS  Google Scholar 

  • Kanai Y, Hediger MA. 2003. The glutamate and neutral amino acid transporter family: Physiological and pharmacological implications. Eur J Pharmacol 479: 237–247.

    PubMed  CAS  Google Scholar 

  • Kanai Y, Hediger MA. 2004. The glutamate/neutral amino acid transporter family SLC1: Molecular, physiological, and pharmacological aspects. Pflugers Arch 447: 469–479.

    PubMed  CAS  Google Scholar 

  • Karlish SJ, Yates DW, Glynn IM. 1978. Conformational transitions between Na+-bound and K+-bound forms of Na+/K+-ATPase, studied with formycin nucleotides. Biochim Biophys Acta 525: 252–264.

    PubMed  CAS  Google Scholar 

  • Katsura K, Rodriguez de Turco EB, Folbergrova J, Bazan NG, Siesjo BK. 1993. Coupling among energy failure, loss of ion homeostasis, and phospholipase A2 and C activation during ischemia. J Neurochem 61: 1677–1684.

    PubMed  CAS  Google Scholar 

  • Kauppinen RA, Nicholls DG. 1986. Synaptosomal bioenergetics. The role of glycolysis, pyruvate oxidation, and responses to hypoglycemia. Eur J Biochem 158: 159–165.

    PubMed  CAS  Google Scholar 

  • Keelan J, Vergun O, Duchen MR. 1999. Excitotoxic mitochondrial depolarization requires both calcium and nitric oxide in rat hippocampal neurons. J Physiol 520 Pt 3: 797–813.

    PubMed  CAS  Google Scholar 

  • Kennedy HJ, Pouli AE, Ainscow EK, Jouaville LS, Rizzuto R, et al. 1999. Glucose generates sub-plasma membrane ATP microdomains in single islet β-cells. Potential role for strategically located mitochondria. J Biol Chem 274: 13281–13291.

    CAS  Google Scholar 

  • Khodorov B. 2004. Glutamate-induced deregulation of calcium homeostasis and mitochondrial dysfunction in mammalian central neurons. Prog Biophys Mol Biol 86: 279–351.

    PubMed  CAS  Google Scholar 

  • Khodorov B, Pinelis V, Storozhevykh T, Vergun O, Vinskaya N. 1996a. Dominant role of mitochondria in protection against a delayed neuronal Ca2+ overload induced by endogenous excitatory amino acids following a glutamate pulse. FEBS Lett 393: 135–138.

    CAS  Google Scholar 

  • Khodorov B, Pinelis V, Vergun O, Storozhevykh T, Vinskaya N. 1996b. Mitochondrial deenergization underlies neuronal calcium overload following a prolonged glutamate challenge. FEBS Lett 397: 230–234.

    CAS  Google Scholar 

  • Khodorov BI, Fayuk DA, Koshelev SG, Vergun OV, Pinelis VG, et al. 1996c. Effect of a prolonged glutamate challenge on plasmalemmal calcium permeability in mammalian central neurons. Mn2+ as a tool to study calcium influx pathways. Int J Neurosci 88: 215–241.

    CAS  Google Scholar 

  • Khodorov B, Pinelis V, Vergun O, Storozhevykh T, Fajuk D, et al. 1995. Dramatic effects of external alkalinity on neuronal calcium recovery following a short-duration glutamate challenge: The role of the plasma membrane Ca2+/H+ pump. FEBS Lett 371: 249–252.

    PubMed  CAS  Google Scholar 

  • Khodorov B, Valkina O, Turovetsky V. 1994. Mechanisms of stimulus-evoked intracellular acidification in frog nerve fibers. FEBS Lett 341: 125–127.

    PubMed  CAS  Google Scholar 

  • Kiedrowski L, Costa E. 1995. Glutamate-induced destabilization of intracellular calcium concentration homeostasis in cultured cerebellar granule cells: Role of mitochondria in calcium buffering. Mol Pharmacol 47: 140–147.

    PubMed  CAS  Google Scholar 

  • Kiedrowski L, Czyz A, Baranauskas G, Li XF, Lytton J. 2004. Differential contribution of plasmalemmal Na/Ca exchange isoforms to sodium-dependent calcium influx and NMDA excitotoxicity in depolarized neurons. J Neurochem 90: 117–128.

    PubMed  CAS  Google Scholar 

  • Kim EY, Koh JY, Kim YH, Sohn S, Joe E, et al. 1999a. Zn2+ entry produces oxidative neuronal necrosis in cortical cell cultures. Eur J Neurosci 11: 327–334.

