Skip to main content

iNOS and COX‐2 in Ischemic Stroke

  • Reference work entry
  • First Online:

Abstract:

Stroke remains a leading cause for mortality and morbidity in the world despite the intense effort in research and development for remedies. Although the detailed mechanisms leading to brain tissue damage after ischemic stroke are not totally known, it is clear that inflammation plays a key role in the development of such damage. Research over the years indicates that the major players in the postischemic inflammation are inducible nitric oxide synthase (iNOS) and cyclooxygenase‐2 (COX‐2). iNOS is expressed de novo after ischemic stroke and participates in the late phase of tissue damage. Inhibition of iNOS activity or iNOS gene deletion in rodent models of ischemic stroke provides neuroprotection. COX‐2 is induced in response to ischemic and neuroexcitotoxic injuries. COX‐2 inhibition with specific inhibitors reduces brain injury caused by focal ischemia. COX‐2 gene deletion provides similar protection. Although iNOS and COX‐2 are deleterious after stroke, recent evidence indicates that these enzymes can also be beneficial. Therefore, therapeutic approaches based on iNOS and COX‐2 inhibition have to target the neurotoxic effects, while sparing the beneficial effects of the enzymes.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   299.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

CBF:

cerebral blood flow

C/EBP:

CCAAT/Enhancer Binding Protein

COX‐1:

cyclooxygenase‐1

COX‐2:

cyclooxygenase‐2

COX‐3:

cyclooxygenase‐3

HMG CoA:

(3‐hydroxy‐3‐methylglutary1)‐coenzyme A

JNK:

c‐jun N‐terminal kinase

IPC:

ischemic preconditioning

LPS:

lipopolysaccharide

MAPK:

mitogen activated protein kinase

MCA:

middle cerebral artery

NF‐IL6:

nuclear factor interleukin‐6

NMDA:

N‐methyl‐D‐aspartic acid

NO:

nitric oxide

NOS:

nitric oxide synthase

iNOS:

inducible NOS

nNOS:

neuronal NOS

eNOS:

endothelial NOS

PARP:

poly(ADP‐ribose) polymerase

PGH2:

prostaglandin H2

PGG2:

prostaglandin G2

PGE2:

prostaglandin E2

PGI2:

prostaglandin I2

PGD2:

prostaglandin D2

PGF2α:

prostaglandin F2α

RNA:

ribonucleic acid

ROS:

reactive oxygen species

SOD:

superoxide dismutase

tPA:

tissue plasminogen activator

UTR:

untranslated region

References

  • Akaike A, Kaneko S, Tamura Y, Nakata N, Shiomi H, et al. 1994. Prostaglandin E2 protects cultured cortical neurons against N‐methyl‐D‐aspartate receptor‐mediated glutamate cytotoxicity. Brain Res 663 (2): 237–243.

    Article  CAS  PubMed  Google Scholar 

  • Anrather J, Iadecola C, Kawano T, Kunz A, Ross ME, et al. 2005. Mechanisms of cyclooxygenase‐2 mediated neurotoxicity. Pharmacology of cerebral ischemia. Krieglstein J, Klumpp S, editors. Medpharm Scientific Publishers, Stuttgart, Germany pp. 173-183.

    Google Scholar 

  • Araki E, Forster C, Dubinsky J.M, Ross M.E, Iadecola C. 2001. Cyclooxygenase‐2 inhibitor ns‐398 protects neuronal cultures from lipopolysaccharide‐induced neurotoxicity. Stroke 32 (10): 2370–2375.

    Article  CAS  PubMed  Google Scholar 

  • Arundine M, Tymianski M. 2003. Molecular mechanisms of calcium‐dependent neurodegeneration in excitotoxicity. Cell Calcium 34 (4–5):325–337.

    Article  CAS  PubMed  Google Scholar 

  • Bal‐Price A, Brown GC. 2001. Inflammatory neurodegeneration mediated by nitric oxide from activated glia‐inhibiting neuronal respiration, causing glutamate release and excitotoxicity. J Neurosci 21 (17): 6480–6491.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bezzi P, Carmignoto G, Pasti L, Vesce S, Rossi D, et al. 1998. Prostaglandins stimulate calcium‐dependent glutamate release in astrocytes. Nature 391: 281–285.

