Skip to main content

Cortical Dopamine in Schizophrenia

  • Reference work entry
  • 1101 Accesses

Abstract:

This chapter is a review of the evidence implicating a dysfunction of dopamine transmission in the prefrontal cortex in schizophrenia, underlying negative symptoms and cognitive deficits. The evidence derives essentially from brain imaging studies, post-mortem studies and clinical pharmacological studies. The imaging studies have suggested alterations in the main mediator of dopamine transmission in the cortex, the D1 receptors. Furthermore, studies have suggested a link between NMDA deficits and D1 alterations in the cortex in schizophrenia, suggesting that therapeutic interventions at these targets may have beneficial effects on cognition and negative symptoms.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   249.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

CKU:

chronic ketamine users

COMT:

catechol-O-methyltransferase

DA:

dopamine

DAT:

DA transporters

DLPFC:

dorsolateral prefrontal cortex

EC:

entorhinal cortex

MPFC:

medial prefrontal cortex

NET:

norepinephrine transporters

PFC:

prefrontal cortex

SN:

substantia nigra

VTA:

ventral tegmental area

TH:

tyrosine hydroxylase

WCST:

Wisconsin Cart Sort Task

WM:

working memory

References

  • Abi-Dargham A, Gil R, Krystal J, Baldwin R, Seibyl J, et al. 1998. Increased striatal dopamine transmission in schizophrenia: Confirmation in a second cohort. Am J Psychiatry 155: 761–767.

    PubMed  CAS  Google Scholar 

  • Abi-Dargham A, Mawlawi O, Lombardo I, Gil R, Martinez D, et al. 2002. Prefrontal dopamine D1 receptors and working memory in schizophrenia. J Neurosci 22: 3708–3719.

    PubMed  CAS  Google Scholar 

  • Akil M, Edgar CL, Pierri JN, Casali S, Lewis DA. 2000. Decreased density of tyrosine hydroxylase-immunoreactive axons in the entorhinal cortex of schizophrenic subjects. Biol Psychiatry 47: 361–370.

    Article  PubMed  CAS  Google Scholar 

  • Akil M, Pierri JN, Whitehead RE, Edgar CL, Mohila C, et al. 1999. Lamina-specific alterations in the dopamine innervation of the prefrontal cortex in schizophrenic subjects. Am J Psychiatry 156: 1580–1589.

    PubMed  CAS  Google Scholar 

  • Arnsten AF. 1997. Catecholamine regulation of the prefrontal cortex. J Psychopharmacol 11: 151–162.

    Article  PubMed  CAS  Google Scholar 

  • Arnsten AF, Cai JX, Murphy BL, Goldman-Rakic PS. 1994. Dopamine D1 receptor mechanisms in the cognitive performance of young adult and aged monkeys. Psychopharmacology 116: 143–151.

    Article  PubMed  CAS  Google Scholar 

  • Arnsten AF, Goldman-Rakic PS. 1990. Analysis of alpha-2 adrenergic agonist effects on the delayed nonmatch-to-sample performance of aged rhesus monkeys. Neurobiol Aging 11: 583–590.

    Article  PubMed  CAS  Google Scholar 

  • Bai J, He F, Novikova SI, Undie AS, Dracheva S, et al. 2004. Abnormalities in the dopamine system in schizophrenia may lie in altered levels of dopamine receptor-interacting proteins. Biol Psychiatry 56: 427–440.

    Article  PubMed  CAS  Google Scholar 

  • Barch DM, Carter CS, Braver TS, Sabb FW, MacDonald A III, et al. 2001. Selective deficits in prefrontal cortex function in medication-naive patients with schizophrenia. Arch Gen Psychiatry 58: 280–288.

    Article  PubMed  CAS  Google Scholar 

  • Benes FM, Wickramasinghe R, Vincent SL, Khan Y, Todtenkopf M. 1997. Uncoupling of GABA(A) and benzodiazepine receptor binding activity in the hippocampal formation of schizophrenic brain. Brain Res 755(1): 121–129.

    Article  PubMed  CAS  Google Scholar 

  • Bowen F, Kamienny R, Burn M, Yahr N. 1975. Parkinsonism: Effect of levodopa treatment on concept formation. Neurology 25: 701–704.

