Skip to main content

The Brain Immune System: Chemistry and Biology of the Signal Molecules

  • Reference work entry
Handbook of Neurochemistry and Molecular Neurobiology

Abstract:

Understanding the brain immune system is impossible without the apprehension of the complicated mechanisms of innate and adaptic immunity as a whole. Meanwhile, discovery of a great number of new immunomodulators of brain produced by neurosecretory cells of hypothalamus, such as interleukins, new cytokines – proline rich peptides, immunophilin isoforms (receptors of immunosuppressors – FK‐506, rapamicine, cyclosporine), tymosine β 1 (ubiquitin), etc. – is the basis for new image on brain immune system. Biosynthesis of new cytokines in the neurosecretory cells also testify the existence of neuroendocrine immune system of brain, which has close neurohumoral interrelations with central immune organs, particularly bone marrow. The focus of this chapter therefore, is on the main principles of studying the brain immune system, as well as the main literary and data obtained on cytokines, types of cytokine receptors, and the presence of common ways of signal transduction from receptors into cell nucleus, interrelationship and interdependency in the cytokine system, cytokines and their brain receptors. Understanding the role of cytokines in the complicated mechanisms of the immune response is of great importance. There are a number of chemoattractant‐cytokines known as chemokines and their receptors. It is also know as the role of the chemokines in the neuronal function. It is supposed to establish the integrative role of brain neuroendocrine immune system signal molecules in the regulation of the brain immune defense and “peripheric” immune system. The proline‐rich peptides (PRPs) take part in the endocrine protective mechanisms for the immune response at various pathologic states of the organism. Though at present the morphological, neurochemical, neuroimmunological mechanisms of the brain immune system are not yet outlined, new data appear on signal molecules of the brain immune system and on their role in adaptation mechanisms of the brain immune defense and periphery. Based on huge body of novel data reviewed in this submission, the conventional conception concerning the neurosecretory function of hypothalamus and the hypothalamic mechanisms of adaptation (taking into account also the role of corticotrophin releasing factor in the HPA‐axis) have to be reconsidered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

BDNF:

brain-derived neurotrophic factor

Cyp:

cyclophilin

G-CSF:

granulocyte-colony-stimulating factor

GM-CSF:

granulocyte–macrophage-colony-stimulating factor

INF:

interferon

Iph:

immunophilin

MBP:

myelin basic protein

MLCK:

myosin light chain kinase

NF-AT:

nuclear factor of activated T cells

NK:

natural killer

NMDA:

N-methyl-d-aspartate

NSO:

N. supraopticus

NPV:

N. paraventricularis

NVAG:

neurophysin–vasopressin-associated glycoprotein

PDE:

phosphodiesterase

PRPs:

proline-rich peptides

PPI:

peptidyl-prolyl-cis–trans-isomerase

RANTES:

regulated and normal T-cell expressed and secreted

SDF-1:

stromal cell derived growth factor

SIAM:

soluble immune activator marker

SLC:

secondary lymphoid tissue chemokine

4 :

thymosin β 4

TNF:

tumor necrosis factor

Trk ATrk B, and Trk C:

the family of tyrosine kinases7 P.S. trk-a

TRPV1:

caspacin receptor protooncogene encoding a transmembrane glycoprotein the prodalt is a tyrosine kinase receptor

References

  • Aarden LA, De Groot ER, Schap OL, Lansdorp PM. 1987. Production of hybridoma growth factor by human monocytes. Eur J Immunol 10: 1411–1416.

    Google Scholar 

  • Aaronson DS, Horvath CM. 2002. A road map for those who don't know JAK-STAT. Science 296: 1653–1655.

    CAS  PubMed  Google Scholar 

  • Abbadie C, Lindia JA, Gumiskey AM, Peterson LB, Mudgett JS, et al. 2003. Impaired neuropathic responses in mice backing the chemokine receptor CCR2. Proc Natl Acad Sci USA 100: 7974

    Google Scholar 

  • Abrahamyan SS, Meliksetyan IB, Galoyan A. 2001a. Immunohistochemical analysis of the brain immunomodulators (proline rich polypepride and immunophilin) in the normal pathological conditions. Proceeding of the International Conference “Biochemical and Molecular–Biological Aspects of Brain Immune System”. Galoyan AA, editor. Yerevan: Encyclopedia Armenica Publishing House; pp. 62–73.

    Google Scholar 

  • Abrahamyan SS, Meliksetyan IB, Sulkhanyan RM, Sarkissian JS, Galoyan AA. 2001b. Immunohistochemical study of Immunophilin 1–15 fragment in intact frog brain, and in the brain and spinal cord of intact and spinal cord hemisectioned rats. Neurochem Res 26(11): 1225–1230.

    CAS  Google Scholar 

  • Akopian A, Galoyan A. 2003. Effect of hypothalamic proline-rich polypeptide on voltage-gated Ca 2+ currents in retinal ganglion cells. Neurochem Res 28(12): 1867–1871.

    CAS  PubMed  Google Scholar 

  • Akopian A, Witkovsky P. 2002. Calcium and retinal function. Mol Neurobiol 25: 95–114.

    Google Scholar 

  • Allain F, Denys A, Denys A, Spik G. 1996. Cyclophilin B mediates cyclosporine A incorporin A incorporatin in human blood T-lymphocytes through the specific binding of complexed drug to the cell surface. Biochem J 371(Pt2): 565–570.

    Google Scholar 

  • Aloisi F, Penna G, Cerase J, Menendez IB, Adorini L. 1997. IL-12 production by central nervous system microglia is inhibited by astrocytes. J Immunol 159(4): 1604–1162.

    CAS  PubMed  Google Scholar 

  • Alvord EC. 1984. Species restricted encephalitogenic determinants. Experimental Allergic Encephalomyelitis. A Useful Model for Multiple Sclerosis. Alvord EC, Kies MW, Suckling AJ, editors. New York: Alan R., Liss; pp. 523–537.

    Google Scholar 

  • Aprikyan VS, Galoyan AA. 1999. Antibacterial activity of novel hypothalamic polypeptide. Dokl. NAS RA 99: 367–371.

    CAS  Google Scholar 

  • Aprikyan VS, Galoyan AA. 2000. Hypothalamic polypeptide protects mice from lethal challenge with gram-negative bacteria. Neurokhimiya RAS & NAS RA 17: 60–63.

    CAS  Google Scholar 

  • Aprikyan VS, Galoyan AA. 2001. New hypothalamic peptides in regulation of thymocytes differentiation. Proceeding of the International Conference “Biochemical and Molecular-Biological Aspects of Brain Immune System”. Galoyan AA, editor. Yerevan: Encyclopedia Armenica Publishing House; pp. 183–189.

    Google Scholar 

  • Aprikyan VS, Galoyan AA. 2002. New hypothalamic peptides in regulation of thymocytes differentiation. Neurokhimiya RAS & NAS RA 19: 227–231.

    CAS  Google Scholar 

  • Azakawa H, Nagase H, Hayashi N, Fujwara T, Ogawa M, et al. 1994. BBRC 200: 836–843.