    Article  CAS  PubMed  Google Scholar 

  • Bindokas VP, Jordan J, Lee CC, Miller RJ. 1996. Superoxide production in rat hippocampal neurons: selective imaging with hydroethidine. J Neurosci 16 (4): 1324–1336.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Breder CD, Dewitt D, Kraig RP. 1995. Characterization of inducible cyclooxygenase in rat brain. J Comp Neurol 355 (2): 296–315.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Breyer RM. 2001. Prostaglandin EP(1) receptor subtype selectivity takes shape. Mol Pharmacol 59 (6): 1357–1359.

    Article  CAS  PubMed  Google Scholar 

  • Breyer RM, Bagdassarian CK, Myers SA, Breyer MD. 2001. Prostanoid receptors: subtypes and signaling. Annu Rev Pharmacol Toxicol 41: 661–690.

    Article  CAS  PubMed  Google Scholar 

  • Caivano M, Gorgoni B, Cohen P, Poli V. 2001. The induction of cyclooxygenase‐2 mRNA in macrophages is biphasic and requires both CCAAT enhancer‐binding protein beta (C/EBP beta) and C/EBP delta transcription factors. J Biol Chem 276 (52): 48693–48701.

    Article  CAS  PubMed  Google Scholar 

  • Carlson NG. 2003. Neuroprotection of cultured cortical neurons mediated by the cyclooxygenase‐2 inhibitor APHS can be reversed by a prostanoid. J Neurosci Res 71 (1): 79–88.

    Article  CAS  PubMed  Google Scholar 

  • Cazevieille C, Muller A, Meynier F, Dutrait N, Bonne C. 1994. Protection by prostaglandins from glutamate toxicity in cortical neurons. Neurochem Int 24 (4): 395–398.

    Article  CAS  PubMed  Google Scholar 

  • Ceneviva GD, Tzeng E, Hoyt DG, Yee E, Gallagher A, et al. 1998. Nitric oxide inhibits lipopolysaccharide‐induced apoptosis in pulmonary artery endothelial cells. Am J Physiol 275 (4 Pt. 1): L717–L728.

    CAS  PubMed  Google Scholar 

  • Chan PH. 2001. Reactive oxygen radicals in signaling and damage in the ischemic brain. J Cereb Blood Flow Metab 21 (1): 2–14.

    Article  CAS  PubMed  Google Scholar 

  • Chandrasekharan NV, Dai H, Roos KL, Evanson NK, Tomsik J, et al. 2002. COX‐3, a cyclooxygenase‐1 variant inhibited by acetaminophen and other analgesic/antipyretic drugs: cloning, structure, and expression. Proc Natl Acad Sci USA 99 (21): 13926–13931. Epub 2002 Sep 19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen C, Magee JC, Bazan NG. 2002. Cyclooxygenase‐2 regulates prostaglandin E2 signaling in hippocampal long‐term synaptic plasticity. J Neurophysiol 87 (6): 2851–2857.

    Article  CAS  PubMed  Google Scholar 

  • Chen CY, Shyu AB. 1994. Selective degradation of early‐response‐gene mRNAs: functional analyses of sequence features of the AU‐rich elements. Mol Cell Biol 14 (12): 8471–8482.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cho S, Park EM, Zhou P, Frys K, Ross ME, et al. Obligatory role of inducible nitric oxide synthase in ischemic preconditioning. J Cereb Blood Flow Metab 25 (4): 493-501.

    Google Scholar 

  • Clark RK, Lee EV, Fish CJ, White RF, Price WJ, et al. 1993. Development of tissue damage, inflammation and resolution following stroke: an immunohistochemical and quantitative planimetric study. Brain Res Bull 31 (5): 565–572.

    Article  CAS  PubMed  Google Scholar 

  • Cohn SM, Schloemann S, Tessner T, Seibert K, Stenson WF. 1997. Crypt stem cell survival in the mouse intestinal epithelium is regulated by prostaglandins synthesized through cyclooxygenase‐1. J Clin Invest 99 (6): 1367–1379.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Collaco‐Moraes Y, Aspey B, Harrison M, de Belleroche J. 1996. Cyclo‐oxygenase‐2 messenger RNA induction in focal cerebral ischemia. J Cereb Blood Flow Metab 16 (6): 1366–1372.