    Article  PubMed  CAS  Google Scholar 

  • Breier A, Su TP, Saunders R, Carson RE, Kolachana BS, et al. 1997. Schizophrenia is associated with elevated amphetamine-induced synaptic dopamine concentrations: Evidence from a novel positron emission tomography method. Proc Natl Acad Sci USA 94: 2569–2574.

    Article  PubMed  CAS  Google Scholar 

  • Brozowski TJ, Brown RM, Rosvold HE, Goldman PS. 1979. Cognitive deficit caused by regional depletion of dopamine in prefrontal cortex of rhesus monkey. Science 205: 929–932.

    Article  Google Scholar 

  • Bubser M, Koch M. 1994. Prepulse inhibition of the acoustic startle response of rats is reduced by 6-hydroxydopamine lesions of the medial prefrontal cortex. Psychopharmacology 113: 487–492.

    Article  PubMed  CAS  Google Scholar 

  • Cai JX, Arnsten AFT. 1997. Dose-dependent effects of the dopamine D1 receptor agonists A77636 or SKF81297 on spatial working memory in aged monkeys. J Pharmacol Exp Ther 283: 183–189.

    PubMed  CAS  Google Scholar 

  • Callicott JH, Bertolino A, Mattay VS, Langheim FJ, Duyn J, et al. 2000. Physiological dysfunction of the dorsolateral prefrontal cortex in schizophrenia revisited. Cereb Cortex 10: 1078–1092.

    Article  PubMed  CAS  Google Scholar 

  • Callicott JH, Ramsey NF, Tallent K, Bertolino A, Knable MB, et al. 1998. Functional magnetic resonance imaging brain mapping in psychiatry: Methodological issues illustrated in a study of working memory in schizophrenia. Neuropsychopharmacology 18: 186–196.

    Article  PubMed  CAS  Google Scholar 

  • Carr DB, Sesack SR. 2000. Projections from the rat prefrontal cortex to the ventral tegmental area: Target specificity in the synaptic associations with mesoaccumbens and mesocortical neurons. J Neurosci 20: 3864–3873.

    PubMed  CAS  Google Scholar 

  • Castner SA, Williams GV, Goldman-Rakic PS. 2000. Reversal of antipsychotic-induced working memory deficits by short-term dopamine D1 receptor stimulation [see comments]. Science 287: 2020–2022.

    Article  PubMed  CAS  Google Scholar 

  • Cepeda,Radisavljevic Z, Peacock W, Levine MS, Buchwald NA. 1992. Differential modulation by dopamine of responses evoked by excitatory amino acids in human cortex. Synapse 11: 330–341.

    Article  PubMed  CAS  Google Scholar 

  • Daniel DG, Weinberger DR, Jones DW, Zigun JR, Coppola R, et al. 1991. The effect of amphetamine on regional cerebral blood flow during cognitive activation in schizophrenia. J Neurosci 11: 1907–1917.

    PubMed  CAS  Google Scholar 

  • Daniels JK, Williams NM, Williams J, Jones LA, Cardno AG, et al. 1996. No evidence for allelic association between schizophrenia and a polymorphism determining high or low catechol O-methyltransferase activity. Am J Psychiatry 153: 268–270.

    PubMed  CAS  Google Scholar 

  • Davis KL, Kahn RS, Ko G, Davidson M. 1991. Dopamine in schizophrenia: A review and reconceptualization. Am J Psychiatry 148: 1474–1486.

    PubMed  CAS  Google Scholar 

  • Dawson TM, McCabe RT, Stensaas SS, Wamsley JK. 1987. Autoradiographic evidence of [3H]SCH23390 binding sites in human prefrontal cortex (Brodmann’s area 9). J Neurochem 49: 183–188.

    Article  Google Scholar 

  • de Chaldee M, Corbex M, Campion D, Jay M, Samolyk D, et al. 2001. No evidence for linkage between COMT and schizophrenia in a French population. Psychiatry Res 102: 87–90.

    Article  PubMed  CAS  Google Scholar 

  • Del Arco A, Mora F. 2000. Endogenous dopamine potentiates the effects of glutamate on extracellular GABA in the prefrontal cortex of the freely moving rat. Brain Res Bull 53: 339–345.

    Article  PubMed  CAS  Google Scholar 

  • Deutch A, Clark WA, Roth RH. 1990. Prefrontal cortical dopamine depletion enhances the responsiveness of the mesolimbic dopamine neurons to stress. Brain Res 521: 311–315.

