Skip to main content

Evolutionary Origins of the Brain's Immune Privilege. Implications for Novel Therapeutic Approaches: Gene Therapy

  • Reference work entry
Handbook of Neurochemistry and Molecular Neurobiology

Abstract:

Researchers have conducted numerous pre‐clinical and clinical gene transfer studies using recombinant viral vectors modified from a wide range of pathogenic viruses such as adenovirus, adeno‐associated virus, herpes simplex 1 virus, and lentivurus. Herein, we examine the utility of each vector system to treat disorders of the nervous system as well as offer a summary of various strategies and clinical outcomes of gene therapy approaches to treat neurological disorders such as Parkinson's disease, Alzheimer's disease, and glioma. As viral vectors are derived from pathogenic viruses, they have an inherit ability to induce a vector specific immune response. The role of the immune response against the viral vector gene delivery vehicle has been implicated in the inconsistent and unpredictable translation of pre‐clinical success into therapeutic efficacy in human clinical trials using gene therapy to treat neurological disorders. The effects of the innate and adaptive immune responses on therapeutic gene expression mediated by viral vectors are discussed. Furthermore, the immune responses against gene therapy vectors and the resulting loss of therapeutic gene expression are examined in the context of the architecture and neuroanatomy of the brain immune system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AAV:

adeno-associated virus

APCs:

antigen-presenting cells

BBB:

blood–brain barrier

BDNF:

brain-derived neurotrophic factor

CAR:

coxsackievirus–adenovirus receptor

CNTF:

ciliary neurotrophic factor

CTLs:

cytotoxic T cells

DC:

dendritic cells

DIC:

disseminated intravascular coagulation

GBM:

glioblastoma multiforme

GDNF:

glial-derived neurotrophic factor

GFAP:

glial fibrillary acidic protein

HD:

Huntington disease

HPRT:

hypoxanthine–guanine phosphoribosyltransferase

HSV:

herpes simplex virus

IRFs:

interferon regulatory factors

ITR:

inverted terminal repeats

LNS:

Lesch–Nyhan syndrome

MAPK:

mitogen-activated protein kinase

MS:

multiple sclerosis

NGF:

neural growth factor

NK:

natural killer

NKT:

natural killer T

PI-3K:

phophoinositide-3-OH kinase

References

  • Abordo-Adesida E, Follenzi A, Barcia C, Sciascia S, Castro MG, et al. 2005. Stability of lentiviral vector-mediated transgene expression in the brain in the presence of systemic antivector immune responses. Hum Gene Ther 16(6): 741–751.

    CAS  PubMed  Google Scholar 

  • Albin RL, Tagle DA. 1995. Genetics and molecular biology of Huntington's disease. Trends Neurosci 18(1): 11–14.

    CAS  PubMed  Google Scholar 

  • Alexopoulou L, Holt AC, Medzhitov R, Flavell RA. 2001. Recognition of double-stranded RNA and activation of NF-κB by Toll-like receptor 3. Nature 413(6857): 732–738.

    CAS  PubMed  Google Scholar 

  • Ali S, King GD, Curtin JF, Candolfi M, Xiong W, et al. 2005. Combined immunostimulation and conditional cytotoxic gene therapy provide long term survival in a large glioma model. Cancer Res 65(16): 7194–7204.

    CAS  PubMed  Google Scholar 

  • Banchereau J, Steinman RM. 1998. Dendritic cells and the control of immunity. Nature 392(6673): 245–252.

    CAS  PubMed  Google Scholar 

  • Barr D, Tubb J, Ferguson D, Scaria A, Lieber A, et al. 1995. Strain related variations in adenovirally mediated transgene expression from mouse hepatocytes in vivo: Comparisons between immunocompetent and immunodeficient inbred strains. Gene Ther 2(2): 151–155.

    CAS  PubMed  Google Scholar 

  • Bemelmans AP, Horellou P, Pradier L, Brunet I, Colin P, et al. 1999. Brain-derived neurotrophic factor-mediated protection of striatal neurons in an excitotoxic rat model of Huntington's disease, as demonstrated by adenoviral gene transfer. Hum Gene Ther 10(18): 2987–2997.

    CAS  PubMed  Google Scholar 

  • Benigni F, Villa P, Demitri MT, Sacco S, Sipe JD, et al. 1995. Ciliary neurotrophic factor inhibits brain and peripheral tumor necrosis factor production and, when coadministered with its soluble receptor, protects mice from lipopolysaccharide toxicity. Mol Med 1(5): 568–575.

    CAS  PubMed  Google Scholar 

  • Bergelson JM, Cunningham JA, Droguett G, Kurt-Jones EA, Krithivas A, et al. 1997. Isolation of a common receptor for Coxsackie B viruses and adenoviruses 2 and 5. Science 275(5304): 1320–1323.

    CAS  PubMed  Google Scholar 

  • Bohn MC. 2000. Parkinson's disease: A neurodegenerative disease particularly amenable to gene therapy. Mol Ther 1(6): 494–496.

    CAS  PubMed  Google Scholar 

  • Borgland SL, Bowen GP, Wong NC, Libermann TA, Muruve DA. 2000. Adenovirus vector-induced expression of the C-X-C chemokine IP-10 is mediated through capsid-dependent activation of NF-κB. J Virol 74(9): 3941–3947.

