Skip to main content

Angiotensins in Brain Function

  • Reference work entry
  • First Online:
Handbook of Neurochemistry and Molecular Neurobiology

Abstract:

This chapter provides a brief historical perspective concerning the discovery of the renin–angiotensin system (RAS), followed by a description of the biochemical pathways that permit synthesis and degradation of active angiotensin peptides, and the three receptor subtypes thus far characterized. This is followed by a review of the physiologies and behaviors mediated by these peptides. These classic physiologies include cardiovascular control, vasopressin release, thirst, and electrolyte balance. More recently angiotensins have been implicated in the mediation of stress, anxiety, depression, learning, and memory consolidation. The chapter concludes with a water shortage scenario that is envisioned to encompass and illustrate the majority of the angiotensin mediated physiologies and behaviors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 249.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ACD:

acyl‐coenzyme A dehydrogenase

ACE:

angiotensin‐converting enzyme

ACE2:

human angiotensin‐converting enzyme homologue

ACh:

acetylcholine

ACTH:

adrenocorticotropic hormone

ADH:

antidiuretic hormone

Ang:

angiotensin

AngI:

angiotensin I

AngII:

angiotensin II

AngIII:

angiotensin III

AngIV:

angiotesnin IV

Ang(1‐7):

angiotensin II(1‐7)

Ang(2‐7):

angiotensin II(2‐7)

Ang(3‐7):

angiotensin II(3‐7)

AMPA:

α‐amino‐3‐hydroxy‐5‐methyl‐4‐isoxazolepropionic acid

AP:

area postrema

AP‐1:

activator protein‐1

AP‐A:

aminopeptidase A

APMA:

p‐aminophenylmercuric acetate

AP‐N:

aminopeptidase N

AT:

angiotensin receptor subtype

Carb‐P:

carboxypeptidase P

CRH:

corticotropin‐releasing hormone

CVOs:

circumventricular organs

EC27:

2‐amino‐pentane‐1,5‐dithiol

EC33:

3‐amino‐4‐thio‐butyl‐sulfonate

ERK:

extracellular signal‐regulated kinase

GLUT:

glucose transporter molecules

GST:

glutathione‐s‐transferase

GTPγS:

guanosine triphosphate γ sulfate

ICV:

intracerebroventricular

IRAP:

insulin‐regulated aminopeptidase

LVV‐H7:

leucine‐valine‐valine‐hemorphin‐7

MAP‐K:

microtubule‐associated protein kinase

NMDA:

N‐methyl‐d‐aspartate

NO:

nitric oxide

NTS:

nucleus of solitary tract

OVLT:

organum vasculosum of the lamina terminalis

PAI‐1:

plasminogen activator inhibitor‐1

PO:

propyl oligopeptidase

PVN:

paraventricular nucleus

RAS:

renin–angiotensin system

SFO:

subfornical organ

SON:

supraoptic nucleus

tPA:

tissue plasminogen activator

uPA:

urokinase plasminogen activator

References

  • Albiston AL, McDowall SG, Matsacos D, Sim P, Clune E, et al 2001. Evidence that the angiotensin IV (AT4) receptor is the enzyme insulin‐regulated aminopeptidase. J Biol Chem 276: 48623–48626.

    CAS  PubMed  Google Scholar 

  • Albiston AL, Mustafa T, McDowall SG, Mendelsohn FA, Lee J, et al 2003. AT(4) receptor is insulin‐regulated membrane aminopeptidase: potential mechanisms of memory enhancement. Trends Endocrinol Metab 14: 72–77.

    CAS  PubMed  Google Scholar 

  • Albiston AL, Pederson ES, Burns P, Purcell B, Wright JW, et al 2004. Attenuation of scopolamine‐induced learning deficits by LVV‐hemorphin‐7 in rats in the passive avoidance and water maze paradigms. Behav Brain Res 154: 239–243.

    CAS  PubMed  Google Scholar 

  • Allen AM, Oldfield BJ, Giles ME, Paxinos G, McKinley MJ, et al 2000. Localization of angiotensin receptors in the nervous system. Handbook of chemical neuroanatomy. Quirion R, Bjorklund A, Hodfelt T, editors. Amsterdam: Elsevier; pp. 79–124.

    Google Scholar 

  • Allen AM, Zhuo J, Mendelsohn FA. 2001. AT1‐receptors in the central nervous system. JRAAS 2 (Suppl. 1): S95–S101.

    CAS  Google Scholar 

  • Armando I, Seltzer A, Bregonzio C, Saavedra JM. 2003. Stress and angiotensin II: novel therapeutic opportunities. Curr Drug Targets – CNS Neurol Disord 2: 413–419.