    Google Scholar 

  • Bang H, Muller W, Hans M, Brune K, Swandulla D. 1995. Activation of Ca 2+ signaling in neutrophils by the mast cell-released immunophilin FKBP12. Proc Natl Acad Sci USA 92(8): 3435–3438.

    CAS  PubMed  Google Scholar 

  • Basu S, Srivastava P. 2005. Immunological role of neuronal receptor vanilloid receptor 1 expressed on dendritic cells. PNAS USA 102(14): 5120–5125.

    CAS  PubMed  Google Scholar 

  • Bendrak K, Al-Abed Y, Callaway DJ, Peng T, Calandra T, et al. 1997. Biochemical and mutational investigations of the enzymatic activity of macrophage migration inhibitory factor. Biochemistry 36: 15356–15362.

    Google Scholar 

  • Berkenbosch F, Van Oers J, del Rey A, Tilder F, Besedovsky H. 1987. Corticotropin-releasing factor—producing neurons in the rat activated by Interleukin-1. Science 238: 524–526.

    CAS  PubMed  Google Scholar 

  • Berridge MJ, Lipp P, Bootman MD. 2000. The versatility and universality of calcium signaling. Nat Rev Mol Cell Biol 1: 11–21.

    CAS  PubMed  Google Scholar 

  • Besedovsky HO, del Rey A. 1996. Immune–neuro–endocrine interactions: Facts and hypotheses. Endocrine Rev 17: 64–102.

    CAS  Google Scholar 

  • Besedovsky H, del Rey A, Sorkin E, Da Prada M, Burri R, et al. 1983. The immune response evokes changes in brain noradrenergic neurons. Science 221: 564–566.

    CAS  PubMed  Google Scholar 

  • Besedovsky H, Balschun D, Pitossi F, Schneider H, del Rey A. 1999. Cytokines in the brain as mediators of Immune–neuro-endocrine interactions. J Neuroimmunol Supp 31: 2.

    Google Scholar 

  • Besedovsky HO, Balschun D, Pitossi F, Schneider H, del Rey A. 2001. Brain-born cytokines affect neuro-endocrine functions and the maintenance of long term potentiations. Biochemical and Molecular–Biological Aspects of the Brain Immune System. Galoyan AA, editor. Yerevan: Encyclopedia Armenica Publishing House; pp. 41–46.

    Google Scholar 

  • Bjornson CR, Rietze RL, Reynolds BA, Magli MC, Vescovi AL. 1999. Turning brain into blood: A hematopoietic date adopted by adult neural stem cells in vivo. Science 283: 534–537.

    CAS  PubMed  Google Scholar 

  • Bloom BR, Bennet B. 1966. Mechanism of a reaction in vitro associated with delayed-type hypersensitivity. Science 153: 80–82.

    CAS  PubMed  Google Scholar 

  • Boulanger LM, Shatz CJ. 2004. Immune signaling in neural development, synaptic plasticity and disease. Nat Rev Neurosci 5(7): 521–531.

    CAS  PubMed  Google Scholar 

  • Brazelton TR, Rossi FM, Keshet GI, Blau HM. 2000. From marrow to brain: Expression of neuronal phenotypes in adult mice. Science 290: 1775–1779.

    CAS  PubMed  Google Scholar 

  • Breder CD, Dinarello CA, Super CB. 1988. Interleukin-1 immunoreactive interactions of the human hypothalamus. Science 240: 321–324.

    CAS  PubMed  Google Scholar 

  • Brightman MW, Ishihara S, Chang L. 1995. Penetration of solutes, viruses and cells across the blood–brain barrier. Curr Top Microbiol Immunol 202: 63–78.

    CAS  PubMed  Google Scholar 

  • Brosnan CF, Claudio L, Martinez JA. 1992. The blood brain barrier during immune responses. Semin Neurosci 4: 193–206.

    Google Scholar 

  • Brown EJ, Albers MW, Shin TB, Ichikawa K, Keith CT, et al. 1994. A mammalian protein targeted by G1-arresting rapamycin-receptor complex. Nature 369(6483): 756–758.

    CAS  PubMed  Google Scholar 

  • Bucala R. 1996. MIF rediscovered: Cytokine, pituitary hormone, and glucocorticoid-induced regulator of the immune response. FASEB J 10: 1607–1613.

    CAS  PubMed  Google Scholar 

  • Calandra T, Bernhagen J, Metz CN, Spiegel LA, Bacher M, et al. 1995. MIF as a glucocorticoid-induced modulator of cytokine production. Nature 376: 68–71.

    Google Scholar 

  • Callebaut I, Mornon J-P. 1995. Trigger factor, one of the Escherichia coli chaperone proteins, is an original member of the FKBP family. FEBS Lett 374: 211–215.

    CAS  PubMed  Google Scholar 

  • Cardenas ME, Hemenway RS, Muir RYe, Fiorentino D, Heitman J. 1994. Immunophilins interact with calcineurin in the absence of exogenous immunosuppressive ligands. EMBO J 13(24): 5944–5957.

    CAS  PubMed  Google Scholar 

  • Carnegie PR. 1971. Amino acid sequence of the encephalitogenic basic protein from human myelin. J Biol Chem 246: 5770–5784.

    Google Scholar 

  • Chekhonin V, Gurvina O, Ryabukhin I, Savchenko E, Galoyan AA. 2001. Immunochemical study of the effect of neurotrophins on the GFAP synthesis in astrocyte culture. Biochemical and Molecular–Biological Aspects of the Brain Immune System. Galoyan AA, editor. Yerevan: Encyclopedia Armenica Publishing House; pp. 140–145.

    Google Scholar 

  • Chobanian A. 2000. Review to A.A. Galoyan's monograph. Neurokhimya RAS & NAS RA 16(3): 253–255.

    Google Scholar 

  • Chun JJ, Shatz DG, Oettinger MA, Jaenisch R, Baltimore D. 1991. The recombination activating gene-1 (RAG-1) transcript is present in the murine central nervous system. Cell 64(1): 189–200.

    CAS  PubMed  Google Scholar 

  • Coggin MH, Srapionian RM, Brecher AS, Galoyan AA. 2002. A potential role for atrial polypeptide and Neurohormone “C” in the blood coagulation cascade. J Investig Med 50(5) (Suppl.) 129 (Abst.).

    Google Scholar 

  • Colter DG, Class R, Carla M, Di Girolamo CM, Prockop DJ. 2000. Rapid expansion of recycling stem cells in cultures of plastic-adherent cells from human bone marrow. Proc Natl Acad Sci USA 97(7): 3213–3218.

    CAS  PubMed  Google Scholar 

  • Connolly JH, Haire M, Hadden DS. M. 1971. Measles immunoglobulins in subacute sclerosing panencephalitis. Br Med J 1: 23–35.

    CAS  PubMed  Google Scholar 

  • Corriveau RA, Huh GS, Shatz CJ. 1998. Regulation of class I MHC gene expression in the developing and mature CNS by neural activity. Neuron 21(3): 505–520.

    CAS  PubMed  Google Scholar 

  • Culter RWP, Watters GV, Hammerstad JP, Merler E. 1967. Origin of cerebrospinal fluid γ-globulin in subacute sclerosis leucoencephalitis. Arch Neurol 17: 620–628.