    Article  PubMed  CAS  Google Scholar 

  • Dolan RJ, Fletcher P, Frith CD, Friston KJ, Frackowiak RS, et al. 1995. Dopaminergic modulation of impaired cognitive activation in the anterior cingulate cortex in schizophrenia. Nature 378: 180–182.

    Article  PubMed  CAS  Google Scholar 

  • Dumartin B, Jaber M, Gonon F, Caron MG, Giros B, et al. 2000. Dopamine tone regulates D1 receptor trafficking and delivery in striatal neurons in dopamine transporter-deficient mice. Proc Natl Acad Sci USA 97: 1879–1884.

    Article  PubMed  CAS  Google Scholar 

  • Egan MF, Goldberg TE, Kolachana BS, Callicott JH, Mazzanti CM, et al. 2001. Effect of COMT Val108/158 Met genotype on frontal lobe function and risk for schizophrenia. Proc Natl Acad Sci USA 98: 6917–6922.

    Article  PubMed  CAS  Google Scholar 

  • Ekelund J, Narendran R, Guillain O, Slifstein M, Abi-Dargham A, et al. 2006. Pharmacological selectivity of the in vivo binding of [11C]NNC 112 and [11C]SCH 23390 in the cortex: A PET study in baboons. Neuroimage 31: T111–T111 Suppl.

    Article  Google Scholar 

  • Fienberg AA, Hiroi N, Mermelstein PG, Song W, Snyder GL, et al. 1998. DARPP-32: Regulator of the efficacy of dopaminergic neurotransmission. Science 281: 838–842.

    Article  PubMed  CAS  Google Scholar 

  • Gao WJ, Krimer LS, Goldman-Rakic PS. 2001. Presynaptic regulation of recurrent excitation by D1 receptors in prefrontal circuits. Proc Natl Acad Sci USA 98: 295–300.

    Article  PubMed  CAS  Google Scholar 

  • Gessa GL, Devoto P, Diana M, Flore G, Melis M, et al. 2000. Dissociation of haloperidol, clozapine, and olanzapine effects on electrical activity of mesocortical dopamine neurons and dopamine release in the prefrontal cortex. Neuropsychopharmacology 22: 642–649.

    Article  PubMed  CAS  Google Scholar 

  • Glenthoj BY, Mackeprang T, Svarer C, Rasmussen H, Pinborg LH, et al. 2006. Frontal dopamine D(2/3) receptor binding in drug-naive first-episode schizophrenic patients correlates with positive psychotic symptoms and gender. Biol Psychiatry 60: 621–629.

    Article  PubMed  CAS  Google Scholar 

  • Gogos JA, Morgan M, Luine V, Santha M, Ogawa S, et al. 1998. Catechol-O-methyltransferase-deficient mice exhibit sexually dimorphic changes in catecholamine levels and behavior. Proc Natl Acad Sci USA 95: 9991–9996.

    Article  PubMed  CAS  Google Scholar 

  • Goldman-Rakic PS, Muly EC III, Williams GV. 2000. D(1) receptors in prefrontal cells and circuits. Brain Res Brain Res Rev 31: 295–301.

    Article  PubMed  CAS  Google Scholar 

  • Gorelova N, Seamans JK, Yang CR. 2002. Mechanisms of dopamine activation of fast-spiking interneurons that exert inhibition in rat prefrontal cortex. J Neurophysiol 88: 3150–3166.

    Article  PubMed  CAS  Google Scholar 

  • Grobin AC, Deutch AY. 1998. Dopaminergic regulation of extracellular gamma-aminobutyric acid levels in the prefrontal cortex of the rat. J Pharmacol Exp Ther 285: 350–357.

    PubMed  CAS  Google Scholar 

  • Guo N, Hwang D, Abdellhadi S, Abi-Dargham A, Zarahn E, et al. 2001. The effect of chronic DA depletion on D1 ligand binding in rodent brain. Soc Neurosc Abst 27.

    Google Scholar 

  • Haber SN, Fudge JL. 1997. The primate substantia nigra and VTA: Integrative circuitry and function. Crit Rev Neurobiol. 11: 323–342.

    Article  PubMed  CAS  Google Scholar 

  • Herken H, Erdal ME. 2001. Catechol-O-methyltransferase gene polymorphism in schizophrenia: Evidence for association between symptomatology and prognosis. Psychiatr Genet 11: 105–109.