    Article  PubMed  Google Scholar 

  • Crow JE, Beckman JS. 1995. Reactions between nitric oxide, superoxide and peroxynitrite: footprints of perxynitrite in vivo, in nitric oxide. Biochemistry, molecular biology and therapeutic implications. Ignarro L, Murad F, editors. San Diego: Academic Press; pp. 17–43.

    Google Scholar 

  • Dawn B, Bolli R. 2002. Role of nitric oxide in myocardial preconditioning. Ann N Y Acad Sci 962: 18–41.

    Article  CAS  PubMed  Google Scholar 

  • Dinerman JL, Dawson TM, Schell MJ, Snowman A, Snyder SH. 1994. Endothelial nitric oxide synthase localized to hippocampal pyramidal cells: implications for synaptic plasticity. Proc Natl Acad Sci USA 91 (10): 4214–4218.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dirnagl U, Iadecola C, Moskowitz MA. 1999. Pathobiology of ischaemic stroke: an integrated view. Trends Neurosci 22 (9): 391–397.

    Article  CAS  PubMed  Google Scholar 

  • Dore S, Otsuka T, Mito T, Sugo N, Hand T, et al. 2003. Neuronal overexpression of cyclooxygenase‐2 increases cerebral infarction. Ann Neurol 54 (2): 155–162.

    Article  CAS  PubMed  Google Scholar 

  • Dugan LL, Lin TS, He YY, Hsu CY, Choi DW. 1995. Detection of free radicals by microdialysis/spin trapping EPR following focal cerebral ischemia‐reperfusion and a cautionary note on the stability of 5,5‐dimethyl‐1‐pyrroline N‐oxide (DMPO). Free Radic Res 23 (1): 27–32.

    Article  CAS  PubMed  Google Scholar 

  • Endres M, Laufs U, Liao JK, Moskowitz MA. 2004. Targeting eNOS for stroke protection. Trends Neurosci 27 (5): 283–289.

    Article  CAS  PubMed  Google Scholar 

  • Forster C, Clark HB, Ross ME, Iadecola C. 1999. Inducible nitric oxide synthase expression in human cerebral infarcts. Acta Neuropathol (Berl) 97 (3): 215–220.

    Article  CAS  Google Scholar 

  • Funk CD, Furci L, Moran N, Fitzgerald GA. 1993. Point mutation in the seventh hydrophobic domain of the human thromboxane A2 receptor allows discrimination between agonist and antagonist binding sites. Mol Pharmacol 44 (5): 934–939.

    CAS  PubMed  Google Scholar 

  • Garavito RM, Mulichak AM. 2003. The structure of mammalian cyclooxygenases. Annu Rev Biophys Biomol Struct 32: 183–206. Epub 2003 Feb 05.

    Article  CAS  PubMed  Google Scholar 

  • Garthwaite J, Boulton CL. 1995. Nitric oxide signaling in the central nervous system. Annu Rev Physiol 57: 683–706.

    Article  CAS  PubMed  Google Scholar 

  • Govoni S, Masoero E, Favalli L, Rozza A, Scelsi R, et al. 2001. The Cycloxygenase‐2 inhibitor SC58236 is neuroprotective in an in vivo model of focal ischemia in the rat. Neurosci Lett 303 (2): 91–94.

    Article  CAS  PubMed  Google Scholar 

  • Grandati M, Verrecchia C, Revaud ML, Allix M, Boulu RG, et al. 1997. Calcium‐independent NO‐synthase activity and nitrites/nitrates production in transient focal cerebral ischaemia in mice. Br J Pharmacol 122 (4): 625–630.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Griffith OW, Stuehr DJ. 1995. Nitric oxide synthases: properties and catalytic mechanism. Annu Rev Physiol 57: 707–736.

    Article  CAS  PubMed  Google Scholar 

  • Gross SS, Wolin MS. 1995. Nitric oxide: pathophysiological mechanisms. Annu Rev Physiol 57: 737–769.

    Article  CAS  PubMed  Google Scholar 

  • Hase S, Yokota A, Nakagiri A, Takeuchi K. 2003. Prostaglandin E2 aggravates gastric mucosal injury induced by histamine in rats through EP1 receptors. Life Sci 74 (5): 629–641.