    Google Scholar 

  • Cunningham EB. 1995. The human erythrocyte membrane contains a novel 12-kDa inositolphosphate-binding protein that is an immunophilin. Biochem Biophys Res Commun 215(1): 212–218.

    CAS  PubMed  Google Scholar 

  • Darnell RB. 1998. Immunologic complexity in neurons. Neuron 21: 947–950.

    CAS  PubMed  Google Scholar 

  • David JR. 1966. Delayed hypersensitivity in vitro: Its mediation by cell-free substances formed by lymphoid cell–antigen interaction. Proc Natl Acad Sci USA 56: 72–77.

    CAS  PubMed  Google Scholar 

  • Davtyan TK, Iskandaryan ZhG, Galoyan AA. 2002. Modulation of cytokine and chemokine activities by viruses. Neurokhimya RAS & NAS RA 19(1): 6–25.

    CAS  Google Scholar 

  • Davtyan TK, Manukyan HA, Hakobyan GS, Mkrtchyan NR, Avetisyan SA, et al. 2005a. Hypothalamic proline-rich polypeptide is an oxidative burst regulator. Neurochem Res 3: 297–309.

    Google Scholar 

  • Davtyan TK, Manukyan HA, Mkrtchyan NR, Avetisyan SA, AA. Galoyan 2005b. Hypothalamic proline-rich polypeptide is a regulator of oxidative burst in human neutrophils and monocytes. Neuroimmunomodulation 5: 270–284.

    Google Scholar 

  • Dawson TM, Steiner JP, Dawson VL, Dinerman JL, Uhl GR, et al. 1993. Immunosuppressant FK506 enhances phosphorylation of nitric oxide synthase and protects against glutamate neurotoxicity. Proc Natl Acad Sci USA 90(21): 9808–9812.

    CAS  PubMed  Google Scholar 

  • Del Rey A, Besedovsky H. 1987. Interleukin-1 affects glucose homeostasis. Am J Physiol 253: R794–R798.

    CAS  PubMed  Google Scholar 

  • Denesyuk AI, Vihinen M, Lundell J, Zav'yalov VP, Korpela T. 1993. Structural similarity of the binding sites of cyclophilin A–cyclosporin A and FKBP-FK506 systems. Biochem Biophys Res Commun 192(2): 912–917.

    CAS  PubMed  Google Scholar 

  • Dinarello CA. 1998. Interleukin-1, Interleukin-1 receptors and Interleukin-1 receptor antagonist. Int Rev Immunol 16: 457–494.

    CAS  PubMed  Google Scholar 

  • Du Vigneaud V, Gish DT, Kotsoyanis PG. 1954. A synthetic preparation possessing biological properties associated with arginine–vassopressin. J Amer Chem Soc 76: 4751.

    CAS  Google Scholar 

  • Dunn AJ. 2004. Interleikin-6 access to the axis. Endocrinology 145(8): 3578–3579.

    CAS  PubMed  Google Scholar 

  • Eglitis MA, Mezey F. 1997. Hematopoietic cells differentiate into both microglia and macroglia in the brains of adult mice. Proc Natl Acad Sci USA 94: 4080–4085.

    CAS  PubMed  Google Scholar 

  • Eylar EH. 1972. The structure and immunologic properties of basic proteins of myelin. Ann NY Acad Sci 195: 481–491.

    CAS  PubMed  Google Scholar 

  • Eylar EH, Westall FC, Brostoff S. 1971. Allergic encephalomyelitis. An encephalitogenic peptide derived from the basic protein of myelin. J Biol Chem 246: 3418–3424.

    CAS  Google Scholar 

  • Fabry Z, Raine CS, Hart MN. 1994. Nervous tissue as in immune compartment; the dialect of the immune response in the CNS. Immunol Today 15: 218–224.

    CAS  PubMed  Google Scholar 

  • Fleshner N, Goehler LE, Hermann JK, Maier SF, Watkin LR. 1995. Interleukin-1b induced corticosterone elevation and hypothalamic NE depletion is vagally mediated. Brain Res 37: 605–610.

    CAS  Google Scholar 

  • Fontana A, Kristensen F, Dubs R, Gemsa D, Weber E. 1982. Production of prostaglandin E and interleukin1-like factors by cultured astrocytes and C-6 glioma cells. J Immunol 129: 2413–2419.

    CAS  PubMed  Google Scholar 

  • Freeman EE, Grosskreutz CL. 2000. The effects of FK506 on retinal ganglion cells after optic nerve crush. Invest Ophthalmol Vis Sci 41(5): 1111–1115.

    CAS  PubMed  Google Scholar 

  • Freidlin IS. 1999. IL-12 key cytokine of immunoregulation. Immunology 4: 5–9.

    Google Scholar 

  • Friedman J, Weissman I. 1991. Two cytoplasmic candidates for immunophilin action are revealed by affinity for a new cyclophilin: One in the presence and one in the absence of CsA. Cell 66(4): 799–806.

    CAS  PubMed  Google Scholar 

  • Fukada T, Yoshida Y, Nishida K, Ohtani T, Shirogan T, et al. 1999. Signaling through gp130: Toward a general scenario of cytokine action. Growth Factors 17: 81–91.

    CAS  PubMed  Google Scholar 

  • Galat A, Riviere S, Bouet F. 1993. Purification of macrophage migration inhibitory factor (MIF) from bovine brain cytosol. FEBS Lett 319: 233–236.

    CAS  PubMed  Google Scholar 

  • Galat A, Riviere S, Bouet F, Menez A. 1994. A diversified family of 12-kDa proteins with a high amino acid sequence similarity to macrophage migration-inhibitory factor (MIF). Eur J Biochem 224: 417–421.

    CAS  PubMed  Google Scholar 

  • Galoyan AA. 1962. Two hormones of hypothalamus acting on the coronary circulation. Dokl Acad Arm SSR 34(3): 109–111.

    CAS  Google Scholar 

  • Galoyan AA. 1964. The existence of specific protein of hypothalamus possessing by coronary-dilatory properties. Dokl Acad Arm SSR 38(5): 305–308.

    CAS  Google Scholar 

  • Galoyan AA. 1965. The same problems of biochemistry of hypothalamic regulation. Yerevan: Aiastan publisher; 235 pp.

    Google Scholar 

  • Galoyan AA. 1986. Neuroendocrine heart and hypothalamus. Neurochem Res 11(6): 769–785.

    CAS  PubMed  Google Scholar 

  • Galoyan AA. 1992a. Neurosecretory hypothalamus—endocrine heart as a functional system. News Physiol Sci 12(7): 279–283.

    Google Scholar 

  • Galoyan AA, Chailian SG, Gurvits BYa, Abrahamian GE, Alexanian AR, Parsadanian ASh, Lottspeich F. 1992. Ubiquitin from hypothalamus, chemical structure and functions. Abstract of the IXth General Meeting of ESN, Dublin.

    Google Scholar 

  • Galoyan AA. 1997. Biochemistry of novel cardioactive hormones and immunomodulators of the functional system neurosecretory hypothalamus—endocrine heart. Moscow: Nauka Publishers (in English); 240 pp.