    Article  PubMed  CAS  Google Scholar 

  • Hirvonen J, van Erp TG, Huttunen J, Aalto S, Nagren K, et al. 2006. Brain dopamine d1 receptors in twins discordant for schizophrenia. Am J Psychiatry 163: 1747–1753.

    Article  PubMed  Google Scholar 

  • Honey GD, Bullmore ET, Soni W, Varatheesan M, Williams SC, et al. 1999. Differences in frontal cortical activation by a working memory task after substitution of risperidone for typical antipsychotic drugs in patients with schizophrenia. Proc Natl Acad Sci USA 96: 13432–13437.

    Article  PubMed  CAS  Google Scholar 

  • Ichikawa J, Ishii H, Bonaccorso S, Fowler WL, O’Laughlin IA, et al. 2001. 5-HT(2A) and D(2) receptor blockade increases cortical DA release via 5-HT(1A) receptor activation: A possible mechanism of atypical antipsychotic-induced cortical dopamine release. J Neurochem 76: 1521–1531.

    Article  PubMed  CAS  Google Scholar 

  • Jentsch JD, Redmond DE Jr, Elsworth JD, Taylor JR, Youngren KD, et al. 1997. Enduring cognitive deficits and cortical dopamine dysfunction in monkeys after long-term administration of phencyclidine. Science 277: 953–955.

    Article  PubMed  CAS  Google Scholar 

  • Jentsch JD, Roth RH. 1999. The neuropsychopharmacology of phencyclidine: From NMDA receptor hypofunction to the dopamine hypothesis of schizophrenia. Neuropsychopharmacology 20: 201–225.

    Article  PubMed  CAS  Google Scholar 

  • Joyce JN, MeadorWoodruff JH. 1997. Linking the family of D-2 receptors to neuronal circuits in human brain: Insights into schizophrenia. Neuropsychopharmacology 16: 375–384.

    Article  PubMed  CAS  Google Scholar 

  • Kahn RS, Harvey PD, Davidson M, Keefe RS, Apter S, et al. 1994. Neuropsychological correlates of central monoamine function in chronic schizophrenia: Relationship between CSF metabolites and cognitive function. Schizophr Res 11: 217–224.

    Article  PubMed  CAS  Google Scholar 

  • Kakiuchi T, Nishiyama S, Sato K, Ohba H, Nakanishi S, et al. 2001. Effect of MK801 on dopamine parameters in the monkey brain. Neuroimage 16: 110.

    Google Scholar 

  • Karayiorgou M, Gogos JA, Galke BL, Wolyniec PS, Nestadt G, et al. 1998. Identification of sequence variants and analysis of the role of the catechol-O-methyl-transferase gene in schizophrenia susceptibility. Biol Psychiatry 43: 425–431.

    Article  PubMed  CAS  Google Scholar 

  • Karlsson P, Farde L, Halldin C, Sedvall G. 2002. PET study of D(1) dopamine receptor binding in neuroleptic-naive patients with schizophrenia. Am J Psychiatry 159: 761–767.

    Article  PubMed  Google Scholar 

  • Karreman M, Moghaddam B. 1996. The prefrontal cortex regulates the basal release of dopamine in the limbic striatum: An effect mediated by ventral tegmental area. J Neurochem 66: 589–598.

    Article  PubMed  CAS  Google Scholar 

  • Kellendonk C, Simpson EH, Polan HJ, Malleret G, Vronskaya S, et al. 2006. Transient and selective overexpression of dopamine D2 receptors in the striatum causes persistent abnormalities in prefrontal cortex functioning. Neuron 49: 603–615.

    Article  PubMed  CAS  Google Scholar 

  • Knable MB, Hyde TM, Murray AM, Herman MM, Kleinman JE. 1996. A postmortem study of frontal cortical dopamine D1 receptors in schizophrenics, psychiatric controls, and normal controls. Biol Psychiatry 40: 1191–1199.

    Article  PubMed  CAS  Google Scholar 

  • Knable MB, Weinberger DR. 1997. Dopamine, the prefrontal cortex and schizophrenia. J Psychopharmacol 11: 123–131.