    CAS  Google Scholar 

  • Kim YH, Kim EY, Gwag BJ, Sohn S, Koh JY. 1999b. Zinc-induced cortical neuronal death with features of apoptosis and necrosis: Mediation by free radicals. Neuroscience 89: 175–182.

    CAS  Google Scholar 

  • Kimelberg HK, Biddelcome S, Narumi S, Bourke RS. 1978. ATPase and carbonic anhydrase activities of bulk-isolated neuron, glia, and synaptosome fractions from rat brain. Brain Res 141: 305–323.

    PubMed  CAS  Google Scholar 

  • Kip SN, Gray NW, Burette A, Canbay A, Weinberg RJ, et al. 2006. Changes in the expression of plasma membrane calcium extrusion systems during the maturation of hippocampal neurons. Hippocampus 16: 20–34.

    PubMed  CAS  Google Scholar 

  • Kirichok Y, Krapivinsky G, Clapham DE. 2004. The mitochondrial calcium uniporter is a highly selective ion channel. Nature 427: 360–364.

    PubMed  CAS  Google Scholar 

  • Kourie JI. 1998. Interaction of reactive oxygen species with ion transport mechanisms. Am J Physiol 275: C1–C24.

    PubMed  CAS  Google Scholar 

  • Kraev A, Quednau BD, Leach S, Li XF, Dong H, et al. 2001. Molecular cloning of a third member of the potassium-dependent sodium-calcium exchanger gene family, NCKX3. J Biol Chem 276: 23161–23172.

    PubMed  CAS  Google Scholar 

  • Kristian T. 2004. Metabolic stages, mitochondria, and calcium in hypoxic/ischemic brain damage. Cell Calcium 36: 221–233.

    PubMed  CAS  Google Scholar 

  • Kumura E, Graf R, Dohmen C, Rosner G, Heiss WD. 1999. Breakdown of calcium homeostasis in relation to tissue depolarization: Comparison between gray and white matter ischemia. J Cereb Blood Flow Metab 19: 788–793.

    PubMed  CAS  Google Scholar 

  • Lafon-Cazal M, Pietri S, Culcasi M, Bockaert J. 1993. NMDA-dependent superoxide production and neurotoxicity. Nature 364: 535–537.

    PubMed  CAS  Google Scholar 

  • Lauger P. 1991. Electrogenic Ion Pumps. Sunderland, MA:Sinauer Associates.

    Google Scholar 

  • Li Y, Camacho P. 2004. Ca2+-dependent redox modulation of SERCA 2b by ERp57. J Cell Biol 164: 35–46.

    PubMed  CAS  Google Scholar 

  • Lipton P. 1999. Ischemic cell death in brain neurons. Physiol Rev 79: 1431–1568.

    PubMed  CAS  Google Scholar 

  • Liuzzi JP, Blanchard RK, Cousins RJ. 2001. Differential regulation of zinc transporter 1, 2, and 4 mRNA expression by dietary zinc in rats. J Nutr 131: 46–52.

    PubMed  CAS  Google Scholar 

  • Luther PW, Yip RK, Bloch RJ, Ambesi A, Lindenmayer GE, et al. 1992. Presynaptic localization of sodium/calcium exchangers in neuromuscular preparations. J Neurosci 12: 4898–4904.

    PubMed  CAS  Google Scholar 

  • Mackenzie B, Erickson JD. 2004. Sodium-coupled neutral amino acid (System N/A) transporters of the SLC38 gene family. Pflugers Arch 447: 784–795.

    PubMed  CAS  Google Scholar 

  • Malaiyandi LM, Vergun O, Dineley KE, Reynolds IJ. 2005a. Direct visualization of mitochondrial zinc accumulation reveals uniporter-dependent and -independent transport mechanisms. J Neurochem 93: 1242–1250.

    CAS  Google Scholar 

  • Malaiyandi LM, Honick AS, Rintoul GL, Wang QJ, Reynolds IJ. 2005b. Zn2+ inhibits mitochondrial movement in neurons by phosphatidylinositol-3-kinase activation. J Neurosci 25: 9507–9514.

    CAS  Google Scholar 

  • Manev H, Favaron M, Guidotti A, Costa E. 1989. Delayed increase of Ca2+ influx elicited by glutamate: Role in neuronal death. Mol Pharmacol 36: 106–112.