    Google Scholar 

  • Galoyan A. 2000. Neurochemistry of brain neuroendocrine immune system: Signal molecules. Neurochem Res 25(9/10): 1343–1355.

    CAS  PubMed  Google Scholar 

  • Galoyan AA. 2004. Brain neurosecretory cytokines. Immune response and neuronal survival. New York: Kluwer Academic/Plenum Publishers; 188 pp.

    Google Scholar 

  • Galoyan AA. 2005. The chemistry and molecular biology of new brain cytokines. International Scientific Conference Proceedings Dedicated to the 75th Anniversary of YSMU after M. Heratsi, Yerevan; pp. 135–136.

    Google Scholar 

  • Galoyan AA, Alexanian RA, Ohanian MV. 1971. The biosynthesis in the insular apparatus of substances taking part in the neurohumoral mechanisms regulating the release of coronary-dilatory neurohormones from brain into blood. Dokl Acad Arm SSR 53(5): 297–301.

    CAS  Google Scholar 

  • Galoyan AA, Aprikyan VS. 2002. A new hypothalamic polypeptide is a regulator of myelopoiesis. Neurochem Res 27: 305–312.

    CAS  PubMed  Google Scholar 

  • Galoyan AA, Aprikyan VS, Markossian KA, Gurvits BYa. 1998. Neurosecretion of cytokines by magnocellular cells of hypothalamus. Neurokhimiya RAS & NAS RA 15: 361–372.

    CAS  Google Scholar 

  • Galoyan AA, Chailian SG, Abrahamian GE. 1992a. The role of Tβ1 in the regulation of Ca 2+ and calmodulin-sensitive processes (regulation of PDE activity). Neurokhimiya (USSR) 11: 10–20.

    Google Scholar 

  • Galoyan AA, Gurvits BYa. 1992. The discovery of peptidyl-Cys-transisomerase in hypothalamus (its new functions). Neirokhimiya RAS & NAS RA 11(1): 89–92.

    Google Scholar 

  • Galoyan AA, Gurvits BYa, Sharova NP. 1989. Cyclic nucleotide PDE and 5′-nucleotidase: A coupled system. Neurochem Res 14: 1213–1221.

    CAS  PubMed  Google Scholar 

  • Galoyan AA, Gurvits BYa, Shuvalova LA, Davis MT, Shively JE, et al. 1992b. A hypothalamic activator of calmodulin-dependent enzymes is thymosin β4 (1–39). Neurochem Res 17: 773–777.

    CAS  Google Scholar 

  • Galoyan AA, Kamalian LA, Gasparian MG. 2000a. Effect of a new cytokine on the synthesis of interferon-γ in the human mononuclears culture and replication virus encephalomiocarditis. Rep Armen Natl Acad Sci 100(3): 276–282.

    Google Scholar 

  • Galoyan AA, Kipriyan TK, Sarkissian JS, Sarkissian EJ, Grigorian YKh, et al. 2000b. The protection of snake venom (Vipera Raddei Boettger, 1898) neuronal injury by the hypothalamic neurohormone. Neurochem Res 25(6): 791–800.

    CAS  Google Scholar 

  • Galoyan AA, Rostomian MA. 1967. The neurosecretion of the heart. Biol J Armenia 20(9): 3–7.

    CAS  Google Scholar 

  • Galoyan AA, Sahakian FM. 1971. Isolation of coronary vasodilating hormones from neurosecretory granules. Dokl Acad Nauk USSR 201: 843–845.

    Google Scholar 

  • Galoyan AA, Sarkissian JS, Chavushyan VA, Abrahamyan SS, Avakian ZE, et al. 2004a. Study of the new hypothalamic proline-rich peptide (PRP-1) protective effect on morpho-functional changes in rat hippocampus using a model of Alzheimer's disease induced by introcerebroventricular injection of β-amyloid peptide Aβ (25–35). Neurokhimiya RAS & NAS RA 21(4): 265–288.

    CAS  Google Scholar 

  • Galoyan AA, Sarkissian JS, Kipriyan T, Sarkisian EJ, Chavushyan E, et al. 2001. Protective effect of proline-rich peptides against cobra venom, and trauma induced neuronal injury. Neurochem Res 26(8/9): 1023–1038.

    CAS  PubMed  Google Scholar 

  • Galoyan AA, Sarkissian JS, Sulkhanyan RM, Chavushyan VA, Avetisyan ZA, et al. 2005b. PRP-1 protective effect against central and peripheral neurodegeneration following N. ischiadicus transection. Neurochem Res 30(4): 487–505.

    CAS  Google Scholar 

  • Galoyan AA, Schakhlamov VA, Aghajanov MI, Vahradyan HG. 2004b. Hypothalamic proline-rich polypeptide protects brain neurons at aluminous neurotoxicosis. Neurochem Res 29 (7): 1349–1359.

    CAS  Google Scholar 

  • Galoyan AA, Srapionian RM. 1983. Protein–hormonal complexes in the hypothalamus as neurochemical systems of regulation. Neurochem Res 8(12): 1511–1535.

    CAS  PubMed  Google Scholar 

  • Galoyan AA, Srapionian RM, Karapetian RO, Abelian JG, Saakian FM, et al. 1986. The multiple forms of cardioactive neurohormones of hypothalamus. Neurokhimiya RAS & NAS RA 5(4): 354–365.

    CAS  Google Scholar 

  • Galoyan AA, Terio N, Berg MJ, Marks N. 2000c. Effects of proline-rich peptide (PRP) derived from neurophysin-II on caspases of murine neuroblastoma evidence for caspase-2 and -6 activation. Neurokhimiya RAS & NAS RA 17(3): 185–188.

    CAS  Google Scholar 

  • Galoyan A, Vartazaryan N, Melikyan N. 2004c. Immunohistochemistry of hypothalamus neurosecretory cytokine–proline-rich polypeptide (PRP) in human bone marrow. Electronic J Nat Sci NAS RA 2(3): 3–5.

    Google Scholar 

  • Ghazaryan PA, Ghazaryan AP, Galoyan AA. 2001. Regulation of membrane phospholipids metabolism by hypothalamic proline-rich peptide at cardiopulmonary insufficiency. Biochemical and Molecular–Biological Aspects of the Brain Immune System. Galoyan AA, editor. Yerevan: Encyclopedia Armenica Publishing House; pp. 115–126.

    Google Scholar 

  • Goldstein AL, Asanuma Y, White A. 1970. The thymus as an endocrine gland: Properties of thymosin, a new thymus hormone. Recent Prog Horm Res 26: 505–538.

    CAS  PubMed  Google Scholar 

  • Goldstein AL, Guha A, Zatz MM, Hardy MA, White A. 1972. Purification and biological activity of thymosin, a hormone of the thymus gland. Proc Natl Acad Sci USA 69(7): 1800–1803.

    CAS  PubMed  Google Scholar 

  • Guillemin R. 1978. Peptides in the brain. The new endocrinology of the neuron. Science 202: 370–402.