    Article  PubMed  CAS  Google Scholar 

  • Koh PO, Bergson C, Undie AS, Goldman-Rakic PS, Lidow MS. 2003. Up-regulation of the D1 dopamine receptor-interacting protein, calcyon, in patients with schizophrenia. Arch Gen Psychiatry 60: 311–319.

    Article  PubMed  CAS  Google Scholar 

  • Kolachana BS, Saunders R, Weinberger D. 1995. Augmentation of prefrontal cortical monoaminergic activity inhibits dopamine release in the caudate nucleus: An in vivo neurochemical assessment in the rhesus monkey. Neuroscience 69: 859–868.

    Article  PubMed  CAS  Google Scholar 

  • Laruelle M. 2000. Imaging synaptic neurotransmission with in vivo binding competition techniques: A critical review. J Cereb Blood Flow Metab 20: 423–451.

    Article  PubMed  CAS  Google Scholar 

  • Laruelle M, Abi-Dargham A, van Dyck CH, Gil R, De Souza CD, et al. 1996. Single photon emission computerized tomography imaging of amphetamine-induced dopamine release in drug free schizophrenic subjects. Proc Natl Acad Sci USA 93: 9235–9240.

    Article  PubMed  CAS  Google Scholar 

  • Laruelle M, Casanova M, Weinberger D, Kleinman J. 1990. Postmortem study of the dopaminergic D1 receptors in the dorsolateral prefrontal cortex of schizophrenics and controls. Schizophrenia Res 3: 30–31.

    Article  Google Scholar 

  • Li T, Sham PC, Vallada H, Xie T, Tang X, et al. 1996. Preferential transmission of the high activity allele of COMT in schizophrenia. Psychiatr Genet 6: 131–133.

    Article  PubMed  CAS  Google Scholar 

  • Lidow MD, Goldman-Rakic PS, Rakic P, Gallagher DW. 1990. Autoradiographic comparison of D1-specific binding of [3H]SCH39166 and [3H]SCH23390 in the primate cerebral cortex. Brain Res 537: 349–354.

    Article  PubMed  CAS  Google Scholar 

  • Lidow MS, Elsworth JD, GoldmanRakic PS. 1997. Down-regulation of the D1 and D5 dopamine receptors in the primate prefrontal cortex by chronic treatment with antipsychotic drugs. J Pharmacol Exp Ther 281: 597–603.

    PubMed  CAS  Google Scholar 

  • Lidow MS, Goldman-Rakic PS. 1994. A common action of clozapine, haloperidol, and remoxipride on D1- and D2-dopaminergic receptors in the primate cerebral cortex. Proc Natl Acad Sci USA 91: 4353–4356.

    Article  PubMed  CAS  Google Scholar 

  • Lidow MS, Roberts A, Zhang L, Koh PO, Lezcano N, et al. 2001. Receptor crosstalk protein, calcyon, regulates affinity state of dopamine D1 receptors. Eur J Pharmacol 427: 187–193.

    Article  PubMed  CAS  Google Scholar 

  • Manoach DS, Gollub RL, Benson ES, Searl MM, Goff DC, et al. 2000. Schizophrenic subjects show aberrant fMRI activation of dorsolateral prefrontal cortex and basal ganglia during working memory performance. Biol Psychiatry 48: 99–109.

    Article  PubMed  CAS  Google Scholar 

  • Manoach DS, Press DZ, Thangaraj V, Searl MM, Goff DC, et al. 1999. Schizophrenic subjects activate dorsolateral prefrontal cortex during a working memory task, as measured by fMRI. Biol Psychiatry 45: 1128–1137.

    Article  PubMed  CAS  Google Scholar 

  • Mattay VS, Callicott JH, Bertolino A, Heaton I, Frank JA, et al. 2000. Effects of dextroamphetamine on cognitive performance and cortical activation. Neuroimage 12: 268–275.

    Article  PubMed  CAS  Google Scholar 

  • Mehta MA, Owen AM, Sahakian BJ, Mavaddat N, Pickard JD, et al. 2000. Methylphenidate enhances working memory by modulating discrete frontal and parietal lobe regions in the human brain. J Neurosci (Online) 20: RC65.

    CAS  Google Scholar 

  • Melis M, Diana M, Gessa GL. 1999. Clozapine potently stimulates mesocortical dopamine neurons. Eur J Pharmacol 366: R11–R13.