    PubMed  CAS  Google Scholar 

  • Markovich D, Murer H. 2004. The SLC13 gene family of sodium sulphate/carboxylate cotransporters. Pflugers Arch 447: 594–602.

    PubMed  CAS  Google Scholar 

  • Martin DL, DeLuca HF. 1969. Influence of sodium on calcium transport by the rat small intestine. Am J Physiol 216: 1351–1359.

    PubMed  CAS  Google Scholar 

  • Mason GF, Gruetter R, Rothman DL, Behar KL, Shulman RG, et al. 1995. Simultaneous determination of the rates of the TCA cycle, glucose utilization, α-ketoglutarate/glutamate exchange, and glutamine synthesis in human brain by NMR. J Cereb Blood Flow Metab 15: 12–25.

    PubMed  CAS  Google Scholar 

  • McCormack JG, Denton RM. 1980. Role of calcium ions in the regulation of intramitochondrial metabolism. Properties of the Ca2+-sensitive dehydrogenases within intact uncoupled mitochondria from the white and brown adipose tissue of the rat. Biochem J 190: 95–105.

    PubMed  CAS  Google Scholar 

  • McCormack JG, Denton RM. 1993. Mitochondrial Ca2+ transport and the role of intramitochondrial Ca2+ in the regulation of energy metabolism. Dev Neurosci 15: 165–173.

    PubMed  CAS  Google Scholar 

  • McLaughlin B, Pal S, Tran MP, Parsons AA, Barone FC, et al. 2001. p38 activation is required upstream of potassium current enhancement and caspase cleavage in thiol oxidant-induced neuronal apoptosis. J Neurosci 21: 3303–3311.

    PubMed  CAS  Google Scholar 

  • McMahon RJ, Cousins RJ. 1998a. Mammalian zinc transporters. J Nutr 128: 667–670.

    CAS  Google Scholar 

  • McMahon RJ, Cousins RJ. 1998b. Regulation of the zinc transporter ZnT-1 by dietary zinc. Proc Natl Acad Sci USA 95: 4841–4846.

    CAS  Google Scholar 

  • Meldolesi J. 2001. Rapidly exchanging Ca2+ stores in neurons: Molecular, structural, and functional properties. Prog Neurobiol 65: 309–338.

    PubMed  CAS  Google Scholar 

  • Meyer T, Holowka D, Stryer L. 1988. Highly cooperative opening of calcium channels by inositol-1,4,5-trisphosphate. Science 240: 653–656.

    PubMed  CAS  Google Scholar 

  • Michaels RL, Rothman SM. 1990. Glutamate neurotoxicity in vitro: Antagonist pharmacology and intracellular calcium concentrations. J Neurosci 10: 283–292.

    PubMed  CAS  Google Scholar 

  • Mironov SL. 2006. Spontaneous and evoked neuronal activities regulate movements of single neuronal mitochondria. Synapse 59: 403–411.

    PubMed  CAS  Google Scholar 

  • Mogami H, Nakano K, Tepikin AV, Petersen OH. 1997. Ca2+ flow via tunnels in polarized cells: Recharging of apical Ca2+ stores by focal Ca2+ entry through basal membrane patch. Cell 88: 49–55.

    PubMed  CAS  Google Scholar 

  • Monyer H, Choi DW. 1990. Glucose deprivation neuronal injury in vitro is modified by withdrawal of extracellular glutamine. J Cereb Blood Flow Metab 10: 337–342.

    PubMed  CAS  Google Scholar 

  • Murer H, Forster I, Biber J. 2004. The sodium phosphate cotransporter family SLC34. Pflugers Arch 447: 763–767.

    PubMed  CAS  Google Scholar 

  • Nicholls DG, Budd SL. 2000. Mitochondria and neuronal survival. Physiol Rev 80: 315–360.

    PubMed  CAS  Google Scholar 

  • Nicholls DG, Ferguson SJ. 2002. Bioenergetics, 3rd Edition: San Diego, Academic Press.

    Google Scholar 

  • Nicotera P, Bellomo G, Orrenius S. 1992. Calcium-mediated mechanisms in chemically induced cell death. Annu Rev Pharmacol Toxicol 32: 449–470.

    PubMed  CAS  Google Scholar 

  • Nie F, Wong-Riley MT. 1995. Double labeling of GABA and cytochrome oxidase in the macaque visual cortex: Quantitative EM analysis. J Comp Neurol 356: 115–131.

