Skip to main content

4.1 Cytoplasmic Glycolytic Enzymes. Synaptic Vesicle-Associated Glycolytic ATP-Generating Enzymes: Coupling to Neurotransmitter Accumulation

  • Reference work entry
  • First Online:
Handbook of Neurochemistry and Molecular Neurobiology

Abstract:

Glucose metabolism is of paramount importance in synaptic transmission and brain function, providing the major cerebral energy source. Yet, under hypoglycemic conditions in which abnormal synaptic transmission and pathophysiological behavior are observed, averaged cellular ATP levels are barely altered. Investigations into this apparent paradox led to the discovery in synaptic vesicles of the glycolytic ATP-generating enzymes glyceraldehyde phosphate dehydrogenase and 3-phosphoglycerate kinase; these enzymes, when activated, are capable of supporting uptake into synaptic vesicles of the major excitatory neurotransmitter glutamate. This represents the first evidence for coupling between glycolysis and neurotransmitter transport into synaptic vesicles. Further studies have shown that glycolytically produced ATP, rather than ATP synthesized in mitochondria, plays a major role in accumulating glutamate within synaptic vesicles in synaptosomes (pinched-off nerve ending preparation). These lines of evidence could provide fresh insight into the essential nature of glycolysis in synaptic transmission. It is argued that the locally produced ATP on the surface of synaptic vesicles by glycolytic enzymes is preferentially harnessed to rapidly refill emptied synaptic vesicles with neurotransmitters. A variety of evidence is briefly reviewed, which indicates that glycolysis is also coupled to the transport of other cations, namely Na+, K+ and Ca2+. It is proposed that subcellular local glycolytic synthesis of ATP plays a crucial role in meeting rapid energy demand for various speedy cellular processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

4-AP:

4-aminopyridine

1,3-BPG:

1,3-bisphosphoglycerate

GAP:

glyceraldehyde-3-phosphate

3-PG:

3-phosphoglycerate

GABA:

γ-aminobutyric acid

GAPDH:

glyceraldehyde-3-phosphate dehydrogenase

3-PGK:

3-phosphoglycerate kinase

PK:

pyruvate kinase

VGLUT:

vesicular glutamate transporter

PSD:

postsynaptic density

References

  • Allen NJ, Káradóttir R, Attwell D. 2005. A preferential role for glycolysis in preventing the anoxic depolarization of rat hippocampal area CA1 pyramidal cells. J Neurosci 25:848–859.

    PubMed  CAS  Google Scholar 

  • Bachelard HS, Cox DWG, Drower J. 1984. Sensitivity of guinea-pig hippocampal granule cell field potentials to hexoses in vitro: An effect on cell excitability? J Physiol 352: 91–102.

    PubMed  CAS  Google Scholar 

  • Balaban RS, Bader JP. 1984. Studies on the relationship between glycolysis and (Na+ + K+)-ATPase in cultured cells. Biochim Biophys Acta 804:419–426.

    PubMed  CAS  Google Scholar 

  • Baldwin KM, Winder WW, Terjung RL, Holloszy JO. 1973. Glycolytic enzymes in different types of skeletal muscle: Adaptation to exercise. Am J Physiol 225:962–966.

    PubMed  CAS  Google Scholar 

  • Beal MF. 2004. Mitochondrial dysfunction and oxidative damage in Alzheimer's and Parkinson's diseases and coenzyme Q10 as a potential treatment. J Bioenerg Biomembr 36:381–386.

    PubMed  CAS  Google Scholar 

  • Bellocchio EE, Reimer RJ, Fremeau RT Jr, Edwards RH. 2000. Uptake of glutamate into synaptic vesicles by an inorganic phosphate transporter. Science 289:957–960.

    PubMed  CAS  Google Scholar 

  • Ben- Shachar D, Zuk R, Gazawi H, Ljubuncic P. 2004. Dopamine toxicity involves mitochondrial complex I inhibition: Implications to dopamine-related neuropsychiatric disorders. Biochem Pharmacol 67:1965–1974.

    PubMed  CAS  Google Scholar 

  • Berenski LM, Kim CJ, Jung CY 1990. An ATP-modulated specific association of glyceraldehyde-3-phosphate dehydrogenase with human erythrocyte glucose transporter J Biol Chem 265: 15449–15454.