    Article  PubMed  CAS  Google Scholar 

  • Menon V, Anagnoson RT, Mathalon DH, Glover GH, Pfefferbaum A. 2001. Functional neuroanatomy of auditory working memory in schizophrenia: Relation to positive and negative symptoms. Neuroimage 13: 433–446.

    Article  PubMed  CAS  Google Scholar 

  • Mogenson GJ, Jones DL, Yim CY. 1980. From motivation to action: Functional interface between the limbic system and the motor system. Prog Neurobiol 14: 69–97.

    Article  PubMed  CAS  Google Scholar 

  • Mrzljak L, Bergson C, Pappy M, Huff R, Levenson R, et al. 1996. Localization of dopamine D4 receptors in GABAergic neurons of the primate brain. Nature 381: 245–248.

    Article  PubMed  CAS  Google Scholar 

  • Murphy BL, Arnsten AF, Goldman-Rakic PS, Roth RH. 1996a. Increased dopamine turnover in the prefrontal cortex impairs spatial working memory performance in rats and monkeys. Proc Natl Acad Sci USA 93: 1325–1329.

    Article  PubMed  CAS  Google Scholar 

  • Murphy BL, Arnsten AF, Jentsch JD, Roth RH. 1996b. Dopamine and spatial working memory in rats and monkeys: Pharmacological reversal of stress-induced impairment. J Neurosci 16: 7768–7775.

    PubMed  CAS  Google Scholar 

  • Narendran R, Frankle WG, Keefe R, Gil R, Martinez D, et al. 2005. Altered prefrontal dopaminergic function in chronic recreational ketamine users. Am J Psychiatry 162: 2352–2359.

    Article  PubMed  Google Scholar 

  • Ohmori O, Shinkai T, Kojima H, Terao T, Suzuki T, et al. 1998. Association study of a functional catechol-O-methyltransferase gene polymorphism in Japanese schizophrenics. Neurosci Lett 243: 109–112.

    Article  PubMed  CAS  Google Scholar 

  • Okubo Y, Suhara T, Suzuki K, Kobayashi K, Inoue O, et al. 1997. Decreased prefrontal dopamine D1 receptors in schizophrenia revealed by PET. Nature 385: 634–636.

    Article  PubMed  CAS  Google Scholar 

  • Pehek EA, Yamamoto BK. 1994. Differential effects of locally administered clozapine and haloperidol on dopamine efflux in the rat prefrontal cortex and caudate-putamen. J Neurochem 63: 2118–2124.

    Article  PubMed  CAS  Google Scholar 

  • Perlstein WM, Carter CS, Noll DC, Cohen JD. 2001. Relation of prefrontal cortex dysfunction to working memory and symptoms in schizophrenia. Am J Psychiatry 158: 1105–1113.

    Article  PubMed  CAS  Google Scholar 

  • Pycock CJ, Kerwin RW, Carter CJ. 1980. Effect of lesion of cortical dopamine terminals on subcortical dopamine receptors in rats. Nature 286: 74–77.

    Article  PubMed  CAS  Google Scholar 

  • Roberts AC, Desalvia MA, Wilkinson LS, Collins P, Muir JL, et al. 1994. 6-Hydroxydopamine lesions of the prefrontal cortex in monkeys enhance performance on an analog of the Wisconsin card sort test: Possible interactions with subcortical dopamine. J Neurosci 14: 2531–2544.

    PubMed  CAS  Google Scholar 

  • Rollema H, Lu Y, Schmidt AW, Zorn SH. 1997. Clozapine increases dopamine release in prefrontal cortex by 5-HT1A receptor activation. Eur J Pharmacol 338: R3–R5.

    Article  PubMed  CAS  Google Scholar 

  • Sawaguchi T, Goldman-Rakic PS. 1991. D1 dopamine receptors in prefrontal cortex: Involvement in working memory. Science 251: 947–950.

    Article  PubMed  CAS  Google Scholar 

  • Sawaguchi T, Goldman-Rakic PS. 1994. The role of D1-dopamine receptor in working memory: Local injections of dopamine antagonists into the prefrontal cortex of rhesus monkeys performing an oculomotor delayed-response task. J Neurophysiol 71: 515–528.

    PubMed  CAS  Google Scholar 

  • Schneider JS, Sun ZQ, Roeltgen DP. 1994. Effects of dopamine agonists on delayed response performance in chronic low-dose MPTP-treated monkeys. Pharmacol Biochem Behav 48: 235–240.