    Google Scholar 

  • Guillemin R. 1999. Review of the reference book A.A.Galoyan “Biochemistry of Novel Cardioactive Hormones and Immunomodulators of the Functional System Neurosecretory Hypothalamus—Endocrine Heart” (Moscow: Nauka Publishers, 1997). Neurokhimiya RAS & NAS RA (1): 70.

    Google Scholar 

  • Gurvits BYa, Alexanyan SS, Galoyan AA. 1992. On the investigation of the primary structure of calcium-idependent activators of calmodulin-dependent enzymes. Neurokhimiya 11(3-4): 18–25.

    Google Scholar 

  • Gurvits BYa, Galoyan AA. 1995. Structure and function of immunophilin, a receptor of immunosuppressor FK506, isolated from bovine hypothalamus. J Neurochem (Raven Press) 65(Suppl.): S178D.

    Google Scholar 

  • Gurvits BYa, Tretyakov OYu, Galoyan AA. 1998. Identification of macrophage migration inhibitory factor in bovine hypothalamus, in: International Symposium “Protein Structure, Stability and Folding, Fundamental and Medical Aspects”, Moscow, Russia.

    Google Scholar 

  • Gurvits BYa, Tretyakov OYu, Klishina NV, Stoeva S, Voelter W, Galoyan AA. 2000. Identification of macrophage migration inhibitory factor isoforms in bovine brain. Neurochem Res 25(8): 1125–1129.

    CAS  PubMed  Google Scholar 

  • Hashim GA, Eylar EH. 1969. Allergic encephalomyelitis: Isolation and characterization of encephalitigenic peptides from the basic protein of bovine spinal cord. Arch Biochem Biophys 129: 645–654.

    CAS  PubMed  Google Scholar 

  • Heldin CH, Ostman A, Ronnstrand L. 1998. Signal transduction via platelet-derived growth factor receptors. Biochim Biophys Acta 1378(1): F79–F113.

    CAS  PubMed  Google Scholar 

  • Hibi M, Hirano T. 2000. Signal transduction through cytokine receptors. Int Rev Immunol 17: 75–102.

    Google Scholar 

  • Hirano T. 1999. Molecular basis underlying functional pleiotrophy of cytokines and growth factor. Biochem Biophys Res Commun 260: 303–308.

    CAS  PubMed  Google Scholar 

  • Hirsch DB, Steiner JP, Dawson TM, Mammen A, Hayek E, et al. 1993. Neurotransmitter release regulated by nitric oxide in PC-12 cells and brain synaptosomes. Curr Biol 3(11): 749–754.

    CAS  PubMed  Google Scholar 

  • Hoffman P, Wiesmuller KH, Metzger J, Jung G, Bessler WG. 1989. Induction of tumor cytotoxicity in murine bone marrow-derived macrophages by two synthetic lipopeptide analogues. Biol Chem Hoppe-Seyler 370(6): 575–582.

    Google Scholar 

  • Hooper JA, McDaniel MC, Thurman GB, Cohen GH, Schulof RS, et al. 1975. Purification and properties of bovine thymosin. Ann NY Acad Sci 249: 125–144.

    CAS  PubMed  Google Scholar 

  • Howe LR, Weiss A. 1995. Multiple kinases mediate T-cell-receptor signaling. Trends Biochem Sci 20: 59–64.

    CAS  PubMed  Google Scholar 

  • Hsieh CS, Mucatinia SE, Tripp CS, Wolf SF, O'Garra A, et al. 1993. Development of Tn1CD4+ T-cells through IL-12 produced by listeria-induced macrophages. Science 260: 547–549.

    CAS  PubMed  Google Scholar 

  • Hultsch T, Albers MW, Schreiber SL, Hohman RJ. 1991. Immunophilin ligands demonstrate common features of signal transduction leading to exocytosis or transcription. Proc Natl Acad Sci USA 88(14): 6229–6233.

    CAS  PubMed  Google Scholar 

  • Janeway CA, Travers P, Walport M, Shlomchik M. 2005. Immunobiology, 6th edn. New York: Garland Publishing.

    Google Scholar 

  • Kaye J, Gillis S, Mizel SB, Shevach EM, Malek TR, et al. 1984. Growth of a cloned helper T cell line induced by a monoclonal antibody specific for the antigen receptor: Interleukin 1 is required for the expression of receptors for interleukin 2. J Immunol 133(3): 1339–1345.

    CAS  PubMed  Google Scholar 

  • Kaye J, Porcelli S, Tite J, Jones B, Janeway CA, Jr. 1983. Both a monoclonal antibody and antisera specific for determinants unique to individual cloned helper T cell lines can substitute for antigen and antigen-presenting cells in the activation of T cells. J Exp Med 158(3): 836–856.

    CAS  PubMed  Google Scholar 

  • Ketlinski SA, Kalinina NM. 1995. Cytokines of mononuclear phagocytes in inflamation and immune regulation. Immunology 3: 30–44.

    Google Scholar 

  • Kevorkian GA, Marukhyan GL, Arakelyan LN, Guevorkian AG, Galoyan AA. 2001. Influence of the hypothalamic proline rich peptide on the level of 14C-glucose utilization during crush syndrome. Neurochem Res 26(7): 829–832.

    CAS  PubMed  Google Scholar 

  • Kisseleva T, Bhattacharya S, Braunstein J, Schneider CW. 2002. Signalling through the JAL/STAT pathway, recent advences and future challenges. Gene 285: 1–24.

    CAS  PubMed  Google Scholar 

  • Klemsz MJ, McKercher SR, Celada A, Van Beveren C, Maki RA. 1990. The macrophage and B cell-specific transcription factor PU-1 is related to the etc oncogene. Cell 61: 113.

    CAS  PubMed  Google Scholar 

  • Knopf PM, Harling-Berg CJ, Cserr HF, Basu D, Sirulnick EJ, et al. 1998. Antigen-dependent intrathecal antibody synthesis in the normal rat brain: Tissue entry and local retention of antigen-specific B cells. J Immunol 161(2): 692–701.

    CAS  PubMed  Google Scholar 

  • Koler OJ, Ross AT, Gilliam H. 1972. Serum lgG, LgA, LgM concentration in 1,038 patients with various neurological disorders. Z Neurol 203: 133–144.

    Google Scholar 

  • Kreutzberg GW. 1996. Microglia: A sensor for pathological events in the CNS. Trends Neurosci 19: 312–318.

    CAS  PubMed  Google Scholar 

  • Kunz J, Henriquez R, Schneider U, Deuter-Reinhard M, Movva NR, et al. 1993. Target of rapamycin in yeast, TOR2, is an essential phosphatidylinositol kinase homolog required for G1 progression. Cell 73(3): 585–596.

    CAS  PubMed  Google Scholar 

  • Kurt-Jones EA, Beller DI, Mizel SB, Unanue ER. 1985. Identification of a Membrane-Associated Interleukin 1 in Macrophages. PNAS USA 82(4): 1204–1208.

    CAS  PubMed  Google Scholar 

  • La Bella F. 1968. Storage and secretion of neurohypophyseal hormones. Canad J Physiol Pharmacol 46(2): 335–345.

    CAS  Google Scholar 

  • Laye S, Bluthe RM, Kent S, Lombe C, Medina C, et al. 1995. Subdiaphragmatic vagotomy blocks induction of IL-1b mRNA in mice brain in response to peripheral LPS. Am J Physiol 268(Pt2): 1327–1331.