    PubMed  CAS  Google Scholar 

  • Nie F, Wong-Riley MT. 1996. Differential glutamatergic innervation in cytochrome oxidase-rich and -poor regions of the macaque striate cortex: Quantitative EM analysis of neurons and neuropil. J Comp Neurol 369: 571–590.

    PubMed  CAS  Google Scholar 

  • Nieminen AL, Petrie TG, Lemasters JJ, Selman WR. 1996. Cyclosporin A delays mitochondrial depolarization induced by N-methyl-d-aspartate in cortical neurons: Evidence of the mitochondrial permeability transition. Neuroscience 75: 993–997.

    PubMed  CAS  Google Scholar 

  • Noh KM, Koh JY. 2000. Induction and activation by zinc of NADPH oxidase in cultured cortical neurons and astrocytes. J Neurosci 20: RC111.

    PubMed  CAS  Google Scholar 

  • Noh KM, Kim YH, Koh JY. 1999. Mediation by membrane protein kinase C of zinc-induced oxidative neuronal injury in mouse cortical cultures. J Neurochem 72: 1609–1616.

    PubMed  CAS  Google Scholar 

  • Ogura A, Miyamoto M, Kudo Y. 1988. Neuronal death in vitro: Parallelism between survivability of hippocampal neurones and sustained elevation of cytosolic Ca2+ after exposure to glutamate receptor agonist. Exp Brain Res 73: 447–458.

    PubMed  CAS  Google Scholar 

  • Olney JW. 1978. Neurotoxicity of excitatory amino acids. New York: Raven.

    Google Scholar 

  • Orlowski J, Grinstein S. 2004. Diversity of the mammalian sodium/proton exchanger SLC9 gene family. Pflugers Arch 447: 549–565.

    PubMed  CAS  Google Scholar 

  • Ovadi J, Saks V. 2004. On the origin of intracellular compartmentation and organized metabolic systems. Mol Cell Biochem 256-257: 5–12.

    PubMed  Google Scholar 

  • Pahl HL, Baeuerle PA. 1995. A novel signal transduction pathway from the endoplasmic reticulum to the nucleus is mediated by transcription factor NF-κB. Embo J 14: 2580–2588.

    PubMed  CAS  Google Scholar 

  • Pal S, Hartnett KA, Nerbonne JM, Levitan ES, Aizenman E. 2003. Mediation of neuronal apoptosis by Kv2.1-encoded potassium channels. J Neurosci 23: 4798–4802.

    PubMed  CAS  Google Scholar 

  • Palmiter RD. 1998. The elusive function of metallothioneins. Proc Natl Acad Sci USA 95: 8428–8430.

    PubMed  CAS  Google Scholar 

  • Palmiter RD, Findley SD. 1995. Cloning and functional characterization of a mammalian zinc transporter that confers resistance to zinc. Embo J 14: 639–649.

    PubMed  CAS  Google Scholar 

  • Phelps ME, Mazziotta JC, Huang SC. 1982. Study of cerebral function with positron computed tomography. J Cereb Blood Flow Metab 2: 113–162.

    PubMed  CAS  Google Scholar 

  • Pinelis VG, Segal M, Greenberger V, Khodorov BI. 1994. Changes in cytosolic sodium caused by a toxic glutamate treatment of cultured hippocampal neurons. Biochem Mol Biol Int 32: 475–482.

    PubMed  CAS  Google Scholar 

  • Pottorf WJ, Thayer SA. 2002. Transient rise in intracellular calcium produces a long-lasting increase in plasma membrane calcium pump activity in rat sensory neurons. J Neurochem 83: 1002–1008.

    PubMed  CAS  Google Scholar 

  • Quednau BD, Nicoll DA, Philipson KD. 2004. The sodium/calcium exchanger family-SLC8. Pflugers Arch 447: 543–548.

    PubMed  CAS  Google Scholar 

  • Rajdev S, Reynolds IJ. 1994. Glutamate-induced intracellular calcium changes and neurotoxicity in cortical neurons in vitro: Effect of chemical ischemia. Neuroscience 62: 667–679.

    PubMed  CAS  Google Scholar 

  • Reeves JP. 1990. Sodium-Calcium Exchange: Alan R. Liss, Inc. New York.

    Google Scholar 

  • Reeves JP, Condrescu M, Chernaya G, Gardner JP. 1994. Na+/Ca2+ antiport in the mammalian heart. J Exp Biol New York: 196: 375–388.

    CAS  Google Scholar 

  • Reuter H, Seitz N. 1968. The dependence of calcium efflux from cardiac muscle on temperature and external ion composition. J Physiol 195: 451–470.