    Article  PubMed  CAS  Google Scholar 

  • Scott L, Kruse MS, Forssberg H, Brismar H, Greengard P, et al. 2002. Selective up-regulation of dopamine D1 receptors in dendritic spines by NMDA receptor activation. Proc Natl Acad Sci USA 99: 1661–1664.

    Article  PubMed  CAS  Google Scholar 

  • Seamans JK, Floresco SB, Phillips AG. 1998. D-1 receptor modulation of hippocampal-prefrontal cortical circuits integrating spatial memory with executive functions in the rat. J Neurosci 18: 1613–1621.

    PubMed  CAS  Google Scholar 

  • Seamans JK, Gorelova N, Durstewitz D, Yang CR. 2001a. Bidirectional dopamine modulation of GABAergic inhibition in prefrontal cortical pyramidal neurons. J Neurosci 21: 3628–3638.

    PubMed  CAS  Google Scholar 

  • Seamans JK, Gorelova N, Durstewitz D, Yang CR. 2001b. Bidirectional dopamine modulation of GABAergic inhibition in prefrontal cortical pyramidal neurons. J Neurosci 21: 3628–3638.

    PubMed  CAS  Google Scholar 

  • Seamans JK, Yang CR. 2004. The principal features and mechanisms of dopamine modulation in the prefrontal cortex. Prog Neurobiol 74: 1–58.

    Article  PubMed  CAS  Google Scholar 

  • Seeman P. 1992. Dopamine receptor sequences. Therapeutic levels of neuroleptics occupy D2 receptors, clozapine occupies D4. Neuropsychopharmacology 7: 261–284.

    PubMed  CAS  Google Scholar 

  • Sesack SR, Hawrylak VA, Matus C, Guido MA, Levey AI. 1998. Dopamine axon varicosities in the prelimbic division of the rat prefrontal cortex exhibit sparse immunoreactivity for the dopamine transporter. J Neurosci 18: 2697–2708.

    PubMed  CAS  Google Scholar 

  • Slifstein M, Kegeles LS, Gonzales R, Frankle WG, Xu X, et al. 2007. [(11)C]NNC 112 selectivity for dopamine D(1) and serotonin 5-HT(2A) receptors: A PET study in healthy human subjects. J Cereb Blood Flow Metab 27: 1733–1741.

    Article  PubMed  CAS  Google Scholar 

  • Smiley JF, Levey AI, Ciliax BJ, Goldman-Rakic PS. 1994. D1 dopamine receptor immunoreactivity in human and monkey cerebral cortex: Predominant and extrasynaptic localization in dendritic spines. Proc Natl Acad Sci USA 91: 5720–5724.

    Article  PubMed  CAS  Google Scholar 

  • Stern Y, Langston JW. 1985. Intellectual changes in patients with MPTP-induced parkinsonism. Neurology 35: 1506–1509.

    Article  PubMed  CAS  Google Scholar 

  • Stevens AA, Goldman-Rakic PS, Gore JC, Fulbright RK, Wexler BE. 1998. Cortical dysfunction in schizophrenia during auditory word and tone working memory demonstrated by functional magnetic resonance imaging. Arch Gen Psychiatry 55: 1097–1103.

    Article  PubMed  CAS  Google Scholar 

  • Suhara T, Okubo Y, Yasuno F, Sudo Y, Inoue M, et al. 2002. Decreased dopamine D2 receptor binding in the anterior cingulate cortex in schizophrenia. Arch Gen Psychiatry 59: 25–30.

    Article  PubMed  CAS  Google Scholar 

  • Talvik M, Nordstrom AL, Okubo Y, Olsson H, Borg J, et al. 2006. Dopamine D(2) receptor binding in drug-naive patients with schizophrenia examined with raclopride-C11 and positron emission tomography. Psychiatry Res 148: 165–173.

    Article  PubMed  CAS  Google Scholar 

  • Talvik M, Nordstrom AL, Olsson H, Halldin C, Farde L. 2003. Decreased thalamic D2/D3 receptor binding in drug-naive patients with schizophrenia: A PET study with [11C]FLB 457. Int J Neuropsychopharmacol 6: 361–370.