    CAS  PubMed  Google Scholar 

  • Bowen GP, Borgland SL, Lam M, Libermann TA, Wong NC, et al. 2002. Adenovirus vector-induced inflammation: Capsid-dependent induction of the C-C chemokine RANTES requires NF-κB. Hum Gene Ther 13(3): 367–379.

    CAS  PubMed  Google Scholar 

  • Braz J, Beaufour C, Coutaux A, Epstein AL, Cesselin F, et al. 2001. Therapeutic efficacy in experimental polyarthritis of viral-driven enkephalin overproduction in sensory neurons. J Neurosci 21(20): 7881–7888.

    CAS  PubMed  Google Scholar 

  • Brough DE, Lizonova A, Hsu C, Kulesa VA, Kovesdi I. 1996. A gene transfer vector-cell line system for complete functional complementation of adenovirus early regions E1 and E4. J Virol 70(9): 6497–6501.

    CAS  PubMed  Google Scholar 

  • Byrnes AP, Rusby JE, Wood MJ, Charlton HM. 1995. Adenovirus gene transfer causes inflammation in the brain. Neuroscience 66(4): 1015–1024.

    CAS  PubMed  Google Scholar 

  • Byrnes AP, Wood MJ, Charlton HM. 1996a. Role of T cells in inflammation caused by adenovirus vectors in the brain. Gene Ther 3(7): 644–651.

    CAS  Google Scholar 

  • Byrnes AP, MacLaren RE, Charlton HM. 1996b. Immunological instability of persistent adenovirus vectors in the brain: Peripheral exposure to vector leads to renewed inflammation, reduced gene expression, and demyelination. J Neurosci 16(9): 3045–3055.

    CAS  Google Scholar 

  • Campochiaro PA, Nguyen QD, Shah SM, Klein ML, Holz E, et al. 2006. Adenoviral vector-delivered pigment epithelium-derived factor for neovascular age-related macular degeneration: Results of a phase I clinical trial. Hum Gene Ther 17(2): 167–176.

    CAS  PubMed  Google Scholar 

  • Carson MJ, Reilly CR, Sutcliffe JG, Lo D. 1999. Disproportionate recruitment of CD8+ T cells into the central nervous system by professional antigen-presenting cells. Am J Pathol 154(2): 481–494.

    CAS  PubMed  Google Scholar 

  • Castro MG, Cowen R, Williamson IK, David A, Jimenez-Dalmaroni MJ, et al. 2003. Current and future strategies for the treatment of malignant brain tumors. Pharmacol Ther 98(1): 71–108.

    CAS  PubMed  Google Scholar 

  • Castro MG, Hurtado-Lorenzo A, Umana P, Smith-Arica JR, Zermansky A, et al. 2001. Regulatable and cell-type specific transgene expression in glial cells: Prospects for gene therapy for neurological disorders. Progress in Brain Research, Vol. 132. Elsevier Science Publishers; pp. 665–691.

    Google Scholar 

  • Chen S, Le W. 2006. Neuroprotective therapy in Parkinson disease. Am J Ther 13(5): 445–457.

    PubMed  Google Scholar 

  • Chenuaud P, Larcher T, Rabinowitz JE, Provost N, Cherel Y, et al. 2004. Autoimmune anemia in macaques following erythropoietin gene therapy. Blood 103(9): 3303–3304.

    CAS  PubMed  Google Scholar 

  • Clatterbuck RE, Price DL, Koliatsos VE. 1996. Ciliary neurotrophic factor stimulates the expression of glial fibrillary acidic protein by brain astrocytes in vivo. J Comp Neurol 369(4): 543–551.

    CAS  PubMed  Google Scholar 

  • Cope DK, Lariviere WR. 2006. Gene therapy and chronic pain. ScientificWorldJournal 6: 1066–1074.

    CAS  PubMed  Google Scholar 

  • Counsell CE, Grant R. 1998. Incidence studies of primary and secondary intracranial tumors: A systematic review of their methodology and results. J Neurooncol 37(3): 241–250.

    CAS  PubMed  Google Scholar 

  • Curtin JF, King GD, Candolfi M, Greeno RB, Kroeger KM, et al. 2005. Combining cytotoxic and immune-mediated gene therapy to treat brain tumors. Curr Top Med Chem 5(12): 1151–1170.

    CAS  PubMed  Google Scholar 

  • D'Souza SD, Alinauskas KA, Antel JP. 1996. Ciliary neurotrophic factor selectively protects human oligodendrocytes from tumor necrosis factor-mediated injury. J Neurosci Res 43(3): 289–298.

    PubMed  Google Scholar 

  • Dai Y, Schwarz EM, Gu D, Zhang WW, Sarvetnick N, et al. 1995. Cellular and humoral immune responses to adenoviral vectors containing factor IX gene: Tolerization of factor IX and vector antigens allows for long-term expression. Proc Natl Acad Sci USA 92(5): 1401–1405.