    PubMed  CAS  Google Scholar 

  • Reynolds IJ, Hastings TG. 1995. Glutamate induces the production of reactive oxygen species in cultured forebrain neurons following NMDA receptor activation. J Neurosci 15: 3318–3327.

    PubMed  CAS  Google Scholar 

  • Richards DE. 1988. Occlusion of cobalt ions within the phosphorylated forms of the Na+-K+ pump isolated from dog kidney. J Physiol 404: 497–514.

    PubMed  CAS  Google Scholar 

  • Rintoul GL, Bennett VJ, Papaconstandinou NA, Reynolds IJ. 2006. Nitric oxide inhibits mitochondrial movement in forebrain neurons associated with disruption of mitochondrial membrane potential. J Neurochem 97: 800–806.

    Google Scholar 

  • Rintoul GL, Filiano AJ, Brocard JB, Kress GJ, Reynolds IJ. 2003. Glutamate decreases mitochondrial size and movement in primary forebrain neurons. J Neurosci 23: 7881–7888.

    PubMed  CAS  Google Scholar 

  • Robinson JD. 1976. (Ca + Mg)-stimulated ATPase activity of a rat brain microsomal preparation. Arch Biochem Biophys 176: 366–374.

    PubMed  CAS  Google Scholar 

  • Romero MF, Fulton CM, Boron WF. 2004. The SLC4 family of HCO3− transporters. Pflugers Arch 447: 495–509.

    PubMed  CAS  Google Scholar 

  • Rossi DJ, Oshima T, Attwell D. 2000. Glutamate release in severe brain ischemia is mainly by reversed uptake. Nature 403: 316–321.

    PubMed  CAS  Google Scholar 

  • Sachs J. 1988. Interaction of magnesium with the sodium pump of the human red cell. J Physiol (Lond) 400: 575–591.

    CAS  Google Scholar 

  • Sanchez-Armass S, Blaustein MP. 1987. Role of sodium-calcium exchange in regulation of intracellular calcium in nerve terminals. Am J Physiol 252: C595–C603.

    PubMed  CAS  Google Scholar 

  • Schatzmann HJ. 1966. ATP-dependent Ca2+ extrusion from human red cells. Experientia 22: 364–365.

    PubMed  CAS  Google Scholar 

  • Schatzmann HJ, Vincenzi FF. 1969. Calcium movements across the membrane of human red cells. J Physiol 201: 369–395.

    PubMed  CAS  Google Scholar 

  • Schinder AF, Olson EC, Spitzer NC, Montal M. 1996. Mitochondrial dysfunction is a primary event in glutamate neurotoxicity. J Neurosci 16: 6125–6133.

    PubMed  CAS  Google Scholar 

  • Schnetkamp PP. 2004. The SLC24 Na+/Ca2+-K+ exchanger family: Vision and beyond. Pflugers Arch 447: 683–688.

    PubMed  CAS  Google Scholar 

  • Schuurmans Stekhoven F, Bonting SL. 1981. Transport adenosine triphosphatases: -Properties and functions. Physiol Rev 61: 1–76.

    PubMed  CAS  Google Scholar 

  • Seki Y, Feustel PJ, Keller RW Jr, Tranmer BI, Kimelberg HK. 1999. Inhibition of ischemia-induced glutamate release in rat striatum by dihydrokinate and an anion channel blocker. Stroke 30: 433–440.

    PubMed  CAS  Google Scholar 

  • Sensi SL, Canzoniero LM, Yu SP, Ying HS, Koh JY, et al. 1997. Measurement of intracellular free zinc in living cortical neurons: Routes of entry. J Neurosci 17: 9554–9564.

    PubMed  CAS  Google Scholar 

  • Sensi SL, Yin HZ, Weiss JH. 1999. Glutamate triggers preferential Zn2+ flux through Ca2+-permeable AMPA channels and consequent ROS production. Neuroreport 10: 1723–1727.

    PubMed  CAS  Google Scholar 

  • Sensi SL, Yin HZ, Weiss JH. 2000. AMPA/kainate receptor-triggered Zn2+ entry into cortical neurons induces mitochondrial Zn2+ uptake and persistent mitochondrial dysfunction. Eur J Neurosci 12: 3813–3818.

    PubMed  CAS  Google Scholar 

  • Sheline CT, Behrens MM, Choi DW. 2000. Zinc-induced cortical neuronal death: Contribution of energy failure attributable to loss of NAD+ and inhibition of glycolysis. J Neurosci 20: 3139–3146.