    Google Scholar 

  • Lee YB, Kim SU. 1997. Cytokines and cytokine receptors in human neurons, astrocytes and microglia in culture. J Neurochem 69(Suppl): S178C.

    Google Scholar 

  • Lehtimaki KA, Peltola J, Koskikallio E, Keranen T, Honkaniemi J. 2003. Expression of cytokines and cytokine receptors in the brain after kainic acid-induced seizures. Mol Brain Res 110: 253–260.

    CAS  PubMed  Google Scholar 

  • Licini J, Wang ML. 1992. Neutrophil-activating peptide-1, interleukin-8 mRNA is localized in rat hypothalamus and hippocampus. Neureport 3: 753–756.

    Google Scholar 

  • Liu J, Farmer JD, Jr, Lane WS, Friedman J, Weissman I, et al. 1991. Calcineurin is a common target of cyclophilin–cyclosporin A and FKBP-FK506 complexes. Cell 66(4): 807–815.

    CAS  PubMed  Google Scholar 

  • Mantovani A. 2000. Pharmacology of Cytokines. Oxford: University Press; 340 pp.

    Google Scholar 

  • Mariller C, Allain F, Kouach M, Spik G. 1996. Evidence that human milk isolated cyclophilin B corresponds to a truncated form. Biochim Biophys Acta 1293(1): 31–38.

    PubMed  Google Scholar 

  • Markossian KA, Gurvits BYa, Galoyan AA. 1999. Isolation and identification of novel peptides from secretory granules of neurohypophysis. Neurochimiya RAS & NAS RA 16: 22–25.

    CAS  Google Scholar 

  • Mason DW. 2001. Mechanisms of self–non-self discrimination in the adaptive immune system. Biochemical and Molecular–Biological Aspects of the Brain Immune System. Galoyan AA, editor. Yerevan: Encyclopedia Armenica Publishing House; pp. 109–114.

    Google Scholar 

  • McCann SM, Karanth S, Kamat A, Les Dees W, Lyson K, et al. 1994. Induction by cytokines of the pattern of pituitary hormone secretion in infection. Neuroimmunomodulation 1: 2–13.

    CAS  PubMed  Google Scholar 

  • Merrill JE, Benveniste EN. 1996. Cytokines in inflammatory brain lesions: Helpful and harmful. Trends Neurosci 19: 331–338.

    CAS  PubMed  Google Scholar 

  • Meucci O, Simen FAA, Bushell TJ, Gray PW, Miller RJ. 1998. Chemokines regulate hippocampal neuronal signaling and gp120 neurotoxicity. Proc Natl Acad Sci USA 95: 14500

    CAS  PubMed  Google Scholar 

  • Mezey E, Chandross KJ, Harta G, Maki RA, McKercher SR. 2000. Turning blood into brain: Cells bearing neuronal antigens generated in vivo from bone marrow. Science 290: 1779–1782.

    CAS  PubMed  Google Scholar 

  • Missirian SS, Abelian JG, Srapionian RM, Galoyan AA. 1979. The changes of phosphorylase activity under cardioactive substances isolated from the bovine heart. Biol J Armenia 32(5): 170–172.

    Google Scholar 

  • Moran LB Graeber MB. 2004. The facial nerve axotomy model. Brain Res Rev 44: 154–178.

    PubMed  Google Scholar 

  • Moreau-Gachelin F, Ray D, Tambourin P, Davitian A, Klemsz MJ, et al. 1990. The PU-1 transcription factor is the product of the putative oncogene Spi-1. Cell 61: 1166.

    Google Scholar 

  • Muhallab S, Lundberg C, Gielen AW, Lidman O, Svenningson A, et al. 2002. Differential expression of neurotrophic factors and inflammatory cytokines by myelin basic protein-specific and other recruited T-cells infiltrating the central nervous system during experimental autoimmune encephalomyelitis. Scand J Immunol 55(3): 264–273.

    CAS  PubMed  Google Scholar 

  • Neuman H, Boucraut J, Hahel C, Misgeld T, Wekerle H. 1996. Neuronal control of MHC class II inducibility in rat astrocytes and microglia. Eur J Neurosci 8: 2582–2590.

    Google Scholar 

  • Neuman H, Cavalie A, Jenne DE, Wekerle H. 1995. Induction of MHC class genes in neurons. Science 269: 549–552.

    Google Scholar 

  • Neuman H, Wekerle H. 1998. Neuronal control of the immune response in the central nervous system: Linking brain immunity to neurodegeneration. J Neuropathol Experim Neurol 57(1): 1–9.

    Google Scholar 

  • Nishino T, Bernhagen J, Shiiki H, Calandra T, Dohi K, et al. 1995. Localization of MIF in secretory granules within the corticotropic thyrotropic cells of the pituitary gland. Mol Med 1: 781–788.

    CAS  PubMed  Google Scholar 

  • Oh SB, Tran PB, Gillard SE, Hurvey RW, Hammond DL, et al. 2001. Chemokines and glycoprotein 120 produce pain hypersensitivity by directly exciting primary nociceptive neurons. J Neurosci 21: 5027.

    CAS  PubMed  Google Scholar 

  • Ohnishi ST, Barr JK. 1978. A simplified method of quantitating protein using the the biuret and phenol reagents. Anal Biochem 86(1): 193–200.

    CAS  PubMed  Google Scholar 

  • Oliveira ALR, Thams S, Lidman O, Piehl F, Hokfelt T, et al. 2004. A role for MHC class I molecules in synaptic plasticity and regeneration of neurons after axotomy. Proc Natl Acad Sci USA 101: 17843–17848.

    CAS  PubMed  Google Scholar 

  • Pawson T, Raina M, Nash P. 2002. Interaction domains: From simple binding events to complex cellular behavior. FEBS Lett 513(1): 2–10.

    CAS  PubMed  Google Scholar 

  • Phillips LM, Lampson LA. 1999. Site-specific control of T-cell traffic in the brain: T-cell entry to brainstem vs. hippocampus after local injection of INN-γ. J Neuroimmunol 96(2): 278–279.

    Google Scholar 

  • Phillips LM, Simon PJ, Lampson LA. 1999a. Site-specific immune regulation in the brain: Differential modulation of major histocompitibility complex (MHC) proteins in brain stem vs. hippocampus. J Comp Neurol 405(3): 322–333.

    CAS  Google Scholar 

  • Pitossi F, del Rey A, Kabiersch A, Besedovsky HO. 1997. Induction of cytokine transcripts in the CNS and pituitary following peripheral administration of endotoxin to mice. J Neurosci Res 46: 287–298.

    Google Scholar 

  • Quarles RR, Morell P, McFarlin DE. 1989. Diseases involving myelin basic proteins. Basic Neurochemistry, 4th edition. Siogel G, Agronoff B, Albers R-W, Molinoff P, editors. Raven Press: New York. pp. 697–713.

    Google Scholar 

  • Rebar RW, Miyake A, Low TLK, Goldstein AL. 1981. Thymosin stimulates secretion of luteinizing hormone releasing factor. Science 214: 669–671.