    CAS  PubMed  Google Scholar 

  • Dong C, Davis RJ, Flavell RA. 2002. MAP kinases in the immune response. Annu Rev Immunol 20: 55–72.

    CAS  PubMed  Google Scholar 

  • Einfeld DA, Roelvink PW. 2002. Advances towards targetable adenovirus vectors for gene therapy. Curr Opin Mol Ther 4(5): 444–451.

    CAS  PubMed  Google Scholar 

  • Einfeld DA, Schroeder R, Roelvink PW, Lizonova A, King CR, et al. 2001. Reducing the native tropism of adenovirus vectors requires removal of both CAR and integrin interactions. J Virol 75(23): 11284–11291.

    CAS  PubMed  Google Scholar 

  • Elkon KB, Liu CC, Gall JG, Trevejo J, Marino MW, et al. 1997. Tumor necrosis factor α plays a central role in immune-mediated clearance of adenoviral vectors. Proc Natl Acad Sci USA 94(18): 9814–9819.

    CAS  PubMed  Google Scholar 

  • Finegold AA, Mannes AJ, Iadarola MJ. 1999. A paracrine paradigm for in vivo gene therapy in the central nervous system: Treatment of chronic pain. Hum Gene Ther 10(7): 1251–1257.

    CAS  PubMed  Google Scholar 

  • Fischer HG, Bielinsky AK. 1999. Antigen presentation function of brain-derived dendriform cells depends on astrocyte help. Int Immunol 11(8): 1265–1274.

    CAS  PubMed  Google Scholar 

  • Fischer HG, Bonifas U, Reichmann G. 2000. Phenotype and functions of brain dendritic cells emerging during chronic infection of mice with Toxoplasma gondii. J Immunol 164(9): 4826–4834.

    CAS  PubMed  Google Scholar 

  • Fischer HG, Reichmann G. 2001. Brain dendritic cells and macrophages/microglia in central nervous system inflammation. J Immunol 166(4): 2717–2726.

    CAS  PubMed  Google Scholar 

  • Forsayeth JR, Eberling JL, Sanftner LM, Zhen Z, Pivirotto P, et al. 2006. A dose-ranging study of AAV-hAADC therapy in Parkinsonian monkeys. Mol Ther 14(4): 571–577.

    CAS  PubMed  Google Scholar 

  • Gerdes CA, Castro MG, Lowenstein PR. 2000. Strong promoters are the key to highly efficient, noninflammatory and noncytotoxic adenoviral-mediated transgene delivery into the brain in vivo. Mol Ther 2(4): 330–338.

    CAS  PubMed  Google Scholar 

  • Greber UF, Suomalainen M, Stidwill RP, Boucke K, Ebersold MW, et al. 1997. The role of the nuclear pore complex in adenovirus DNA entry. EMBO J 16(19): 5998–6007.

    CAS  PubMed  Google Scholar 

  • Greter M, Heppner FL, Lemos MP, Odermatt BM, Goebels N, et al. 2005. Dendritic cells permit immune invasion of the CNS in an animal model of multiple sclerosis. Nat Med 11(3): 328–334.

    CAS  PubMed  Google Scholar 

  • Guerette B, Vilquin JT, Gingras M, Gravel C, Wood KJ, et al. 1996. Prevention of immune reactions triggered by first-generation adenoviral vectors by monoclonal antibodies and CTLA4Ig. Hum Gene Ther 7(12): 1455–1463.

    CAS  PubMed  Google Scholar 

  • Guidotti LG, Chisari FV. 2001. Noncytolytic control of viral infections by the innate and adaptive immune response. Annu Rev Immunol 19: 65–91.

    CAS  PubMed  Google Scholar 

  • Hao S, Mata M, Wolfe D, Huang S, Glorioso JC, et al. 2003. HSV-mediated gene transfer of the glial cell-derived neurotrophic factor provides an antiallodynic effect on neuropathic pain. Mol Ther 8(3): 367–375.

    CAS  PubMed  Google Scholar 

  • Hart DN, Fabre JW. 1981. Demonstration and characterization of Ia-positive dendritic cells in the interstitial connective tissues of rat heart and other tissues, but not brain. J Exp Med 154(2): 347–361.

    CAS  PubMed  Google Scholar 

  • Higginbotham JN, Seth P, Blaese RM, Ramsey WJ. 2002. The release of inflammatory cytokines from human peripheral blood mononuclear cells in vitro following exposure to adenovirus variants and capsid. Hum Gene Ther 13(1): 129–141.

    CAS  PubMed  Google Scholar 

  • Hudgins SN, Levison SW. 1998. Ciliary neurotrophic factor stimulates astroglial hypertrophy in vivo and in vitro. Exp Neurol 150(2): 171–182.

    CAS  PubMed  Google Scholar 

  • Hurtado-Lorenzo A, Millan E, Gonzalez-Nicolini V, Suwelack D, Castro MG, et al. 2004. Differentiation and transcription factor gene therapy in experimental Parkinson's disease: Sonic hedgehog and Gli-1, but not Nurr-1, protect nigrostriatal cell bodies from 6-OHDA-induced neurodegeneration. Mol Ther 10(3): 507–524.