    PubMed  CAS  Google Scholar 

  • Shyjan AW, Cena V, Klein DC, Levenson R. 1990. Differential expression and enzymatic properties of the Na+/K+-ATPase α3 isoenzyme in rat pineal glands. Proc Natl Acad Sci USA 87: 1178–1182.

    PubMed  CAS  Google Scholar 

  • Siesjo BK. 1992. Pathophysiology and treatment of focal cerebral ischemia. Part II: Mechanisms of damage and treatment. J Neurosurg 77: 337–354.

    CAS  Google Scholar 

  • Silver IA, Erecinska M. 1998. Oxygen and ion concentrations in normoxic and hypoxic brain cells. New York: Plenum Press.

    Google Scholar 

  • Simon RP, Swan JH, Griffiths T, Meldrum BS. 1984. Blockade of N-methyl-d-aspartate receptors may protect against ischemic damage in the brain. Science 226: 850–852.

    PubMed  CAS  Google Scholar 

  • Simpson PB, Challiss RA, Nahorski SR. 1995. Neuronal Ca2+ stores: Activation and function. Trends Neurosci 18: 299–306.

    PubMed  CAS  Google Scholar 

  • Skou JC. 1957. The influence of some cations on an adenosine triphosphatase from peripheral nerves. Biochim Biophys Acta 23: 394–401.

    PubMed  CAS  Google Scholar 

  • Smith ML, von Hanwehr R, Siesjo BK. 1986. Changes in extra- and intracellular pH in the brain during and following ischemia in hyperglycemic and in moderately hypoglycemic rats. J Cereb Blood Flow Metab 6: 574–583.

    PubMed  CAS  Google Scholar 

  • Sokoloff L. 1993. Sites and mechanisms of function-related changes in energy metabolism in the nervous system. Dev Neurosci 15: 194–206.

    PubMed  CAS  Google Scholar 

  • Sokoloff L. 1996. Cerebral metabolism and visualization of cerebral activity. Comprehensive Human Physiology. Greger G, Windhorost U, editors. Heidelberg: Springer-Verlag; pp. 579–602.

    Google Scholar 

  • Sokoloff L. 1999. Energetics of functional activation in neural tissues. Neurochem Res 24: 321–329.

    PubMed  CAS  Google Scholar 

  • Sokoloff L, Takahashi S, Gotoh J, Driscoll BF, Law MJ. 1996. Contribution of astroglia to functionally activated energy metabolism. Dev Neurosci 18: 344–352.

    PubMed  CAS  Google Scholar 

  • Stahl WL, Keeton TP, Eakin TJ. 1994. The plasma membrane Ca(2+)-ATPase mRNA isoform PMCA 4 is expressed at high levels in neurons of rat piriform cortex and neocortex. Neurosci Lett 178(2): 267–270.

    Google Scholar 

  • Stauffer TP, Guerini D, Carafoli E. 1995. Tissue distribution of the four gene products of the plasma membrane Ca2+ pump. A study using specific antibodies. J Biol Chem 270(20): 12184–12190.

    Google Scholar 

  • St Croix CM, Wasserloos KJ, Dineley KE, Reynolds IJ, Levitan ES, et al. 2002. Nitric oxide-induced changes in intracellular zinc homeostasis are mediated by metallothionein/thionein. Am J Physiol Lung Cell Mol Physiol 282: L185–L192.

    PubMed  CAS  Google Scholar 

  • Storozhevykh T, Grigortsevich N, Sorokina E, Vinskaya N, Vergun O, et al. 1998. Role of Na+/Ca2+ exchange in regulation of neuronal Ca2+ homeostasis requires re-evaluation. FEBS Lett 431: 215–218.

    PubMed  CAS  Google Scholar 

  • Stout AK, Li-Smerin Y, Johnson JW, Reynolds IJ. 1996. Mechanisms of glutamate-stimulated Mg2+ influx and subsequent Mg2+ efflux in rat forebrain neurons in culture. J Physiol 492 (Pt 3): 641–657.

    PubMed  CAS  Google Scholar 

  • Stout AK, Raphael HM, Kanterewicz BI, Klann E, Reynolds IJ. 1998. Glutamate-induced neuron death requires mitochondrial calcium uptake. Nat Neurosci 1: 366–373.