    PubMed  Google Scholar 

  • Bole DG, Hirata K, Ueda T. 2002. Prolonged depolarization of rat cerebral synaptosomes leads to an increase in vesicular glutamate content. Neurosci Lett 322:17–20.

    PubMed  CAS  Google Scholar 

  • Campbell JD, Paul RJ. 1992. The nature of fuel provision for the Na+,K(+)-ATPase in porcine vascular smooth muscle. J Physiol 447:67–82.

    PubMed  CAS  Google Scholar 

  • Choi DW, Rothman SM. 1990. The role of glutamate neurotoxicity in hypoxic–ischemic neuronal death. Annu Rev Neurosci 13:171–182.

    PubMed  CAS  Google Scholar 

  • Christians U, Gottschalk S, Miljus J, Heinz C, Benet LZ, et al. 2004. Alterations in glucose metabolism by cyclosporine in rat brain slices link to oxidative stress: Interactions with mTOR inhibitors. Br J Pharmacol 143: 38.

    Google Scholar 

  • Collingridge GL, Bliss TVP. 1987. NMDA receptors: Their role in long-term potentiation. Trends Neurosci 10:288–293.

    CAS  Google Scholar 

  • Cotman CW, Foster A, Lanthorn T. 1981. Glutamate as a neurotransmitter. DiChiara G, Gessa GL, editors. New York: Raven Press; pp. 1–27.

    Google Scholar 

  • Cotman CW, Monaghan DT, Ganong AH. 1988. Excitatory amino acid neurotransmission: NMDA receptors and Hebb-type synaptic plasticity. Annu Rev Neurosci 11:61–80.

    PubMed  CAS  Google Scholar 

  • Cox DWG, Bachelard HS. 1982. Attenuation of evoked field potentials from dentate granule cells by low glucose, pyruvate + malate, and sodium fluoride. Brain Res 239:527–534.

    PubMed  CAS  Google Scholar 

  • Cox DWG, Morris PG, Feeney J, Bachelard HS. 1983. 31P-n.m.r. studies on cerebral energy metabolism under conditions of hypoglycaemia and hypoxia in vitro. Biochem J 212:365–370.

    PubMed  CAS  Google Scholar 

  • Dauer W, Przedborski S. 2003. Parkinson's disease: Mechanisms and models. Neuron 39:889–909.

    PubMed  CAS  Google Scholar 

  • De Mendonca A, Sebastiao AM, Ribeiro AJ. 1995. Inhibition of NMDA receptor-mediated currents in isolated rat hippocampal neurones by adenosine A1 receptor activation. Neuroreport 6:1097–1100.

    PubMed  CAS  Google Scholar 

  • Deutsch N, Klintzner TS, Lamp ST, Weiss JN. 1991. Activation of cardiac ATP-sensitive K+ current during hypoxia: Correlation with tissue ATP levels. Am J Physiol 261: H671–H676.

    PubMed  CAS  Google Scholar 

  • Dirks B, Hanke H, Krieglstein J, Stock R, Wickop G. 1980. Studies on the linkage of energy metabolism and neuronal activity in the isolated perfused rat brain. J Neurochem 35:311–317.

    PubMed  CAS  Google Scholar 

  • Dolphin AC, Archer ER. 1983. An adenosine agonist inhibits and a cyclic AMP analogue enhances the release of glutamate but not GABA from slices of rat dentate gyrus. Neurosci Lett 43:49–54.

    PubMed  CAS  Google Scholar 

  • Dolphin AC, Prestwick SA. 1985. Pertussis toxin reverses adenosine inhibition of neuronal glutamate release. Nature 316:148–150.

    PubMed  CAS  Google Scholar 

  • Dunkley PR, Heath JW, Harrison SM, Jarvie PE, Glenfield PJ, et al. 1988. A rapid Percoll gradient procedure for isolation of synaptosomes directly from an S1 fraction: Homogeneity and morphology of subcellular fractions. Brain Res 441:59–71.

    PubMed  CAS  Google Scholar 

  • Emerit J, Edeas M, Bricaire F. 2004. Neurodegenerative diseases and oxidative stress. Biomed Pharmacother 58:39–46.

    PubMed  CAS  Google Scholar 

  • Fleck MW, Henze DA, Barrionuevo G, Palmer AM. 1993. Aspartate and glutamate mediate excitatory synaptic transmission in area CA1 of the hippocampus. J Neurosci 13:3944–3955.