    CAS  PubMed  Google Scholar 

  • Immonen A, Vapalahti M, Tyynela K, Hurskainen H, Sandmair A, et al. 2004. AdvHSV-tk gene therapy with intravenous ganciclovir improves survival in human malignant glioma: A randomised, controlled study. Mol Ther 10(5): 967–972.

    CAS  PubMed  Google Scholar 

  • Jooss K, Chirmule N. 2003. Immunity to adenovirus and adeno-associated viral vectors: Implications for gene therapy. Gene Ther 10(11): 955–963.

    CAS  PubMed  Google Scholar 

  • Juillard V, Villefroy P, Godfrin D, Pavirani A, Venet A, et al. 1995. Long-term humoral and cellular immunity induced by a single immunization with replication-defective adenovirus recombinant vector. Eur J Immunol 25(12): 3467–3473.

    CAS  PubMed  Google Scholar 

  • Kafri T, Morgan D, Krahl T, Sarvetnick N, Sherman L, et al. 1998. Cellular immune response to adenoviral vector infected cells does not require de novo viral gene expression: Implications for gene therapy. Proc Natl Acad Sci USA 95(19): 11377–11382.

    CAS  PubMed  Google Scholar 

  • Kajiwara K, Byrnes AP, Charlton HM, Wood MJ, Wood KJ. 1997. Immune responses to adenoviral vectors during gene transfer in the brain. Hum Gene Ther 8(3): 253–265.

    CAS  PubMed  Google Scholar 

  • Kajiwara K, Byrnes AP, Ohmoto Y, Charlton HM, Wood MJ, et al. 2000. Humoral immune responses to adenovirus vectors in the brain. J Neuroimmunol 103(1): 8–15.

    CAS  PubMed  Google Scholar 

  • Kass-Eisler A, Falck-Pedersen E, Elfenbein DH, Alvira M, Buttrick PM, et al. 1994. The impact of developmental stage, route of administration and the immune system on adenovirus-mediated gene transfer. Gene Ther 1(6): 395–402.

    CAS  PubMed  Google Scholar 

  • Kay MA, Glorioso JC, Naldini L. 2001. Viral vectors for gene therapy: The art of turning infectious agents into vehicles of therapeutics. Nat Med 7(1): 33–40.

    CAS  PubMed  Google Scholar 

  • King GD, Curtin JF, Candolfi M, Kroeger K, Lowenstein PR, et al. 2005. Gene therapy and targeted toxins for glioma. Curr Gene Ther 5: 535–557.

    CAS  PubMed  Google Scholar 

  • Kordower JH, Isacson O, Emerich DF. 1999. Cellular delivery of trophic factors for the treatment of Huntington's disease: Is neuroprotection possible? Exp Neurol 159(1): 4–20.

    CAS  PubMed  Google Scholar 

  • Larocque D, Bergeron J, Castro MG, Lowenstein PR. 2006. Gene therapy of multiple sclerosis and CNS autoimmune mouse models. Gene Therapy for Neurological Disorders. Castro MG, Lowenstein PR, editors. New York: Taylor and Francis; pp. 213–224.

    Google Scholar 

  • Levison SW, Hudgins SN, Crawford JL. 1998. Ciliary neurotrophic factor stimulates nuclear hypertrophy and increases the GFAP content of cultured astrocytes. Brain Res 803:(1-2): 189–193.

    CAS  PubMed  Google Scholar 

  • Li E, Brown SL, Stupack DG, Puente XS, Cheresh DA, et al. 2001. Integrin α(v)β1 is an adenovirus coreceptor. J Virol 75(11): 5405–5409.

    CAS  PubMed  Google Scholar 

  • Lieber A, He CY, Meuse L, Himeda C, Wilson C, et al. 1998. Inhibition of NF-κB activation in combination with bcl-2 expression allows for persistence of first-generation adenovirus vectors in the mouse liver. J Virol 72(11): 9267–9277.

    CAS  PubMed  Google Scholar 

  • Lowe J, Mac Lennan KA, Powe DG, Pound JD, Palmer JB. 1989. Microglial cells in human brain have phenotypic characteristics related to possible function as dendritic antigen presenting cells. J Pathol 159(2): 143–149.

    CAS  PubMed  Google Scholar 

  • Lowenstein PR. 2002. Immunology of viral-vector-mediated gene transfer into the brain: An evolutionary and developmental perspective. Trends Immunol 23(1): 23–30.

    CAS  PubMed  Google Scholar 

  • Lowenstein PR. 2003. Immune responses to viral vectors for gene therapy. Gene Therapy 10: 933–998.

    CAS  PubMed  Google Scholar 

  • Lu CY, Chou AK, Wu CL, Yang CH, Chen JT, et al. 2002. Gene-gun particle with pro-opiomelanocortin cDNA produces analgesia against formalin-induced pain in rats. Gene Ther 9(15): 1008–1014.

    CAS  PubMed  Google Scholar 

  • Lusky M, Christ M, Rittner K, Dieterle A, Dreyer D, et al. 1998. In vitro and in vivo biology of recombinant adenovirus vectors with E1, E1/E2A, or E1/E4 deleted. J Virol 72(3): 2022–2032.