    CAS  PubMed  Google Scholar 

  • Avrith D, Fitzsimons J. 1980. Increased sodium appetite in the rat induced by intracranial administration components of the renin–angiotensin system. J Physiol 301: 349–364.

    CAS  PubMed  Google Scholar 

  • Baranowska D, Braszko JJ, Wisniewski K. 1983. Effect of angiotensin II and vasopressin on acquisition and extinction of conditioned avoidance in rats. Psychopharmacology 81: 247–251.

    CAS  PubMed  Google Scholar 

  • Barnes JM, Barnes NM, Costall B, Coughlan J, Horovitz ZP, et al 1989. ACE inhibition and cognition. Current advances in ACE inhibition. MacGregor GA, Sever PS, editors. New York: Churchill Livingston Press; pp. 159–171.

    Google Scholar 

  • Barnes JM, Barnes NM, Costall B, Coughlan J, Kelly ME, et al 1992. Angiotensin‐converting enzyme inhibition, angiotensin, and cognition. J Cardiovasc Pharmacol 19 (Suppl. 6): 563–571.

    Google Scholar 

  • Barnes NM, Champaneria S, Costall B, Kelly ME, Murphy DA, et al 1990. Cognitive enhancing actions of DuP 753 detected in a mouse habituation paradigm. Neuroreport 1: 239–242.

    CAS  PubMed  Google Scholar 

  • Barnes NM, Cheng CH, Costall B, Naylor RJ, Williams TJ, et al 1991a. Angiotensin converting enzyme density is increased in temporal cortex from patients with Alzheimer's disease. Eur J Pharmacol 20: 289–292.

    Google Scholar 

  • Barnes NM, Costall B, Egli P, Horovitz ZP, Ironside JW et al 1991b. Characterization of 3H ceranapril recognition sites in rat and human tissue. Neuropharmacology 30: 907–914.

    CAS  Google Scholar 

  • Barnes NM, Costall B, Kelly ME, Murphy DA, Naylor RJ. 1991c. Cognitive enhancing actions of PD123177 detected in a mouse habituation paradigm. Neuroreport 2: 351–353.

    CAS  Google Scholar 

  • Bartus RT, Dean RL, Beer B, Lippa AS. 1982. The cholinergic hypothesis of geriatric memory dysfunction. Science 217: 408–417.

    CAS  PubMed  Google Scholar 

  • Belcheva I, Ternianov A, Georgiev V. 2000. Lateralized learning and memory effects of angiotensin II microinjected into the rat CA1 hippocampal area. Peptides 21: 407–411.

    CAS  PubMed  Google Scholar 

  • Bennett JP Jr, Snyder SH. 1976. Angiotensin II binding to mammalian brain membranes. J Biol Chem 251: 7423–7430.

    CAS  PubMed  Google Scholar 

  • Bernier SG, Bellemare JM, Escher E, Guillemette G. 1998. Characterization of AT4 receptor from bovine aortic endothelium photosensitive analogues of angiotensin IV. Biochemistry 37: 4280–4287.

    CAS  PubMed  Google Scholar 

  • Bernier SG, Fournier A, Guillemette G. 1994. A specific binding site recognizing a fragment of angiotensin II in bovine adrenal cortex membranes. Eur J Pharmacol 271: 55–63.

    CAS  PubMed  Google Scholar 

  • Bernier SG, Servant G, Boudreau M, Fournier A, Guillemette G. 1995. Characterization of a binding site for angiotensin IV on bovine endothelial cells. Eur J Pharmacol 291: 191–200.

    CAS  PubMed  Google Scholar 

  • Bickerton RK, Buckley JP. 1961. Evidence for a central mechanism in angiotensin induced hypertension. Proc Soc Exp Biol Med 106: 834–839.

    CAS  Google Scholar 

  • Blair‐West, JR, Carey KD, Denton DA, Madden LJ, Weisingeer RS, et al 2001. Possible contribution of brain angiotensin III to ingestive behaviors in baboons. Am J Physiol Regul Integr Comp Physiol 281: R1633–R1636.

    PubMed  Google Scholar 

  • Blair‐West, JR, Coghlan JP, Denton DA, Funder JW, Scoggins BA, et al 1971. The effect of the heptapeptide (2–8) and hexapeptide (3–8) fragments of angiotensin II on aldosterone secretion. J Clin Endocrinol Metab 32: 575–578.