    PubMed  CAS  Google Scholar 

  • Fonnum F. 1984. Glutamate: A neurotransmitter in mammalian brain. J Neurochem 42:1–11.

    PubMed  CAS  Google Scholar 

  • Fowler JC 1993a. Purine release and inhibition of synaptic transmission during hypoxia and hypoglycemia in rat hippocampal slices. Neurosci Lett 157: 83–86.

    CAS  Google Scholar 

  • Fowler JC 1993b. Glucose deprivation results in a lactate preventable increase in adenosine and depression of synaptic transmission in rat hippocampal slices. J Neurochem 60: 572–576.

    CAS  Google Scholar 

  • Fox PT, Raichle ME, Mintun MA, Dence C. 1988. Nonoxidative glucose consumption during focal physiologic neural activity. Science 241:462–464.

    PubMed  CAS  Google Scholar 

  • Ghajar JBG, Plum F, Duffy TE. 1982. Cerebral oxidative metabolism and blood flow during acute hypoglycemia and recovery in unanesthetized rats. J Neurochem 38:397–409.

    PubMed  CAS  Google Scholar 

  • Gibson GE, Kingsbury AE, Xu H, Lindsay JG, Daniels S, et al. 2003. Deficits in a tricarboxylic acid cycle enzyme in brains from patients with Parkinson's disease. Neurochem Int 43:129–135.

    PubMed  CAS  Google Scholar 

  • Gibson GE, Park LCH, Sheu K-FR, Blass JP, Calingasan NY. 2000. The alpha-ketoglutarate dehydrogenase complex in neurodegeneration. Neurochem Int 36:97–112.

    PubMed  CAS  Google Scholar 

  • Glitsch HG, Tappe A. 1993. The Na+/K+ pump of cardiac Purkinje cells is preferentially fuelled by glycolytic ATP production. Pflugers Arch 422:380–385.

    PubMed  CAS  Google Scholar 

  • Hardin CD, Raeymaekers L, Paul RJ. 1992. Comparison of endogenous and exogenous sources of ATP in fueling Ca2+ uptake in smooth muscle plasma membrane vesicles. J Gen Physiol 99:21–40.

    PubMed  CAS  Google Scholar 

  • Heilmeyer LMG Jr, Han JW, Thieleczek R, Varsanyi M, Mayr GW. 1990. Relation of phosphatidylinositol metabolism to glycolytic pathway in skeletal muscle membranes. Mol Cell Biochem 99:111–116.

    PubMed  CAS  Google Scholar 

  • Hell JW, Maycox PR, Jahn R. 1990. Energy dependence and functional reconstitution of the gamma-aminobutyric acid carrier from synaptic vesicles. J Biol Chem 265:2111–2117.

    PubMed  CAS  Google Scholar 

  • Holloszy JO, Booth FW. 1976. Biochemical adaptations to endurance exercise in muscle. Annu Rev Physiol 38:273–291.

    PubMed  CAS  Google Scholar 

  • Ikemoto A, Bole DG, Ueda T. 2003. Glycolysis and glutamate accumulation into synaptic vesicles. Role of glyceraldehyde phosphate dehydrogenase and 3-phosphoglycerate kinase. J Biol Chem 278:5929–5930.

    PubMed  CAS  Google Scholar 

  • Ishida A, Noda Y, Bole DG, Ueda T. 2005. Phosphoenol pyruvate-ADP-dependent incorporation of [3h]glutamate into isolated synaptic vesicles. Soc Neurosci Annu Meeting Abstr.

    Google Scholar 

  • James JH, Fang C-H, Schrantz SJ, Hasselgren P-O, Paul R, et al. 1996. Linkage of aerobic glycolysis to sodium–potassium transport in rat skeletal muscle. Implications for increased muscle lactate production in sepsis. J Clin Invest 98:2388–2397.

    PubMed  CAS  Google Scholar 

  • Jenner P. 2003. Oxidative stress in Parkinson's disease. Ann Neurol 53: S26–S36.

    PubMed  CAS  Google Scholar 

  • Kanatani T, Mizuno K, Okada Y. 1995. Effects of glycolytic metabolites on preservation of high energy phosphate level and synaptic transmission in the granule cells of guinea pig hippocampal slices. Experientia 51:213–216.