    Article  CAS  PubMed  Google Scholar 

  • Hewett SJ, Uliasz TF, Vidwans AS, Hewett JA. 2000. Cyclooxygenase‐2 contributes to N‐methyl‐D‐aspartate‐mediated neuronal cell death in primary cortical cell culture. J Pharmacol Exp Ther 293 (2): 417–425.

    CAS  PubMed  Google Scholar 

  • Huang Z, Huang PL, Ma J, Meng W, Ayata C, et al. 1996. Enlarged infarcts in endothelial nitric oxide synthase knockout mice are attenuated by nitro‐L‐arginine. J Cereb Blood Flow Metab 16 (5): 981–987.

    Article  CAS  PubMed  Google Scholar 

  • Hunot S, Vila M, Teismann P, Davis RJ, Hirsch EC, et al. 2004. JNK‐mediated induction of cyclooxygenase 2 is required for neurodegeneration in a mouse model of Parkinson's disease. Proc Natl Acad Sci USA 101 (2): 665–670.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hurley SD, Olschowka JA, O'Banion MK. 2002. Cyclooxygenase inhibition as a strategy to ameliorate brain injury. J Neurotrauma 19 (1): 1–15.

    Article  PubMed  Google Scholar 

  • Iadecola C. 1997. Bright and dark sides of nitric oxide in ischemic brain injury. Trends Neurosci 20 (3): 132–139.

    Article  CAS  PubMed  Google Scholar 

  • Iadecola C, Gorelick PB. 2005. The janus face of cyclooxygenase‐2 in ischemic stroke‐shifting toward downstream targets. Stroke 36 (2): 182-185.

    Google Scholar 

  • Iadecola C, Cho S, Feuerstein GZ, Hallenbeck JM. 2004. Inflammation. Stroke: pathophysiology, diagnosis, and management. Wolf P, editor. New York: Churchill Livingston.

    Google Scholar 

  • Iadecola C, Forster C, Nogawa S, Clark HB, Ross ME. 1999. Cyclooxygenase‐2 immunoreactivity in the human brain following cerebral ischemia. Acta Neuropathol (Berl) 98 (1): 9–14.

    Article  CAS  Google Scholar 

  • Iadecola C, Niwa K, Nogawa S, Zhao X, Nagayama M, et al. 2001. Reduced susceptibility to ischemic brain injury and N‐methyl‐D‐aspartate‐mediated neurotoxicity in cyclooxygenase‐2‐deficient mice. Proc Natl Acad Sci USA 98 (3): 1294–1299.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iadecola C, Xu X, Zhang F, el‐Fakahany EE, Ross ME. 1995a. Marked induction of calcium‐independent nitric oxide synthase activity after focal cerebral ischemia. J Cereb Blood Flow Metab 15 (1): 52–59.

    Article  CAS  PubMed  Google Scholar 

  • Iadecola C, Zhang F, Xu S, Casey R, Ross ME. 1995b. Inducible nitric oxide synthase gene expression in brain following cerebral ischemia. J Cereb Blood Flow Metab 15 (3): 378–384.

    Article  CAS  PubMed  Google Scholar 

  • Iadecola C, Zhang F, Xu X. 1995c. Inhibition of inducible nitric oxide synthase ameliorates cerebral ischemic damage. Am J Physiol 268 (1 Pt. 2): R286–R292.

    CAS  PubMed  Google Scholar 

  • Iadecola C, Zhang F, Casey R, Clark HB, Ross ME. 1996. Inducible nitric oxide synthase gene expression in vascular cells after transient focal cerebral ischemia. Stroke 27 (8): 1373–1380.

    Article  CAS  PubMed  Google Scholar 

  • Iadecola C, Zhang F, Casey R, Nagayama M, Ross ME. 1997. Delayed reduction of ischemic brain injury and neurological deficits in mice lacking the inducible nitric oxide synthase gene. J Neurosci 17 (23): 9157–9164.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaufmann WE, Worley PF, Pegg J, Bremer M, Isakson P. 1996. COX‐2, a synaptically induced enzyme, is expressed by excitatory neurons at postsynaptic sites in rat cerebral cortex. Proc Natl Acad Sci USA 93 (6): 2317–2321.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kawano T, Anrather J, Frys K, Zhou P, Iadecola C. 2004. Activation of prostagladin EP1 receptors contributes to COX‐2 dependent neruotoxicity. Society for Neuroscience 2004 Annual Meeting Abstract, 600.8.