    CAS  PubMed  Google Scholar 

  • Malmgaard L, Salazar-Mather TP, Lewis CA, Biron CA. 2002. Promotion of α/β interferon induction during in vivo viral infection through α/β interferon receptor/STAT1 system-dependent and -independent pathways. J Virol 76(9): 4520–4525.

    CAS  PubMed  Google Scholar 

  • Martino G, Pluchino S. 2006. The therapeutic potential of neural stem cells. Nat Rev Neurosci 7(5): 395–406.

    CAS  PubMed  Google Scholar 

  • Mata M, Glorioso J, Fink D. 2006. HSV-mediated gene transfer in the treatment of chronic pain. Gene Therapy for Neurological Disorders. Castro MG, Lowenstein PR, editors. New York: Taylor and Francis; pp. 185–195.

    Google Scholar 

  • Matyszak MK, Perry VH. 1996. The potential role of dendritic cells in immune-mediated inflammatory diseases in the central nervous system. Neuroscience 74(2): 599–608.

    CAS  PubMed  Google Scholar 

  • McBride JL, During MJ, Wuu J, Chen EY, Leurgans SE, et al. 2003. Structural and functional neuroprotection in a rat model of Huntington's disease by viral gene transfer of GDNF. Exp Neurol 181(2): 213–223.

    CAS  PubMed  Google Scholar 

  • McBride JL, Ramaswamy S, Gasmi M, Bartus RT, Herzog CD, et al. 2006. Viral delivery of glial cell line-derived neurotrophic factor improves behavior and protects striatal neurons in a mouse model of Huntington's disease. Proc Natl Acad Sci USA 103(24): 9345–9350.

    CAS  PubMed  Google Scholar 

  • McLoughlin JM, McCarty TM, Cunningham C, Clark V, Senzer N, et al. 2005. TNFerade, an adenovector carrying the transgene for human tumor necrosis factor α, for patients with advanced solid tumors: Surgical experience and long-term follow-up. Ann Surg Oncol 12(10): 825–830.

    PubMed  Google Scholar 

  • McMahon EJ, Bailey SL, Castenada CV, Waldner H, Miller SD. 2005. Epitope spreading initiates in the CNS in two mouse models of multiple sclerosis. Nat Med 11(3): 335–339.

    CAS  PubMed  Google Scholar 

  • McMenamin PG. 1999. Distribution and phenotype of dendritic cells and resident tissue macrophages in the dura mater, leptomeninges, and choroid plexus of the rat brain as demonstrated in wholemount preparations. J Comp Neurol 405(4): 553–562.

    CAS  PubMed  Google Scholar 

  • Meazza C, Di Marco A, Fruscella P, Gloaguen I, Laufer R, et al. 1997. Centrally mediated inhibition of local inflammation by ciliary neurotrophic factor. Neuroimmunomodulation 4(5-6): 271–276.

    CAS  PubMed  Google Scholar 

  • Milligan ED, Langer SJ, Sloane EM, He L, Wieseler-Frank J, et al. 2005a. Controlling pathological pain by adenovirally driven spinal production of the anti-inflammatory cytokine, interleukin-10. Eur J Neurosci 21(8): 2136–2148.

    Google Scholar 

  • Milligan ED, Sloane EM, Langer SJ, Cruz PE, Chacur M, et al. 2005b. Controlling neuropathic pain by adeno-associated virus driven production of the anti-inflammatory cytokine, interleukin-10. Mol Pain 1(1): 9.

    Google Scholar 

  • Molinier-Frenkel V, Gahery-Segard H, Mehtali M, Le Boulaire C, Ribault S, et al. 2000. Immune response to recombinant adenovirus in humans: Capsid components from viral input are targets for vector-specific cytotoxic T lymphocytes. J Virol 74(16): 7678–7682.

    CAS  PubMed  Google Scholar 

  • Morral N, O'Neal W, Rice K, Leland M, Kaplan J, et al. 1999. Administration of helper-dependent adenoviral vectors and sequential delivery of different vector serotype for long-term liver-directed gene transfer in baboons. Proc Natl Acad Sci USA 96(22): 12816–12821.

    CAS  PubMed  Google Scholar 

  • Morsy, MA, Caskey CT. 1999. Expanded-capacity adenoviral vectors—the helper-dependent vectors. Mol Med Today 5(1): 18–24.

    CAS  PubMed  Google Scholar 

  • Muruve DA, Barnes MJ, Stillman IE, Libermann TA. 1999. Adenoviral gene therapy leads to rapid induction of multiple chemokines and acute neutrophil-dependent hepatic injury in vivo. Hum Gene Ther 10(6): 965–976.

    CAS  PubMed  Google Scholar 

  • Ohmoto Y, Wood MJ, Charlton HM, Kajiwara K, Perry VH, et al. 1999. Variation in the immune response to adenoviral vectors in the brain: Influence of mouse strain, environmental conditions and priming. Gene Ther 6(4): 471–481.

    CAS  PubMed  Google Scholar 

  • Paludan SR, Ellermann-Eriksen S, Kruys V, Mogensen SC. 2001. Expression of TNF-α by herpes simplex virus-infected macrophages is regulated by a dual mechanism: Transcriptional regulation by NF-κB and activating transcription factor 2/Jun and translational regulation through the AU-rich region of the 3′ untranslated region. J Immunol 167(4): 2202–2208.