    PubMed  CAS  Google Scholar 

  • Kish PE, Ueda T. Glutamate accumulation into synaptic vesicles. 1989. Meth Enzymol 174: 9–25.

    Google Scholar 

  • Knull HR. 1980. Compartmentation of glycolytic enzymes in nerve endings as determined by glutaraldehyde fixation. J Biol Chem 255:6439–6444.

    PubMed  CAS  Google Scholar 

  • Knull HR. 1990. Structural and organizational aspects of metabolic regulation. Sreve PA, Jones ME, Mathews CK, editors. New York: Wiley-Liss; pp. 215–228.

    Google Scholar 

  • Laemmli UK. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685.

    PubMed  CAS  Google Scholar 

  • Laschet JJ, Minier F, Kurcewicz I, Bureau MH, Trottier S, et al. 2004. Glyceraldehyde-3-phosphate dehydrogenase is a GABAA receptor kinase linking glycolysis to neuronal inhibition. J Neurosci 24:7614–7622.

    PubMed  CAS  Google Scholar 

  • Levy B, Gibot S, Franck P, Cravoisy A, Bollaert P-E. 2005. Relation between muscle Na+K+ ATPase activity and raised lactate concentrations in septic shock: A prospective study. Lancet 365:871–875.

    PubMed  CAS  Google Scholar 

  • Lewis LD, Ljunggren B, Ratcheson RA, Siesjo BK. 1974. Cerebral energy state in insulin-induced hypoglycemia, related to blood glucose and to EEG. J Neurochem 23:673–679.

    PubMed  CAS  Google Scholar 

  • Lipton P, Robacker K. 1983. Glycolysis and brain function: [K+]o stimulation of protein synthesis and K+ uptake require glycolysis. Fed Proc 42:2875–2880.

    PubMed  CAS  Google Scholar 

  • Lorenz JN, Paul RJ. 1997. Dependence of Ca2+ channel currents on endogenous and exogenous sources of ATP in portal vein smooth muscle. Am J Physiol 252: H987–994.

    Google Scholar 

  • Losito VA, Tsushima RG, Diaz RJ Wilson GJ, Backx PH. 1998. Preferential regulation of rabbit cardiac L-type Ca2+ current by glycolytic derived ATP via a direct allosteric pathway. J Physiol 511 (pt 1): 67–78.

    PubMed  CAS  Google Scholar 

  • Lotharius J, Barg S, Wiekop P, Lundberg C, Raymon HK, et al. 2002. Effect of mutant alpha-synuclein on dopamine homeostasis in a new human mesencephalic cell line. J Biol Chem 277:38884–38894.

    PubMed  CAS  Google Scholar 

  • Lotharius J, O'Malley K. 2000. The parkinsonism-inducing drug 1-methyl-4-phenylpyridinium triggers intracellular dopamine oxidation. A novel mechanism of toxicity. J Biol Chem 49:38581–38588.

    Google Scholar 

  • Lynch RM, Balaban RS. 1987. Coupling of aerobic glycolysis and Na+-K+-ATPase in renal cell line MDCK. Am J Physiol 253: C269–C276.

    PubMed  CAS  Google Scholar 

  • Mager R, Ferroni S, Schubert P. 1990. Adenosine modulates a voltage-dependent chloride conductance in cultured hippocampal neurons. Brain Res 532:58–62.

    PubMed  CAS  Google Scholar 

  • Masters C. 1996. The cytoskeleton, vol 2. Role in cell physiology. Hesketh JE, Pryme IF, (eds) editors. London: JAI; pp. 1–30.

    Google Scholar 

  • Maycox PR, Deckwerth T, Hell JW, Jahn R. 1988. Glutamate uptake by brain synaptic vesicles. Energy dependence of transport and functional reconstitution in proteoliposomes. J Biol Chem 263:15423–15428.

    PubMed  CAS  Google Scholar 

  • Maycox PR, Hell JW, Jahn R. 1990. Amino acid neurotransmission: Spotlight on synaptic vesicles. Trends Neurosci 13:83–87.

    PubMed  CAS  Google Scholar 

  • McNay EC, Fries TM, Gold PE. 2000. Decreases in rat extracellular hippocampal glucose concentration associated with cognitive demand during a spatial task. Proc Natl Acad Sci U S A 97:2881–2885.