    Google Scholar 

  • Kelley KA, Ho L, Winger D, Freire‐ Moar J, Borelli CB, et al. 1999. Potentiation of excitotoxicity in transgenic mice overexpressing neuronal cyclooxygenase‐2. Am J Pathol 155 (3): 995–1004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim GW, Kondo T, Noshita N, Chan PH. 2002. Manganese superoxide dismutase deficiency exacerbates cerebral infarction after focal cerebral ischemia/reperfusion in mice: implications for the production and role of superoxide radicals. Stroke 33 (3): 809–815.

    Article  CAS  PubMed  Google Scholar 

  • Kim YM, Talanian RV, Billiar TR. 1997. Nitric oxide inhibits apoptosis by preventing increases in caspase‐3‐like activity via two distinct mechanisms. J Biol Chem 272 (49): 31138–31148.

    Article  CAS  PubMed  Google Scholar 

  • Kinouchi H, Epstein CJ, Mizui T, Carlson E, Chen SF, et al. 1991. Attenuation of focal cerebral ischemic injury in transgenic mice overexpressing CuZn superoxide dismutase. Proc Natl Acad Sci USA 88 (24): 11158–11162.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kobayashi T, Narumiya S. 2002. Function of prostanoid receptors: studies on knockout mice. Prostaglandins Other Lipid Mediat 68–69: 557–573.

    Article  PubMed  Google Scholar 

  • Kondo T, Reaume AG, Huang TT, Carlson E, Murakami K, et al. 1997. Reduction of CuZn‐superoxide dismutase activity exacerbates neuronal cell injury and edema formation after transient focal cerebral ischemia. J Neurosci 17 (11): 4180–4189.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lapchak PA, Araujo DM, Song D, Zivin JA. 2001. Neuroprotection by the selective cyclooxygenase‐2 inhibitor SC‐236 results in improvements in behavioral deficits induced by reversible spinal cord ischemia. Stroke 32 (5): 1220–1225.

    Article  CAS  PubMed  Google Scholar 

  • Lasa M, Mahtani KR, Finch A, Brewer G, Saklatvala J, et al. 2000. Regulation of cyclooxygenase 2 mRNA stability by the mitogen‐activated protein kinase p38 signaling cascade. Mol Cell Biol 20 (12): 4265–4274.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee JM, Grabb MC, Zipfel GJ, Choi DW. 2000. Brain tissue responses to ischemia. J Clin Invest 106 (6): 723–731.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Licinio J, Wong ML. 1997. Pathways and mechanisms for cytokine signaling of the central nervous system. J Clin Invest 100 (12): 2941–2947.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu TH, Beckman JS, Freeman BA, Hogan EL, Hsu CY. 1989. Polyethylene glycol‐conjugated superoxide dismutase and catalase reduce ischemic brain injury. Am J Physiol 256 (2 Pt. 2): H589–H593.

    CAS  PubMed  Google Scholar 

  • Lo EH, Dalkara T, Moskowitz MA. 2003. Mechanisms, challenges and opportunities in stroke. Nat Rev Neurosci 4 (5): 399–415.

    Article  CAS  PubMed  Google Scholar 

  • Love S. 1999. Oxidative stress in brain ischemia. Brain Pathol 9 (1): 119–131.

    Article  CAS  PubMed  Google Scholar 

  • Lukiw WJ, Ottlecz A, Lambrou G, Grueninger M, Finley J, et al. 2003. Coordinate activation of HIF‐1 and NF‐κB DNA binding and COX‐2 and VEGF expression in retinal cells by hypoxia. Invest Ophthalmol Vis Sci 44 (10): 4163–4170.

    Article  PubMed  Google Scholar 

  • Mackensen GB, Patel M, Sheng H, Calvi CL, Batinic‐ Haberle I, et al. 2001. Neuroprotection from delayed postischemic administration of a metalloporphyrin catalytic antioxidant. J Neurosci 21 (13): 4582–4592.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mac Micking JD, Nathan C, Hom G, Chartrain N, Fletcher DS, et al. 1995. Altered responses to bacterial infection and endotoxic shock in mice lacking inducible nitric oxide synthase. Cell 81 (4): 641–650.