    CAS  PubMed  Google Scholar 

  • Parks R, Evelegh C, Graham F. 1999. Use of helper-dependent adenoviral vectors of alternative serotypes permits repeat vector administration. Gene Ther 6(9): 1565–1573.

    CAS  PubMed  Google Scholar 

  • Peden CS, Burger C, Muzyczka N, Mandel RJ. 2004. Circulating anti-wild-type adeno-associated virus type 2 (AAV2) antibodies inhibit recombinant AAV2 (rAAV2)-mediated, but not rAAV5-mediated, gene transfer in the brain. J Virol 78(12): 6344–6359.

    CAS  PubMed  Google Scholar 

  • Peng Y, Trevejo J, Zhou J, Marino MW, Crystal RG, et al. 1999. Inhibition of tumor necrosis factor α by an adenovirus-encoded soluble fusion protein extends transgene expression in the liver and lung. J Virol 73(6): 5098–5109.

    CAS  PubMed  Google Scholar 

  • Pobereskin LH, Chadduck JB. 2000. Incidence of brain tumours in two English counties: A population based study. J Neurol Neurosurg Psychiatry 69(4): 464–471.

    CAS  PubMed  Google Scholar 

  • Ponomarev ED, Shriver LP, Maresz K, Dittel BN. 2005. Microglial cell activation and proliferation precedes the onset of CNS autoimmunity. J Neurosci Res 81(3): 374–389.

    CAS  PubMed  Google Scholar 

  • Pradat PF, Kennel P, Naimi-Sadaoui S, Finiels F, Orsini C, et al. 2001. Continuous delivery of neurotrophin 3 by gene therapy has a neuroprotective effect in experimental models of diabetic and acrylamide neuropathies. Hum Gene Ther 12(18): 2237–2249.

    CAS  PubMed  Google Scholar 

  • Qin L, Ding Y, Pahud DR, Chang E, Imperiale MJ, et al. 1997. Promoter attenuation in gene therapy: Interferon-γ and tumor necrosis factor-α inhibit transgene expression. Hum Gene Ther 8(17): 2019–2029.

    CAS  PubMed  Google Scholar 

  • Raper SE, Chirmule N, Lee FS, Wivel NA, Bagg A, et al. 2003. Fatal systemic inflammatory response syndrome in a ornithine transcarbamylase deficient patient following adenoviral gene transfer. Mol Genet Metab 80(1-2): 148–158.

    CAS  PubMed  Google Scholar 

  • Russell WC. 2000. Update on adenovirus and its vectors. J Gen Virol 81(Pt 11): 2573–2604.

    CAS  PubMed  Google Scholar 

  • Saishin Y, Silva RL, Saishin Y, Kachi S, Aslam S, et al. 2005. Periocular gene transfer of pigment epithelium-derived factor inhibits choroidal neovascularization in a human-sized eye. Hum Gene Ther 16(4): 473–478.

    CAS  PubMed  Google Scholar 

  • Santambrogio L, Belyanskaya SL, Fischer FR, Cipriani B, Brosnan CF, et al. 2001. Developmental plasticity of CNS microglia. Proc Natl Acad Sci USA 98(11): 6295–6300.

    CAS  PubMed  Google Scholar 

  • Sato M, Suemori H, Hata N, Asagiri M, Ogasawara K, et al. 2000. Distinct and essential roles of transcription factors IRF-3 and IRF-7 in response to viruses for IFN-α/β gene induction. Immunity 13(4): 539–548.

    CAS  PubMed  Google Scholar 

  • Schnell MA, Zhang Y, Tazelaar J, Gao GP, Yu QC, et al. 2001. Activation of innate immunity in nonhuman primates following intraportal administration of adenoviral vectors. Mol Ther 3(5 Pt 1): 708–722.

    CAS  PubMed  Google Scholar 

  • Seegmiller JE. 1971. Biochemical and genetic studies of an X-linked neurological disease (The Lesch-Nyhan syndrome). Harvey Lect 65: 175–192.

    CAS  PubMed  Google Scholar 

  • Semkova I, Kreppel F, Welsandt G, Luther T, Kozlowski J, et al. 2002. Autologous transplantation of genetically modified iris pigment epithelial cells: A promising concept for the treatment of age-related macular degeneration and other disorders of the eye. Proc Natl Acad Sci USA 99(20): 13090–13095.

    CAS  PubMed  Google Scholar 

  • Smith-Arica JR, Morelli AE, Larregina AT, Smith J, Lowenstein PR, et al. 2000. Cell-type-specific and regulatable transgenesis in the adult brain: Adenovirus-encoded combined transcriptional targeting and inducible transgene expression. Mol Ther 2(6): 579–587.

    CAS  PubMed  Google Scholar 

  • Southgate TD, Bain D, Fairbanks LD, Morelli AE, Larregina AT, et al. 1999. Adenoviruses encoding HPRT correct biochemical abnormalities of HPRT-deficient cells and allow their survival in negative selection medium. Metab Brain Dis 14(4): 205–221.