    CAS  PubMed  Google Scholar 

  • Redwine LS, Pert CB, Rone JD, Nixon R, Vance M, et al. 1999. Peptide T blocks GP120/CCR5 chemokine receptor-mediated chemotaxis. Clin Immunol 93(2): 124–131.

    CAS  PubMed  Google Scholar 

  • Ren RF, Flander KC. 1996. Transforming growth factors-β protect primary rat hippocampal neuronal cultures from degeneration induced by β-amyloid peptide. Brain Res 732(1-2): 16–24.

    CAS  PubMed  Google Scholar 

  • Ren RF, Mayer BJ, Cicchetti P, Baltimore D. 1993. Identification of a ten-amino acid proline-rich SH3 binding site. Science 259(5098): 1157–1161.

    CAS  PubMed  Google Scholar 

  • Richter D. 1985. Biosynthesis of vasopressin. Current Topics in Neuroendocrinology. Neurobilogy of Vasopressin. Ganten D, Pfaff D, editors. Springer-Verlag, Berlin Heidelberg New York Tokyo; pp. 1–16.

    Google Scholar 

  • Rosengren E, Aman P, Thelin S, Hansson C, Ahlfors S, et al. 1997. The macrophage migration inhibitory factor (MIF) is a phenylpyruvate tautomerase. FEBS Lett 417: 85–88.

    CAS  PubMed  Google Scholar 

  • Rothe T, Behring R, Carrol P, Grantyn R. 1999. Repetitive firing deficits and reduced sodium current density in retinal ganglion cells developing in the absence of BDNF. J Neurobiol 40: 407–419.

    CAS  PubMed  Google Scholar 

  • Rothwell NJ. 1997. Neuroimmune interactions: The role of cytokines. Br J Pharmacol 121: 841–847.

    CAS  PubMed  Google Scholar 

  • Rothwell NJ. 1999. Cytokines-killers in the brain. J Physiol 514(1): 3–17.

    CAS  PubMed  Google Scholar 

  • Rothwell NJ, Hopkins SJ. 1995. Cytokines and Nervous System: 11. Actions and Mechanisms of action. Trends Neurosci 18: 130–136.

    CAS  PubMed  Google Scholar 

  • Ruff MR, Gifford GE. 1980. Purification and physicochemical characterization of rabbit tumor necrosis factor. J Immunol 125: 1671–1677.

    CAS  PubMed  Google Scholar 

  • Sarkissian JS, Chavushyan VA, Sulkhanyan RM, Poghosyan MV, Grigorian Yu Kh, et al. 2003. Protective Effect of Neurosecretory Cytokines on Spinal Cord Neurons under Hemisection. Neurokhimiya RAS & NAS RA 21(1): 15–26.

    Google Scholar 

  • Sarkissian JS, Kipriyan TK, Sulkhanyan RM, Galoyan AA. 2001. Degeneration and Regeneration: Effects of PRP releated with neuronal deficiency in spinal cord. Biochemical and Molecular–Biological Aspects of the Brain Immune System. Galoyan AA, editor. Yerevan: Encyclopedia Armenica Publishing House; pp. 95–108.

    Google Scholar 

  • Schakhlamov VA, Galoyan AA, Polyakova GN, Vagradyan AG, Simonyan MA, et al. 2002. Biochemical and ultrastructural equivavelts of aluminum toxicosis under hypothalapic proline-rich peptide. Rep Arm Natl Acad Sci 102(2): 166–172.

    Google Scholar 

  • Schally AV. 1994. Hypothalamic hormones: From neuroendocrinology to cancer therapy. Anti-Cancer Drugs 5: 115–130.

    CAS  PubMed  Google Scholar 

  • Schally AV, Comaru-Schally A-M, Nagy A, Kovacs M, Szepeshazi K, et al. 2001. Hypothalamic hormones and cancer. Front Neuroendocrinol 22: 248–291.

    CAS  PubMed  Google Scholar 

  • Schally AV, Coy DH, Meyers CA. 1978. Hypothalamic regulatory hormones. Annu Rev Biochem 47: 89–128.

    CAS  PubMed  Google Scholar 

  • Scharrer EB, Scharrer B. 1954. Hormones produced by neurosecretory cells. Rec Progr Hormone Res 10: 183.

    CAS  Google Scholar 

  • Schlessinger J. 2000. Cell signaling by receptor tyrosine kinases. Cell 103(2): 211–225.

    CAS  PubMed  Google Scholar 

  • Schneider H, Pitossi F, Balschun D, Wagner A, del Rey A, et al. 1998. A neuromodulatory role of interleikin-1b in the hippocampus. Proc Nat Acad Sci USA 95: 7778–7783.

    CAS  PubMed  Google Scholar 

  • Scott EW, Simon MC, Anastasi J, Singh H. 1994. Requirement of transcription factor PU-1 in the development of multiple hematopoietic lineages. Science 265: 1573.

    CAS  PubMed  Google Scholar 

  • Seidah NG. 1995. Molecular strategies for identifying processing enzymes. Methods Neurosci 23: 3–15.

    CAS  Google Scholar 

  • Seratte SA, Schulof RS, Leondaridis L, Goldstein AL, Sztein MB. 1987. Modulation of human natural killer cell cytotoxic activity, lymphokine production and interleukin-2 receptor expression by thymic hormones. J Immunol 139: 2338–2343.

    Google Scholar 

  • Sewell TJ, Lam E, Martin MM, Leszyk J, Weidner J, et al. 1994. Inhibition of calcineurin by a novel FK-506-binding protein. J Biol Chem 269(33): 21094–21102.

    CAS  PubMed  Google Scholar 

  • Shakhlamov VA, Galoyan AA, Polyakova GN, Vahradian AG, Simonian MA, et al. 2002. Biochemical and ultrastructural equivalents of aluminum toxicity in the brain under hypothalamic proline-rich peptide. Dokl NAS RA 102(2): 166–172.

    CAS  Google Scholar 

  • Sherry B, Yarlett N, Strupp A, Cerami A. 1992. Identification of cyclophilin as a proinflammatory secretory product of lipopolysaccharide-activated macrophages. Proc Natl Acad Sci USA 89(8): 3511–3515.

    CAS  PubMed  Google Scholar 

  • Simbirtsev AS. 1998. IL-8 and other chemokins. Immunology 4: 9–14.

    Google Scholar 

  • Simon PL, Layden JT, Lee JC. 1985. A modified assay for interleukin-1 (IL-1). J Immunol Methods 84(1-2):85–94.

    CAS  PubMed  Google Scholar 

  • Srapionian RM, Sahakian SA, Lelekova TV, Paronian ZCh, Galoyan AA. 1997. Effect of neurospectic cardioactive protein hormonal complexes on lymphatic vessels and vas deferens contraction in rat. Proceedings of 16th ISN/28 ASN meeting, Boston S201D.

    Google Scholar 

  • Steiner JP, Dawson TM, Fotuhi M, Glatt CE, Snowman AM, et al. 1992. High brain densities of the immunophilin FKBP colocalized with calcineurin. Nature 358(6387): 584–587.