    Article  CAS  Google Scholar 

  • Manabe Y, Anrather J, Kawano T, Niwa K, Zhou P, et al. 2004. Prostanoids, not reactive oxygen species, mediate COX‐2‐dependent neurotoxicity. Ann Neurol 55 (5): 668–675.

    Article  CAS  PubMed  Google Scholar 

  • Mander P, Brown GC. 2004. Nitric oxide, hypoxia and brain inflammation. Biochem Soc Trans 32 (Pt. 6): 1068–1069.

    Article  CAS  PubMed  Google Scholar 

  • Mander P, Borutaite V, Moncada S, Brown GC. 2005. Nitric oxide from inflammatory‐activated glia synergizes with hypoxia to induce neuronal death. J Neurosci Res 79 (1–2): 208–215.

    Article  CAS  PubMed  Google Scholar 

  • Mannick JB, Miao XQ, Stamler JS. 1997. Nitric oxide inhibits Fas‐induced apoptosis. J Biol Chem 272 (39): 24125–24128.

    Article  CAS  PubMed  Google Scholar 

  • Mannick JB, Schonhoff C, Papeta N, Ghafourifar P, Szibor M, et al. 2001. S‐Nitrosylation of mitochondrial caspases. J Cell Biol 154 (6): 1111–1116. Epub 2001 Sep 10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McCullough L, Wu L, Haughey N, Liang X, Hand T, et al. 2004. Neuroprotective function of the PGE2 EP2 receptor in cerebral ischemia. J Neurosci 24 (1): 257–268.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miettinen S, Fusco FR, Yrjanheikki J, Keinanen R, Hirvonen T, et al. 1997. Spreading depression and focal brain ischemia induce cyclooxygenase‐2 in cortical neurons through N‐methyl‐D‐aspartic acid‐receptors and phospholipase A2. Proc Natl Acad Sci USA 94 (12): 6500–6505.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mirjany M, Ho L, Pasinetti GM. 2002. Role of cyclooxygenase‐2 in neuronal cell cycle activity and glutamate‐mediated excitotoxicity. J Pharmacol Exp Ther 301 (2): 494–500.

    Article  CAS  PubMed  Google Scholar 

  • Morimoto T, Globus MY, Busto R, Martinez E, Ginsberg MD. 1996. Simultaneous measurement of salicylate hydroxylation and glutamate release in the penumbral cortex following transient middle cerebral artery occlusion in rats. J Cereb Blood Flow Metab 16 (1): 92–99.

    Article  CAS  PubMed  Google Scholar 

  • Murakami K, Kondo T, Kawase M, Li Y, Sato S, et al. 1998. Mitochondrial susceptibility to oxidative stress exacerbates cerebral infarction that follows permanent focal cerebral ischemia in mutant mice with manganese superoxide dismutase deficiency. J Neurosci 18 (1): 205–213.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nagayama M, Zhang F, Iadecola C. 1998. Delayed treatment with aminoguanidine decreases focal cerebral ischemic damage and enhances neurologic recovery in rats. J Cereb Blood Flow Metab 18 (10): 1107–1113.

    Article  CAS  PubMed  Google Scholar 

  • Nakayama M, Uchimura K, Zhu RL, Nagayama T, Rose ME, et al. 1998. Cyclooxygenase‐2 inhibition prevents delayed death of CA1 hippocampal neurons following global ischemia. Proc Natl Acad Sci USA 95 (18): 10954–10959.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nathan C. 1997. Inducible nitric oxide synthase: what difference does it make? J Clin Invest 100 (10): 2417–2423.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Niwa K, Araki E, Morham SG, Ross ME, Iadecola C. 2000. Cyclooxygenase‐2 contributes to functional hyperemia in whisker‐barrel cortex. J Neurosci 20 (2): 763–770.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nogawa S, Zhang F, Ross ME, Iadecola C. 1997. Cyclo‐oxygenase‐2 gene expression in neurons contributes to ischemic brain damage. J Neurosci 17 (8): 2746–2755.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oka T, Oka K, Kobayashi T, Sugimoto Y, Ichikawa A, et al. 2003. Characteristics of thermoregulatory and febrile responses in mice deficient in prostaglandin EP1 and EP3 receptors. J Physiol 551 (Pt. 3): 945–954.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park EM, Cho S, Frys K, Racchumi G, Zhou P, et al. 2004. Interaction between inducible nitric oxide synthase and poly(ADP‐ribose) polymerase in focal ischemic brain injury. Stroke 35 (12): 2896–2901.