    CAS  PubMed  Google Scholar 

  • Stevenson PG, Austyn JM, Hawke S. 2002. Uncoupling of virus-induced inflammation and anti-viral immunity in the brain parenchyma. J Gen Virol 83(Pt 7): 1735–1743.

    CAS  PubMed  Google Scholar 

  • Stilwell JL, McCarty DM, Negishi A, Superfine R, Samulski RJ. 2003. Development and characterization of novel empty adenovirus capsids and their impact on cellular gene expression. J Virol 77(23): 12881–12885.

    CAS  PubMed  Google Scholar 

  • Stilwell JL, Samulski RJ. 2004. Role of viral vectors and virion shells in cellular gene expression. Mol Ther 9(3): 337–346.

    CAS  PubMed  Google Scholar 

  • Sung RS, Qin L, Bromberg JS. 2001. TNFα and IFNγ induced by innate anti-adenoviral immune responses inhibit adenovirus-mediated transgene expression. Mol Ther 3(5 Pt 1): 757–767.

    CAS  PubMed  Google Scholar 

  • The Huntington's Disease Collaborative Research Group. 1993. A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington's disease chromosomes. Cell 72(6): 971–983.

    Google Scholar 

  • Thomas CE, Abordo-Adesida E, Maleniak TC, Stone D, Gerdes G, et al. 2000a. Gene transfer into rat brain using adenoviral vectors. Current Protocols in Neuroscience. Vol. 4.23.1–4.23.40.Gerfen JN, McKay R, Rogawski MA, Sibley DR, Skolnick P, editors. New York, NY: John Wiley and Sons; pp. 4.23.1–4.23.40.

    Google Scholar 

  • Thomas CE, Schiedner G, Kochanek S, Castro MG, Lowenstein PR. 2000b. Peripheral infection with adenovirus causes unexpected long-term brain inflammation in animals injected intracranially with first-generation, but not with high-capacity, adenovirus vectors: Toward realistic long-term neurological gene therapy for chronic diseases. Proc Natl Acad Sci USA 97(13): 7482–7487.

    CAS  Google Scholar 

  • Thomas CE, Birkett D, Anozie I, Castro MG, Lowenstein PR. 2001. Acute direct adenoviral vector cytotoxicity and chronic, but not acute, inflammatory responses correlate with decreased vector-mediated transgene expression in the brain. Mol Ther 3(1): 36–46.

    CAS  PubMed  Google Scholar 

  • Tibbles LA, Spurrell JC, Bowen GP, Liu Q, Lam M, et al. 2002. Activation of p38 and ERK signaling during adenovirus vector cell entry lead to expression of the C-X-C chemokine IP-10. J Virol 76(4): 1559–1568.

    CAS  PubMed  Google Scholar 

  • Tripathy SK, Black HB, Goldwasser E, Leiden JM. 1996. Immune responses to transgene-encoded proteins limit the stability of gene expression after injection of replication-defective adenovirus vectors. Nat Med 2(5): 545–550.

    CAS  PubMed  Google Scholar 

  • Tsai SY, Schillinger K, Ye X. 2000. Adenovirus-mediated transfer of regulable gene expression. Curr Opin Mol Ther 2(5): 515–523.

    CAS  PubMed  Google Scholar 

  • Wang K, Guan T, Cheresh DA, Nemerow GR. 2000. Regulation of adenovirus membrane penetration by the cytoplasmic tail of integrin β5. J Virol 74(6): 2731–2739.

    CAS  PubMed  Google Scholar 

  • Wickham TJ. 2003. Ligand-directed targeting of genes to the site of disease. Nat Med 9(1): 135–139.

    CAS  PubMed  Google Scholar 

  • Wickham TJ, Filardo EJ, Cheresh DA, Nemerow GR. 1994. Integrin α v β 5 selectively promotes adenovirus mediated cell membrane permeabilization. J Cell Biol 127(1): 257–264.

    CAS  PubMed  Google Scholar 

  • Wickham TJ, Mathias P, Cheresh DA, Nemerow GR. 1993. Integrins α v β 3 and α v β 5 promote adenovirus internalization but not virus attachment. Cell 73(2): 309–319.

    CAS  PubMed  Google Scholar 

  • Winter CG, Saotome Y, Levison SW, Hirsh D. 1995. A role for ciliary neurotrophic factor as an inducer of reactive gliosis, the glial response to central nervous system injury. Proc Natl Acad Sci USA 92(13): 5865–5869.

    CAS  PubMed  Google Scholar 

  • Wood MJ, Charlton HM, Wood KJ, Kajiwara K, Byrnes AP. 1996a. Immune responses to adenovirus vectors in the nervous system. Trends Neurosci 19(11): 497–501.

    CAS  Google Scholar 

  • Wood MJA, Byrnes AP, McMenamin M, Kajiwara K, Vine A, et al. 1996b. Immune responses to viruses: Practical implications for the use of viruses as vectors for experimental and clinical gene therapy. Protocols for Gene Transfer in Neuroscience. Lowenstein PR, Enquist LW, editors. New York: John Wiley and Sons.