    CAS  PubMed  Google Scholar 

  • Steiner JP, Dawson TM, Ftuhi M, Snyder SH. 1996. Immunophilin regulation of neurotransmitter release. Mol Med 2: 325–333.

    CAS  PubMed  Google Scholar 

  • Sternberg SS, Antonioli DA, Carter D, Eggleston J, Mills SE, editors. et al. 1989. Diagnostic Surgical Pathology (two volumes). New York: Raven Press.

    Google Scholar 

  • Sugarman BJ, Aggarwal BB, Hass PE, Figari IS, Palladino MA, Jr, et al. 1985. Recombinant human tumor necrosis factor-α: Effects on proliferation of normal and transformed cells in vitro. Science 230(4728): 943–945.

    CAS  PubMed  Google Scholar 

  • Sulkhanyan RM, Sarkissian JS, Chavushyan V A, Gevorgyan AJ, Avakyan ZE, et al. 2003. Investigation of neurosecretory cytokines protective effect on spinal cord moto- and interneurons after N. ishiadicus transection. Neurokhimiya RAS & NAS RA 20(2): 146–160.

    CAS  Google Scholar 

  • Swope M, Sun H-W, Blake PR, Lolis E. 1998. Direct link between cytokine activity and a catalytic site for macrophage inhibitory factor. EMBO J 17: 3534–3541.

    CAS  PubMed  Google Scholar 

  • Syken J, Shatz CJ. 2003. Expression of T cell receptor locus in central nervous system neurons. Proc Natl Acad Sci USA 100(22): 13048–13053.

    CAS  PubMed  Google Scholar 

  • Szabo J, Chen XH, Xin L, Adler MW, Howard OM, et al. 2002. Heterologous desensitization of opioid receptors by chemokines inhibits chemotaxis and enhances the perception of pain. Proc Natl Acad Sci USA 99: 10276.

    CAS  PubMed  Google Scholar 

  • Ter-Tadevosyan LP, Sarkissyan LV, Aslanyan IH, Galoyan AA. 2006. Effects of PRP-1 on the activity of some phosphotases in white rats bone marrow in norm and at stimulation of nypothalamus neurosecretory nuclei (NPV И NSO). Dokl NAS RA, 106(4): 349–353.

    Google Scholar 

  • Thorpe JR, Morley SJ, Rulten SL. 2001. Utilizing the peptidyl-prolyl cis–trans isomerase pin1 as a probe of its phosphorylated target proteins. Examples of binding to nuclear proteins in a human kidney cell line and to tau in Alzheimer's diseased brain. J Histochem Cytochem 49(1): 97–108.

    CAS  PubMed  Google Scholar 

  • Thurman GB, Rossio JL, Goldstein AL. 1977. Thymosin-induced enhancement of MIF production by peripheral blood lymphocytes of thymectomized guinea pigs. Regulation Mechanismsin Lymphocyte Activation. Lucas DO, editor. N.Y.P: Academic Press; pp. 629–631.

    Google Scholar 

  • Touatellotte W. 1976. On cerebrospinal fluid immunoglobulin-G (lgG) quotients in multiple sclerosis and other diseases. J Neurol Sci 10: 279–384.

    Google Scholar 

  • Tran PB, Miller RJ. 2003. Chemokine receptors: Signposts to brain development and disease. Nat Rev Neurosci 4: 444.

    CAS  PubMed  Google Scholar 

  • Turnbull AV, Pitossi F, Lebrun J, Lee S, Meltzer J, et al. 1997. Inhibition of tumor necrosis factor-α action within the CNS markedly reduces the plasma adrenocorticotropin response to peripheral local inflammation in rats. J Neurosci 11(9): 3262–3273.

    Google Scholar 

  • Vecino E, Garcia-Grespo D, Garcia M, Martinez-Millan I, Sharma SC, et al. 2002. Rat retinal ganglion cells co-express brain derived neurotropic factor (BDNF) and its receptor TrkB. Vision Res 2: 151–157.

    Google Scholar 

  • Virgin HW, Kurt-Jones EA, Wittenberg GF, Unanue ER. 1985. Immune complex effects on murine macrophages. II. Immune complex effects on activated macrophages cytotoxicity, membrane IL 1, and antigen presentation. J Immunol 135(6): 3744–3749.

    CAS  PubMed  Google Scholar 

  • Voelter W, Kapurniotu A, Mihelic M, Gurvits B, Abrahamian G, et al. 1995. The interaction of (1–4)-fragment of thymosin-β4 with calmodulin-sensitive cAMP phosphodiesterase from hypothalamus. Neurochem Res 20(1): 55–59.

    CAS  PubMed  Google Scholar 

  • Walsh JC, De Korter RP, Lee, Hyun-Jun, Smith ED, Lancki DW, Gurish MF, et al. 2002. Cooperative and antogonistic Interplay between PU-1 and GATA-2 in the specification of myeloid cell fates immunity. 17: 665–676.

    Google Scholar 

  • Wekerle H. 2005. Planting and pruning in the brain: MHC antigens involved in synaptic plasticity? Proc Natl Acad Sci USA 102(1): 3–4.

    CAS  PubMed  Google Scholar 

  • Wells TNC, Power CA, Proudfoot AEI. 1998. Definition, functions and pathophysiological significance of chemokine receptors. TIPS 19: 376–381.

    CAS  PubMed  Google Scholar 

  • Wells TNC, Proudfoot AEJ, Power CA. 1999. Chemokine receptors and their role in leukocyte activation. Immunol Lett 65: 35–40.

    CAS  PubMed  Google Scholar 

  • White A, Goldstein AL. 1970. Thymosin, a thymic hormone influencing lymphoid cell immunological competence. Ciba Found Study Group 36: 3–23.

    CAS  PubMed  Google Scholar 

  • Yarilin AA. 1997. System of cytokines and principles of its functionation in norm and pathology Immunology 5: 7–14.

    Google Scholar 

  • Young VW, Antel JP. 1992. Major histocompatibility complex molecules on glial cells. Semin Neurosci 4: 231–240.

    Google Scholar 

  • Yu H, Chen JK, Feng S, Dalgarno DC, Brauer AW, et al. 1994. Structural basis for the binding of proline-rich peptides to SH3 domains. Cell 76(5): 933–945.

    CAS  PubMed  Google Scholar 

  • Zhang N, Rogers ThJ, Caterina M, Oppenheim JJ. 2004. Proinflammatory chemokines, such as C-C* chemokine ligand 3, desensitize m-opioid receptors on dorsal root ganglia neurons. J Immunol 173: 594–599.

    CAS  PubMed  Google Scholar 

  • Zou YR, Kottmann AH, Kuroda M, Taniuchi I, Littman DR. 1998. Function of the chemokine receptor CXCR4 in haematopoiesis and in cerebellar development. Nature 93(6685): 595–599.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this entry

Cite this entry

Galoyan, A. (2008). The Brain Immune System: Chemistry and Biology of the Signal Molecules. In: Lajtha, A., Galoyan, A., Besedovsky, H.O. (eds) Handbook of Neurochemistry and Molecular Neurobiology. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-30398-7_7

Download citation

Publish with us

Policies and ethics