    Article  CAS  PubMed  Google Scholar 

  • Park KM, Byun JY, Kramers C, Kim JI, Huang PL, et al. 2003. Inducible nitric‐oxide synthase is an important contributor to prolonged protective effects of ischemic preconditioning in the mouse kidney. J Biol Chem 278 (29): 27256–27266. Epub 2003 Apr 07.

    Article  CAS  PubMed  Google Scholar 

  • Parmentier S, Bohme GA, Lerouet D, Damour D, Stutzmann JM, et al. 1999. Selective inhibition of inducible nitric oxide synthase prevents ischaemic brain injury. Br J Pharmacol 127 (2): 546–552.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parmentier‐Batteur S, Bohme GA, Lerouet D, Zhou‐Ding L, Beray V, et al. 2001. Antisense oligodeoxynucleotide to inducible nitric oxide synthase protects against transient focal cerebral ischemia‐induced brain injury. J Cereb Blood Flow Metab 21 (1): 15–21.

    Article  PubMed  Google Scholar 

  • Peters O, Back T, Lindauer U, Busch C, Megow D, et al. 1998. Increased formation of reactive oxygen species after permanent and reversible middle cerebral artery occlusion in the rat. J Cereb Blood Flow Metab 18 (2): 196–205.

    Article  CAS  PubMed  Google Scholar 

  • Piantadosi CA, Zhang J. 1996. Mitochondrial generation of reactive oxygen species after brain ischemia in the rat. Stroke 27 (2): 327–331.

    Article  CAS  PubMed  Google Scholar 

  • Sairanen T, Ristimaki A, Karjalainen‐Lindsberg ML, Paetau A, Kaste M, et al. 1998. Cyclooxygenase‐2 is induced globally in infarcted human brain. Ann Neurol 43 (6): 738–747.

    Article  CAS  PubMed  Google Scholar 

  • Samdani AF, Dawson TM, Dawson VL. 1997. Nitric oxide synthase in models of focal ischemia. Stroke 28 (6): 1283–1288.

    Article  CAS  PubMed  Google Scholar 

  • Sasaki T, Kitagawa K, Yamagata K, Takemiya T, Tanaka S, et al. 2004. Amelioration of hippocampal neuronal damage after transient forebrain ischemia in cyclooxygenase‐2‐deficient mice. J Cereb Blood Flow Metab 24 (1): 107–113.

    Article  CAS  PubMed  Google Scholar 

  • Smith WL, Song I. 2002. The enzymology of prostaglandin endoperoxide H synthases‐1 and ‐2. Prostaglandins Other Lipid Mediat 68–69: 115–128.

    Article  PubMed  Google Scholar 

  • Stamler JS. 1994. Redox signaling: nitrosylation and related target interactions of nitric oxide. Cell 78 (6): 931–936.

    Article  CAS  PubMed  Google Scholar 

  • Suganami T, Mori K, Tanaka I, Mukoyama M, Sugawara A, et al. 2003. Role of prostaglandin E receptor EP1 subtype in the development of renal injury in genetically hypertensive rats. Hypertension 42 (6): 1183–1190.

    Article  CAS  PubMed  Google Scholar 

  • Sugawara T, Chan PH. 2003. Reactive oxygen radicals and pathogenesis of neuronal death after cerebral ischemia. Antioxid Redox Signal 5 (5): 597–607.

    Article  CAS  PubMed  Google Scholar 

  • Sugimoto K, Iadecola C. 2003. Delayed effect of administration of COX‐2 inhibitor in mice with acute cerebral ischemia. Brain Res 960 (1–2): 273–276.

    Article  CAS  PubMed  Google Scholar 

  • Takadera T, Shiraishi Y, Ohyashiki T. 2004. Prostaglandin E2 induced caspase‐dependent apoptosis possibly through activation of EP2 receptors in cultured hippocampal neurons. Neurochem Int 45 (5): 713–719.