    PubMed  CAS  Google Scholar 

  • Szabo EZ, Numata M, Shull GE, Orlowski J. 2000. Kinetic and pharmacological properties of human brain Na+/H+ exchanger isoform 5 stably expressed in Chinese hamster ovary cells. J Biol Chem 275: 6302–6307.

    PubMed  CAS  Google Scholar 

  • Szasz I, Sarkadi B, Schubert A, Gardos G. 1978. Effects of lanthanum on calcium-dependent phenomena in human red cells. Biochim Biophys Acta 512: 331–340.

    PubMed  CAS  Google Scholar 

  • Takanaga H, Mackenzie B, Hediger MA. 2004. Sodium-dependent ascorbic acid transporter family SLC23. Pflugers Arch 447: 677–682.

    PubMed  CAS  Google Scholar 

  • Thayer SA, Usachev YM, Pottorf WJ. 2002. Modulating Ca2+ clearance from neurons. Front Biosci 7: d1255–d1279.

    PubMed  CAS  Google Scholar 

  • Trapp S, Luckermann M, Kaila K, Ballanyi K. 1996. Acidosis of hippocampal neurons mediated by a plasmalemmal Ca2+/H+ pump. Neuroreport 7: 2000–2004.

    PubMed  CAS  Google Scholar 

  • Tsoi M, Rhee KH, Bungard D, Li XF, Lee SL, et al. 1998. Molecular cloning of a novel potassium-dependent sodium-calcium exchanger from rat brain. J Biol Chem 273: 4155–4162.

    PubMed  CAS  Google Scholar 

  • Tymianski M, Charlton MP, Carlen PL, Tator CH. 1993. Secondary Ca2+ overload indicates early neuronal injury which precedes staining with viability indicators. Brain Res 607: 319–323.

    PubMed  CAS  Google Scholar 

  • Vague P, Coste TC, Jannot MF, Raccah D, Tsimaratos M. 2004. C-peptide, Na+, K+-ATPase, and diabetes. Exp Diabesity Res 5: 37–50.

    PubMed  CAS  Google Scholar 

  • Valkina ON, Vergun OV, Turovetsky VB, Khodorov BI. 1993. Effects of repetitive stimulation, veratridine, and ouabain on cytoplasmic pH in frog nerve fibers: Role of internal Na+. FEBS Lett 334: 83–85.

    PubMed  CAS  Google Scholar 

  • Vanzetta I, Grinvald A. 1999. Increased cortical oxidative metabolism due to sensory stimulation: Implications for functional brain imaging. Science 286: 1555–1558.

    PubMed  CAS  Google Scholar 

  • Vergun O, Reynolds IJ. 2004. Fluctuations in mitochondrial membrane potential in single isolated brain mitochondria: Modulation by adenine nucleotides and Ca2+. Biophys J 87: 3585–3593.

    PubMed  CAS  Google Scholar 

  • Vergun O, Reynolds IJ. 2005a. Developmental changes in the properties of Ca2+- induced depolarization in brain mitochondria. Soc Neurosci Abstr 550.6.

    Google Scholar 

  • Vergun O, Reynolds IJ. 2005b. Distinct characteristics of Ca2+-induced depolarization of isolated brain and liver mitochondria. Biochim Biophys Acta 1709: 127–137.

    CAS  Google Scholar 

  • Vergun O, Han YY, Reynolds IJ. 2003. Glucose deprivation produces a prolonged increase in sensitivity to glutamate in cultured rat cortical neurons. Exp Neurol 183: 682–694.

    PubMed  CAS  Google Scholar 

  • Vergun O, Keelan J, Khodorov BI, Duchen MR. 1999. Glutamate-induced mitochondrial depolarization and perturbation of calcium homeostasis in cultured rat hippocampal neurons. J Physiol 519 (Pt 2): 451–466.

    PubMed  CAS  Google Scholar 

  • Vergun O, Sobolevsky AI, Yelshansky MV, Keelan J, Khodorov BI, et al. 2001. Exploration of the role of reactive oxygen species in glutamate neurotoxicity in rat hippocampal neurons in culture. J Physiol 531: 147–163.

    PubMed  CAS  Google Scholar 

  • Verkhratsky A. 2005. Physiology and pathophysiology of the calcium store in the endoplasmic reticulum of neurons. Physiol Rev 85: 201–279.

    PubMed  CAS  Google Scholar 

  • Verkhratsky A, Petersen OH. 2002. The endoplasmic reticulum as an integrating signalling organelle: From neuronal signalling to neuronal death. Eur J Pharmacol 447: 141–154.