    Article  PubMed  CAS  Google Scholar 

  • Thompson TL, Moss RL. 1995. In vivo stimulated dopamine release in the nucleus accumbens: Modulation by the prefrontal cortex. Brain Res 686: 93–98.

    Article  PubMed  CAS  Google Scholar 

  • Tsukada H, Nishiyama S, Fukumoto D, Sato K, Kakiuchi T, et al. 2005. Chronic NMDA antagonism impairs working memory, decreases extracellular dopamine, and increases D1 receptor binding in prefrontal cortex of conscious monkeys. Neuropsychopharmacology 30: 1861–1869.

    Article  PubMed  CAS  Google Scholar 

  • Tuppurainen H, Kuikka J, Viinamaki H, Husso-Saastamoinen M, Bergstrom K, et al. 2003. Extrastriatal dopamine D 2/3 receptor density and distribution in drug-naive schizophrenic patients. Mol Psychiatry 8: 453–455.

    Article  PubMed  CAS  Google Scholar 

  • Tzschentke TM. 2001. Pharmacology and behavioral pharmacology of the mesocortical dopamine system. Prog Neurobiol 63: 241–320.

    Article  PubMed  CAS  Google Scholar 

  • Urban NN, Gonzalez-Burgos G, Henze DA, Lewis DA, Barrionuevo G. 2002. Selective reduction by dopamine of excitatory synaptic inputs to pyramidal neurons in primate prefrontal cortex. J Physiol 539: 707–712.

    Article  PubMed  CAS  Google Scholar 

  • Watanabe M, Kodama T, Hikosaka K. 1997. Increase of extracellular dopamine in primate prefrontal cortex during a working memory task. J Neurophysiol 78: 2795–2798.

    PubMed  CAS  Google Scholar 

  • Wei J, Hemmings GP. 1999. Lack of evidence for association between the COMT locus and schizophrenia. Psychiatr Genet 9: 183–186.

    Article  PubMed  CAS  Google Scholar 

  • Weinberger DR. 1987. Implications of the normal brain development for the pathogenesis of schizophrenia. Arch Gen Psychiatry 44: 660–669.

    Article  PubMed  CAS  Google Scholar 

  • Weinberger DR, Berman KF, Chase TN. 1988. Mesocortical dopaminergic function and human cognition. Ann N Y Acad Sci 537: 330–338.

    Article  PubMed  CAS  Google Scholar 

  • Westerink BH, Kawahara Y, De Boer P, Geels C, De Vries JB, et al. 2001. Antipsychotic drugs classified by their effects on the release of dopamine and noradrenaline in the prefrontal cortex and striatum. Eur J Pharmacol 412: 127–138.

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto BK, Cooperman MA. 1994. Differential effects of chronic antipsychotic drug treatment on extracellular glutamate and dopamine concentrations. J Neurosci 14: 4159–4166.

    PubMed  CAS  Google Scholar 

  • Yang CR, Seamans JK, Gorelova N. 1999. Developing a neuronal model for the pathophysiology of schizophrenia based on the nature of electrophysiological actions of dopamine in the prefrontal cortex. Neuropsychopharmacology 21: 161–194.

    Article  PubMed  CAS  Google Scholar 

  • Youngren KD, Inglis FM, Pivirotto PJ, Jedema HP, Bradberry CW, et al. 1999. Clozapine preferentially increases dopamine release in the rhesus monkey prefrontal cortex compared with the caudate nucleus. Neuropsychopharmacology 20: 403–412.

    Article  PubMed  CAS  Google Scholar 

  • Zahrt J, Taylor JR, Mathew RG, Arnsten AFT. 1997a. Supranormal stimulation of D1 dopamine receptors in the rodent prefrontal cortex impairs spatial working memory performance. J Neurosci 17: 8528–8535.

    PubMed  CAS  Google Scholar 

  • Zahrt J, Taylor JR, Mathew RG, Arnsten AFT. 1997b. Supranormal stimulation of D-1 dopamine receptors in the rodent prefrontal cortex impairs spatial working memory performance. J Neurosci 17: 8528–8535.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this entry

Cite this entry

Abi-Dargham, A. (2009). Cortical Dopamine in Schizophrenia. In: Lajtha, A., Javitt, D., Kantrowitz, J. (eds) Handbook of Neurochemistry and Molecular Neurobiology. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-30410-6_1

Download citation

Publish with us

Policies and ethics