    PubMed  CAS  Google Scholar 

  • Mercer RW, Dunham PB. 1981. Membrane-bound ATP fuels the Na/K pump. Studies on membrane-bound glycolytic enzymes on inside-out vesicles from human red cell membranes. J Gen Physiol 78:547–568.

    PubMed  CAS  Google Scholar 

  • Mizuno Y, Ikebe S, Hattori N, Nakagawa- Hattori Y, Michizuki H, et al. 1995. Role of mitochondria in the etiology and pathogenesis of Parkinson's disease. Biochim Biophys Acta 1271:265–274.

    PubMed  Google Scholar 

  • Naito S, Ueda T. 1983. Adenosine triphosphate-dependent uptake of glutamate into protein I-associated synaptic vesicles. J Biol Chem 258:696–699.

    PubMed  CAS  Google Scholar 

  • Naito S, Ueda T. 1985. Characterization of glutamate uptake into synaptic vesicles. J Neurochem 44:99–109.

    PubMed  CAS  Google Scholar 

  • Nicholls DG. 1989. Release of glutamate, aspartate, and gamma-aminobutyric acid from isolated nerve terminals. J Neurochem 52:331–341.

    PubMed  CAS  Google Scholar 

  • Nicklas WJ, Youngster SK, Kindt MV, Heikkila RE. 1987. MPTP, MPP+ and mitochondrial function. Life Sci 40:721–729.

    PubMed  CAS  Google Scholar 

  • Ogita K, Hirata K, Bole DG, Yoshida S, Tamura Y, et al. 2001. Inhibition of vesicular glutamate storage and exocytotic release by Rose Bengal. J Neurochem 77:34–42.

    PubMed  CAS  Google Scholar 

  • Okonkwo PO, Longenecker G, Askari A. 1975. Studies on the mechanism of inhibition of the red cell metabolism by cardiac glycosides. J Pharmacol Exp Ther 194:244–254.

    PubMed  CAS  Google Scholar 

  • Otis TS. 2001. Vesicular glutamate transporters in cognito. Neuron 29:11–14.

    PubMed  CAS  Google Scholar 

  • Ozkan ED, Ueda T. 1998. Glutamate transport and storage in synaptic vesicles. Jpn J Pharmacol 77:1–10.

    PubMed  CAS  Google Scholar 

  • Parker JC, Hoffman JF. 1967. The role of membrane phosphoglycerate kinase in the control of glycolytic rate by active cation transport in human red blood cells. J Gen Physiol 50:893–916.

    PubMed  CAS  Google Scholar 

  • Paul RJ, Bauer M, Pease W. 1979. Vascular smooth muscle: Aerobic glycolysis linked to sodium and potassium transport processes. Science 206:1414–1416.

    PubMed  CAS  Google Scholar 

  • Paul RJ, Hardin CD, Raeymaekers L, Wuytack F, Casteels R. 1989. Preferential support of Ca2+ uptake in smooth muscle plasma membrane vesicles by an endogenous glycolytic cascade. FASEB J 3:2298–2301.

    PubMed  CAS  Google Scholar 

  • Proverbio F, Hoffman JF. 1977. Membrane compartmentalized ATP and its preferential use by the Na,K-ATPase of human red cell ghosts. J Gen Physiol 69:605–632.

    PubMed  CAS  Google Scholar 

  • Pyle JL, Kavalali ET, Piedras- Renteria ES, Tsien RW. 2000. Rapid reuse of readily releasable pool vesicles at hippocampal synapses. Neuron 28:221–231.

    PubMed  CAS  Google Scholar 

  • Raffin CN, Sick T, Rosenthal M. 1988. Inhibition of glycolysis alters potassium ion transport and mitochondrial redox activity in rat brain. J Cereb Blood Flow Metab 8:857–865.

    PubMed  CAS  Google Scholar 

  • Reimer RJ, Fremeau RT Jr, Bellocchio EE, Edwards RH. 2001. The essence of excitation. Curr Opin Cell Biol 13:417–421.

    PubMed  CAS  Google Scholar 

  • Roberts EL Jr. 1993. Glycolysis and recovery of potassium ion homeostasis and synaptic transmission in hippocampal slices after anoxia or stimulated potassium release. Brain Res 620:251–258.

    PubMed  CAS  Google Scholar 

  • Roe MW, Mertz RJ, Lancaster ME, Worley JF III, Duke ID. 1994. Thapsigargin inhibits the glucose-induced decrease of intracellular Ca2+ in mouse islets of Langerhans. Am J Physiol 266(6 pt 1): E852–E862.76.