    PubMed  CAS  Google Scholar 

  • Verrey F, Closs EI, Wagner CA, Palacin M, Endou H, et al. 2004. CATs and HATs: The SLC7 family of amino acid transporters. Pflugers Arch 447: 532–542.

    PubMed  CAS  Google Scholar 

  • Votyakova TV, Reynolds IJ. 2001. ΔΨ m-Dependent and -independent production of reactive oxygen species by rat brain mitochondria. J Neurochem 79: 266–277.

    PubMed  CAS  Google Scholar 

  • Wanaverbecq N, Marsh SJ, Al-Qatari M, Brown DA. 2003. The plasma membrane calcium-ATPase as a major mechanism for intracellular calcium regulation in neurons from the rat superior cervical ganglion. J Physiol 550: 83–101.

    PubMed  CAS  Google Scholar 

  • Wang GJ, Thayer SA. 1996. Sequestration of glutamate-induced Ca2+ loads by mitochondria in cultured rat hippocampal neurons. J Neurophysiol 76: 1611–1621.

    PubMed  CAS  Google Scholar 

  • Wang GJ, Randall RD, Thayer SA. 1994. Glutamate-induced intracellular acidification of cultured hippocampal neurons demonstrates altered energy metabolism resulting from Ca2+ loads. J Neurophysiol 72: 2563–2569.

    PubMed  CAS  Google Scholar 

  • Werth JL, Thayer SA. 1994. Mitochondria buffer physiological calcium loads in cultured rat dorsal root ganglion neurons. J Neurosci 14: 348–356.

    PubMed  CAS  Google Scholar 

  • White RJ, Reynolds IJ. 1995. Mitochondria and Na+/Ca2+ exchange buffer glutamate-induced calcium loads in cultured cortical neurons. J Neurosci 15: 1318–1328.

    PubMed  CAS  Google Scholar 

  • White RJ, Reynolds IJ. 1996. Mitochondrial depolarization in glutamate-stimulated neurons: An early signal specific to excitotoxin exposure. J Neurosci 16: 5688–5697.

    PubMed  CAS  Google Scholar 

  • Wong-Riley MT. 1989. Cytochrome oxidase: An endogenous metabolic marker for neuronal activity. Trends Neurosci 12: 94–101.

    PubMed  CAS  Google Scholar 

  • Wong-Riley MT, Merzenich MM, Leake PA. 1978. Changes in endogenous enzymatic reactivity to DAB induced by neuronal inactivity. Brain Res 141: 185–192.

    PubMed  CAS  Google Scholar 

  • Wright EM, Turk E. 2004. The sodium/glucose cotransport family SLC5. Pflugers Arch 447: 510–518.

    PubMed  CAS  Google Scholar 

  • Wu ML, Chen JH, Chen WH, Chen YJ, Chu KC. 1999. Novel role of the Ca2+-ATPase in NMDA-induced intracellular acidification. Am J Physiol 277: C717–C727.

    PubMed  CAS  Google Scholar 

  • Ye B, Maret W, Vallee BL. 2001. Zinc metallothionein imported into liver mitochondria modulates respiration. Proc Natl Acad Sci USA 98: 2317–2322.

    PubMed  CAS  Google Scholar 

  • Yokoyama M, Koh J, Choi DW. 1986. Brief exposure to zinc is toxic to cortical neurons. Neurosci Lett 71: 351–355.

    PubMed  CAS  Google Scholar 

  • Yu X, Carroll S, Rigaud JL, Inesi G. 1993. H+ countertransport and electrogenicity of the sarcoplasmic reticulum Ca2+ pump in reconstituted proteoliposomes. Biophys J 64: 1232–1242.

    PubMed  CAS  Google Scholar 

  • Zangger K, Oz G, Armitage IM. 2000. Re-evaluation of the binding of ATP to metallothionein. J Biol Chem 275: 7534–7538.

    PubMed  CAS  Google Scholar 

  • Zylinska L, Gromadzinska E, Lachowicz L. 1999. Short-time effects of neuroactive steroids on rat cortical Ca2+-ATPase activity. Biochim Biophys Acta 1437: 257–264.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science+Business Media, LLC.

About this entry

Cite this entry

Vergun, O., Dineley, K.E., Reynolds, I.J. (2007). 4.7 Ion Transport and Energy Metabolism. In: Lajtha, A., Gibson, G.E., Dienel, G.A. (eds) Handbook of Neurochemistry and Molecular Neurobiology. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-30411-3_16

Download citation

Publish with us

Policies and ethics