    Article  CAS  PubMed  Google Scholar 

  • Takahashi K, Greenberg JH, Jackson P, Maclin K, Zhang J. 1997. Neuroprotective effects of inhibiting poly(ADP‐ribose) synthetase on focal cerebral ischemia in rats. J Cereb Blood Flow Metab 17 (11): 1137–1142.

    Article  CAS  PubMed  Google Scholar 

  • Tarpey MM, Wink DA, Grisham MB. 2004. Methods for detection of reactive metabolites of oxygen and nitrogen: in vitro and in vivo considerations. Am J Physiol Regul Integr Comp Physiol 286 (3): R431–R444.

    Article  CAS  PubMed  Google Scholar 

  • Thornhill J, Smith M. 1998. Intracerebroventricular prostaglandin administration increases the neural damage evoked by global hemispheric hypoxic ischemia. Brain Res 784 (1–2): 48–56.

    Article  CAS  PubMed  Google Scholar 

  • tPA Study Group. 1995. Tissue plasminogen activator for acute ischemic stroke. The National Institute of Neurological Disorders and Stroke rt‐PA Stroke Study Group. N Engl J Med 333 (24): 1581-1587.

    Google Scholar 

  • Traystman RJ, Kirsch JR, Koehler RC. 1991. Oxygen radical mechanisms of brain injury following ischemia and reperfusion. J Appl Physiol 71 (4): 1185–1195.

    Article  CAS  PubMed  Google Scholar 

  • Tsuboi K, Sugimoto Y, Ichikawa A. 2002. Prostanoid receptor subtypes. Prostaglandins Other Lipid Mediat 68–69: 535–556.

    Article  PubMed  Google Scholar 

  • Ushikubi F, Segi E, Sugimoto Y, Murata T, Matsuoka T, et al. 1998. Impaired febrile response in mice lacking the prostaglandin E receptor subtype EP3. Nature 395: 281–284.

    Article  CAS  PubMed  Google Scholar 

  • Virag L, Szabo C. 2002. The therapeutic potential of poly(ADP‐ribose) polymerase inhibitors. Pharmacol Rev 54 (3): 375–429.

    Article  CAS  PubMed  Google Scholar 

  • Vodovotz Y, Kwon NS, Pospischil M, Manning J, Paik J, et al. 1994. Inactivation of nitric oxide synthase after prolonged incubation of mouse macrophages with IFN‐gamma and bacterial lipopolysaccharide. J Immunol 152 (8): 4110–4118.

    CAS  PubMed  Google Scholar 

  • Wadleigh DJ, Reddy ST, Kopp E, Ghosh S, Herschman HR. 2000. Transcriptional activation of the cyclooxygenase‐2 gene in endotoxin‐treated RAW 264.7 macrophages. J Biol Chem 275 (9): 6259–6266.

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Hitron IM, Iadecola C, Pickel VM. 2004. Synaptic and vascular associations of neurons containing cyclooxygenase‐2 and nitric oxide synthase in rat somatosensory cortex. Cereb Cortex 22: 22.

    CAS  Google Scholar 

  • Yokota C, Kuge Y, Inoue H, Tagaya M, Kito G, et al. 2003. Post‐ischemic cyclooxygenase‐2 expression is regulated by the extent of cerebral blood flow reduction in non‐human primates. Neurosci Lett 341 (1): 37–40.

    Article  CAS  PubMed  Google Scholar 

  • Zhao X, Haensel C, Araki E, Ross ME, Iadecola C. 2000. Gene‐dosing effect and persistence of reduction in ischemic brain injury in mice lacking inducible nitric oxide synthase. Brain Res 872 (1–2): 215–218.

    Article  CAS  PubMed  Google Scholar 

  • Zhou P, Qian L, Iadecola C. 2005. Nitric oxide inhibits caspase activation and apoptotic morphology but does not rescue neuronal death. J Cereb Blood Flow Metab 25 (3): 348-357.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science+Business Media, LLC

About this entry

Cite this entry

Zhou, P., Iadecola, C. (2007). iNOS and COX‐2 in Ischemic Stroke. In: Lajtha, A., Chan, P.H. (eds) Handbook of Neurochemistry and Molecular Neurobiology. Springer, New York, NY. https://doi.org/10.1007/978-0-387-30383-3_3

Download citation

Publish with us

Policies and ethics