    PubMed  CAS  Google Scholar 

  • Rogalski-Wilk AA, Cohen RS. 1997. Glyceraldehyde-3-phosphate dehydrogenase activity and F-actin associations in synaptosomes and postsynaptic densities of porcine cerebral cortex. Cell Mol Neurobiol 17:51–70.

    PubMed  CAS  Google Scholar 

  • Rossi DJ, Oshima T, Attwell D. 2000. Glutamate release in severe brain ischaemia is mainly by reversed uptake. Nature 403:316–321.

    PubMed  CAS  Google Scholar 

  • Schapira AH, Cooper JM, Dexter D, Clark JB, Jenner P, et al. 1990. Mitochondrial complex I deficiency in Parkinson's disease. J Neurochem 54:823–827.

    PubMed  CAS  Google Scholar 

  • Schlaefer M, Volknandt W, Zimmermann H 1994. Putative synaptic vesicle nucleotide transporter identified as glyceraldehyde-3-phosphate dehydrogenase. J Neurochem 63: 1924–1931.

    CAS  Google Scholar 

  • Scholz KP, Miller R. 1992. Inhibition of quantal transmitter release in the absence of calcium influx by a G protein-linked adenosine receptor at hippocampal synapses. Neuron 8:1139–1150.

    PubMed  CAS  Google Scholar 

  • Schrier SL. 1966. Organization of enzymes in human erythrocyte membranes. Am J Physiol 210:139–145.

    PubMed  CAS  Google Scholar 

  • Segal M. 1982. Intracellular analysis of a postsynaptic action of adenosine in the rat hippocampus. Europ J Pharmacol 79: 193–199.

    CAS  Google Scholar 

  • Shepherd GM, Harris KM. 1998. Three-dimensional structure and composition of CA3→CA1 axons in rat hippocampal slices: Implications for presynaptic connectivity and compartmentalization. J Neurosci 18:8300–8310.

    PubMed  CAS  Google Scholar 

  • Shoji S. 1992. Glucose regulation of synaptic transmission in the dorsolateral septal nucleus of the rat. Synapse 12:322–332.

    PubMed  CAS  Google Scholar 

  • Sidhu A, Wersinger C, Vernier P. 2004. Alpha-synuclein regulation of the dopaminergic transporter: A possible role in the pathogenesis of Parkinson's disease. FEBS Lett 565:1–5.

    PubMed  CAS  Google Scholar 

  • Siesjo BK. 1978. Brain energy metabolism. New York: John Wiley & Sons; pp. 101–130.

    Google Scholar 

  • Siggins GR, Schubert P. 1981. Adenosine depression of hippocampal neurons in vitro: An intracellular study of dose-dependent actions on synaptic and membrane potentials. Neurosci Lett 23:55–60.

    PubMed  CAS  Google Scholar 

  • Silva A, Deas J, Erecinska M. 1997. Ion homeostasis in brain cells: Differences in intracellular ion responses to energy limitation between cultured neurons and glial cells. Neurosci 78:589–601.

    CAS  Google Scholar 

  • Sokoloff L. 1977. Relation between physiological function and energy metabolism in the central nervous system. J Neurochem 29:13–26.

    PubMed  CAS  Google Scholar 

  • Sommerfield AJ, Deary IJ, McAulay V, Frier BM. 2003. Moderate hypoglycemia impairs multiple memory functions in healthy adults. Neuropsychology 17:125–132.

    PubMed  Google Scholar 

  • Spuler A, Endres W, Grafe P. 1988. Glucose depletion hyperpolarizes guinea pig hippocampal neurons by an increase in potassium conductance. Exp Neurol 100:248–252.

    PubMed  CAS  Google Scholar 

  • Srivastava DK, Bernhard SA. 1986. Enzyme–enzyme interactions and the regulation of metabolic reaction pathways. Curr Top Cell Reg 28:1–68.

    CAS  Google Scholar 

  • Sulzer D. 2001. Alpha-synuclein and cytosolic dopamine: Stabilizing a bad situation. Nat Med 7:1280–1282.