    PubMed  Google Scholar 

  • Bohlen und Halback OV. 2003. Angiotensin IV in the central nervous system. Cell Tissue Res 311: 1–9.

    Google Scholar 

  • Booth DA. 1968. Mechanism of action of norepinephrine in eliciting an eating response on injection into the rat hypothalamus. J Pharmacol Exp Ther 150: 336–348.

    Google Scholar 

  • Bottari SP, Raylor V, King IN, Bogdal S, Whitebread S, et al 1991. Angiotensin II AT2 receptors do not interact with guanine nucleotide binding proteins. Eur J Pharmacol 207: 157–163.

    CAS  PubMed  Google Scholar 

  • Braszko JJ. 2002. AT(2) but not AT(1) receptor antagonism abolishes angiotensin II increase of the acquisition of conditioned avoidance responses in rats. Behav Brain Res 131: 79–86.

    CAS  PubMed  Google Scholar 

  • Braszko JJ, Kulakowska A, Winnicka MM. 2003. Effects of angiotensin II and its receptor antagonists on motor activity and anxiety in rats. J Physiol Pharmacol 54: 271–281.

    CAS  PubMed  Google Scholar 

  • Braszko JJ, Kupryszewski G, Witczuk B, Wisniewski K. 1988. Angiotensin II‐(3–8)‐hexapeptide affects motor activity, performance of passive avoidance and conditioned avoidance responses in rats. Neuroscience 27: 777–783.

    CAS  PubMed  Google Scholar 

  • Braszko JJ, Wisniewski K, Kupryszewski G, Witczuk B. 1987. Psychotropic effects of angiotensin II and III in rats: locomotor and exploratory vs. cognitive behavior. Behav Brain Res 25: 195–203.

    CAS  Google Scholar 

  • Braszko JJ, Wlasienko J, Koziolkiewicz W, Janecka A, Wisniewski K. 1991. The 3–7 fragment of angiotensin II is probably responsible for its psychoactive properties. Brain Res 542: 49–54.

    CAS  PubMed  Google Scholar 

  • Braun‐Menendez E, Fasciolo JC, Leloir LF, Munoz JM. 1940. The substance causing renal hypertension. J Physiol (Lond) 98: 283–298.

    Google Scholar 

  • Bregonzio C, Armando I, Ando H, Jezova M, Baiardi G, et al 2003. Anti‐inflammatory effects of angiotensin II AT1 receptor antagonism prevent stress‐induced gastric injury. Am J Physiol 285: G414–G423.

    CAS  Google Scholar 

  • Brosnihan KB, Li P, Ferrario CM. 1996. Angiotensin (1–7) dilates canine coronary arteries through kinins and nitric oxide. Hypertension 27: 523–528.

    CAS  PubMed  Google Scholar 

  • Buggy J, Fisher AE. 1976. Anteroventral third ventricle site of action for angiotensin induced thirst. Pharmacol Biochem Behav 4: 651–660.

    CAS  PubMed  Google Scholar 

  • Buggy J, Fisher AE, Hoffman WE, Johnson AK, Phillips MI. 1975. Ventricular obstruction: effect on drinking induced by intracranial injection of angiotensin. Science 233: R44–R52.

    Google Scholar 

  • Buggy J, Jonklaas J. 1984. Sodium appetite decreased by central angiotensin blockade. Physiol Behav 32: 749–753.

    Google Scholar 

  • Campagnole‐Santos, MJ, Heeringer SB, Batista EN, Khosla MC, Santos RA. 1992. Differential baroreceptor reflex modulation by centrally infused angiotensin peptides. Am J Physiol 263: R89–R94.

    PubMed  Google Scholar 

  • Caputo R, Rowland N, Fregly M. 1992. Angiotensin‐related intakes of water and NaCl in Fischer 344 and Sprague‐Dawley rats. Am J Physiol 262: R382–R388.

    CAS  PubMed  Google Scholar 

  • Carey RM, Siragy HM. 2003. Newly recognized components of the renin–angiotensin system: potential roles in cardiovascular and renal regulation. Endocr Rev 24: 261–271.

    CAS  PubMed  Google Scholar 

  • Caron AZ, Arguin G, Guillemette G, 2003. Angiotensin IV interacts with a juxtamembrane site on AT(4)/IRAP suggesting an allosteric mechanism of enzyme modulation. Regul Pept 113: 9–15.

    CAS  PubMed  Google Scholar 

  • Castren E, Saavedra JM. 1988. Repeated stress increases the density of angiotensin II binding sites in rat paraventricular nucleus and subfornical organ. Endocrinology 122: 370–372.