    Google Scholar 

  • Worgall S, Singh R, Leopold PL, Kaner RJ, Hackett NR, et al. 1999. Selective expansion of alveolar macrophages in vivo by adenovirus-mediated transfer of the murine granulocyte-macrophage colony-stimulating factor cDNA. Blood 93(2): 655–666.

    CAS  PubMed  Google Scholar 

  • Worgall S, Wolff G, Falck-Pedersen E, Crystal RG. 1997. Innate immune mechanisms dominate elimination of adenoviral vectors following in vivo administration. Hum Gene Ther 8(1): 37–44.

    CAS  PubMed  Google Scholar 

  • Xiong W, Goverdhana S, Sciascia SA, Candolfi M, Zirger JM, et al. 2006. Regulatable gutless adenovirus vectors sustain inducible transgene expression in the brain in the presence of an immune response against adenoviruses. J Virol 80(1): 27–37.

    CAS  PubMed  Google Scholar 

  • Yang Y, Ertl HC, Wilson JM. 1994a. MHC class I-restricted cytotoxic T lymphocytes to viral antigens destroy hepatocytes in mice infected with E1-deleted recombinant adenoviruses. Immunity 1(5): 433–442.

    CAS  Google Scholar 

  • Yang Y, Nunes FA, Berencsi K, Furth EE, Gonczol E, et al. 1994b. Cellular immunity to viral antigens limits E1-deleted adenoviruses for gene therapy. Proc Natl Acad Sci USA 91(10): 4407–4411.

    CAS  Google Scholar 

  • Yang Y, Jooss KU, Su Q, Ertl HC, Wilson JM. 1996. Immune responses to viral antigens versus transgene product in the elimination of recombinant adenovirus-infected hepatocytes in vivo. Gene Ther 3(2): 137–144.

    PubMed  Google Scholar 

  • Yang Y, Li Q, Ertl HC, Wilson JM. 1995. Cellular and humoral immune responses to viral antigens create barriers to lung-directed gene therapy with recombinant adenoviruses. J Virol 69(4): 2004–2015.

    CAS  PubMed  Google Scholar 

  • Yang Y, Trinchieri G, Wilson JM. 1995. Recombinant IL-12 prevents formation of blocking IgA antibodies to recombinant adenovirus and allows repeated gene therapy to mouse lung. Nat Med 1(9): 890–893.

    CAS  PubMed  Google Scholar 

  • Yang Y, Wilson JM. 1995. Clearance of adenovirus-infected hepatocytes by MHC class I-restricted CD4+ CTLs in vivo. J Immunol 155(5): 2564–2570.

    CAS  PubMed  Google Scholar 

  • Yao MZ, Gu JF, Wang JH, Sun LY, Liu H, et al. 2003. Adenovirus-mediated interleukin-2 gene therapy of nociception. Gene Ther 10(16): 1392–1399.

    CAS  PubMed  Google Scholar 

  • Zermansky AJ, Bolognani F, Stone D, Cowsill CM, Morrissey G, et al. 2001. Towards global and long-term neurological gene therapy: Unexpected transgene dependent, high-level, and widespread distribution of HSV-1 thymidine kinase throughout the CNS. Mol Ther 4(5): 490–498.

    CAS  PubMed  Google Scholar 

  • Zirger JM, Barcia C, Liu C, Puntel M, Mitchell N, et al. 2006. Rapid upregulation of interferon-regulated and chemokine mRNAs upon injection of 108 international units, but not lower doses, of adenoviral vectors into the brain. J Virol 80(11): 5655–5659.

    CAS  PubMed  Google Scholar 

  • Zsengeller ZK, Wert SE, Hull WM, Hu X, Yei S, et al. 1995. Persistence of replication-deficient adenovirus-mediated gene transfer in lungs of immune-deficient (ν/ν) mice. Hum Gene Ther 6(4): 457–467.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Gene therapy projects for neurological diseases are funded by the National Institutes of Health/National Institute of Neurological Disorders and Stroke Grant 1R01 NS44556.01 and National Institute of Diabetes and Digestive and Kidney Diseases 1 RO3 TW006273-01 to M.G.C.; National Institutes of Health/National Institute of Neurological Disorders and Stroke Grants 1 RO1 NS 42893.01, U54 NS045309-01, and 1R21 NS04729-01 and Bram and Elaine Goldsmith Chair In Gene Therapeutics to P.R.L.; and the Linda Tallen & David Paul Kane Annual Fellowship to M.G.C. and P.R.L. We also thank the generous funding our institute receives from the Board of Governors at Cedars Sinai Medical Center. We thank the support and academic leadership of S. Melmed, and R. Katzman and D. Meyer for their superb administrative and organizational support.

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this entry

Cite this entry

Lowenstein, P.R., Kroeger, K., Barcia, C., Zirger, J., Larocque, D., Castro, M.G. (2008). Evolutionary Origins of the Brain's Immune Privilege. Implications for Novel Therapeutic Approaches: Gene Therapy. In: Lajtha, A., Galoyan, A., Besedovsky, H.O. (eds) Handbook of Neurochemistry and Molecular Neurobiology. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-30398-7_11

Download citation

Publish with us

Policies and ethics