    PubMed  CAS  Google Scholar 

  • Tabb JS, Kish PE, Van Dyke R, Ueda T. 1992. Glutamate transport into synaptic vesicles. Roles of membrane potential, pH gradient, and intravesicular pH. J Biol Chem 267:15412–15418.

    PubMed  CAS  Google Scholar 

  • Tabb JS, Ueda T. 1991. Phylogenetic studies on the synaptic vesicle glutamate transport system. J Neurosci 11:1822–1828.

    PubMed  CAS  Google Scholar 

  • Takamori S, Rhee JS, Rosenmund C, Jahn R. 2000. Identification of a vesicular glutamate transporter that defines a glutamatergic phenotype in neurons. Nature 407:189–194.

    PubMed  CAS  Google Scholar 

  • Ueda T. 1986. PJ, Excitatory amino acids. Roberts Storm-Mathisen J, Bradford HF, editors. London: Macmillan; pp. 173–195.

    Google Scholar 

  • Ueda T, Greengard P, Berzins K, Cohen RS, Blomberg F, et al. 1979. Subcellular distribution in cerebral cortex of two proteins phosphorylated by a cAMP-dependent protein kinase. J Cell Biol 83:308–319.

    PubMed  CAS  Google Scholar 

  • Wang P, Saraswati S, Guan Z, Watkins CJ, Wurtman RJ, et al. 2004. A Drosophila temperature-sensitive seizure mutant in phosphoglycerate kinase disrupts ATP generation and alters synaptic function. J Neurosci 24:4518–4529.

    PubMed  CAS  Google Scholar 

  • Watkins JC, Evans RH. 1981. Excitatory amino acid transmitters. Annu Rev Pharmacol Toxicol 21:165–204.

    PubMed  CAS  Google Scholar 

  • Weber JP, Bernhard SA. 1982. Transfer of 1,3-diphosphoglycerate between glyceraldehyde-3-phosphate dehydrogenase and 3-phosphoglycerate kinase via an enzyme–substrate–enzyme complex. Biochemistry 21:4184–4194.

    Google Scholar 

  • Weiss JN, Lamps SJ. 1987. Glycolysis preferentially inhibits ATP-sensitive K+ channels in isolated guinea pig cardiac myocytes. Science 238:67–69.

    PubMed  CAS  Google Scholar 

  • Weiss JN, Venkatesh N, Lamp ST. 1992. ATP-sensitive K+ channels and cellular K+ loss in hypoxic and ischaemic mammalian ventricle. J Physiol 447:649–673.

    PubMed  CAS  Google Scholar 

  • Wolosker H, Reis M, Assreuy J, de Meis L. 1996. Inhibition of glutamate uptake and proton pumping in synaptic vesicles by S-nitrosylation. J Neurochem 66:1943–1948.

    PubMed  CAS  Google Scholar 

  • Wu K, Aoki C, Elste A, Rogalski- Wilk AA, Siekevitz P. 1977. The synthesis of ATP by glycolytic enzymes in the postsynaptic density and the effect of endogenously generated nitric oxide. Proc Natl Acad Sci U S A 94:13273–13278.

    Google Scholar 

  • Wu L-G, Saggau P. 1994. Adenosine inhibits evoked synaptic transmission primarily by reducing presynaptic calcium influx in area CA1 of hippocampus. Neuron 12:1139–1148.

    PubMed  CAS  Google Scholar 

  • Xu KY, Zweier JL, Becker LC. 1995. Functional coupling between glycolysis and sarcoplasmic reticulum Ca2+ transport. Circ Res 77:88–97.

    PubMed  CAS  Google Scholar 

  • Yawo H, Chuhma N. 1993. Preferential inhibition of omega-conotoxin-sensitive presynaptic Ca2+ channels by adenosine autoreceptors. Nature 365:256–258.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by National Institutes of Health Grant NS 42200 (TU). We thank Mary Roth and Judy Ueda for excellent assistance in preparation of the manuscript.

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science+Business Media, LLC.

About this entry

Cite this entry

Ueda, T., Ikemoto, A. (2007). 4.1 Cytoplasmic Glycolytic Enzymes. Synaptic Vesicle-Associated Glycolytic ATP-Generating Enzymes: Coupling to Neurotransmitter Accumulation. In: Lajtha, A., Gibson, G.E., Dienel, G.A. (eds) Handbook of Neurochemistry and Molecular Neurobiology. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-30411-3_10

Download citation

Publish with us

Policies and ethics