    CAS  PubMed  Google Scholar 

  • Chauvel EN, Llorens‐Cortes C, Coric P, Wilk S, Roques BP, et al 1994. Differential inhibition of aminopeptidase A and aminopeptidase N by new beta‐amino thiols. J Med Chem 37: 2950–2957.

    CAS  PubMed  Google Scholar 

  • Chen BZ, Mendelsohn FAO. 1992. Effect of acute and chronic administration of ceranapril on angiotensin converting enzyme in plasma, kidney, lung, brain‐regions and cerebrospinal‐fluid of rats. Neuropharmacology 31: 929–935.

    CAS  PubMed  Google Scholar 

  • Chen JK, Zimpelmann J, Harris RC, Burns KD. 2001. Angiotensin IV induces tyrosine phosphorylation of focal adhesion kinase and paxillin in proximal tubule cells. Am J Physiol Renal Physiol 280: F980–F988.

    CAS  PubMed  Google Scholar 

  • Chi NW, Lodish HF. 2000. Tankyrase is a golgi‐associated mitogen‐activated protein kinase substrate that interacts with IRAP in GLUT4 vesicles. J Biol Chem 275: 38437–38444.

    CAS  PubMed  Google Scholar 

  • Chiu AT, Herblin WF, McCall DE, Ardecky RJ, Carini DJ, et al 1989. Identification of angiotensin II receptor subtypes. Biochem Biophys Res Commun 165: 196–203.

    CAS  PubMed  Google Scholar 

  • Coleman JK, Krebs LT, Hamilton TA, Ong B, Lawrence KA, et al 1998. Autoradiographic identification of kidney angiotensin IV binding sites and angiotensin IV‐induced renal blood flow changes in rats. Peptides 19: 269–277.

    CAS  PubMed  Google Scholar 

  • Costall B, Coughlan J, Horovitz ZP, Kelly ME, Naylor RJ, et al 1989. The effects of ACE inhibitors captopril and SQ29852 in rodent tests of cognition. Pharmacol Biochem Behav 33: 573–579.

    CAS  PubMed  Google Scholar 

  • Croog SH, Levine S, Testa MA, Brown B, Bulpitt CJ, et al 1986. The effects of antihypertensive therapy on the quality of life. N Engl J Med 314: 1657–1664.

    CAS  PubMed  Google Scholar 

  • Culman J, Blume A, Gohlke P, Unger T. 2002. The renin–angiotensin system in the brain: possible therapeutic implications for AT1‐receptor blockers. J Hum Hypertens 16: S64–S70.

    CAS  PubMed  Google Scholar 

  • Culman J, Hohle S, Qadri F, Edling O, Blume A, et al 1995. Angiotensin as neuromodulator/neurotransmitter in central control of body fluid and electrolyte homoeostasis. Clin Exp Hypertens 17: 281–293.

    CAS  PubMed  Google Scholar 

  • Dampney RAL, Hirooka Y, Potts PD, Head GA. 1996. Functions of angiotensin peptides in the rostral ventrolateral medulla. Clin Exp Pharmacol Physiol 3 (Suppl.): S105–S111.

    CAS  Google Scholar 

  • deGasparo M, Catt KJ, Inagami T, Wright JW, Unger T. 2000. International Union of Pharmacology. XXIII. The angiotensin II receptors. Pharmacol Rev 52: 415–72.

    CAS  Google Scholar 

  • deGasparo M, Husain A, Alexander W, Catt KJ, Chiu AT, et al 1995. Proposed update of angiotensin receptor nomenclature. Hypertension 25: 924–39.

    CAS  Google Scholar 

  • deGasparo M, Siragy HM. 1999. The AT2 receptor: fact, fancy and fantasy. Regul Pept 81: 11–24.

    CAS  Google Scholar 

  • Deicken RF. 1986. Captopril treatment of depression. Biol Psychiatry 12: 1425–1428.

    Google Scholar 

  • DeNoble VJ, De Noble, KF, Spencer KR, Chiu AT, Wong PC, et al 1991. Non‐peptide angiotensin II receptor antagonist and angiotensin‐converting enzyme inhibitor: effect on a renin‐induced deficit of a passive avoidance response in rats. Brain Res 561: 230–235.

    CAS  PubMed  Google Scholar 

  • Dulin N, Madhun ZT, Chang CH, Berti‐Mattera, L, Dickens D, et al 1995. Angiotensin IV receptors and signaling in opossum kidney cells. Am J Physiol 269: F644–F652.

    CAS  PubMed  Google Scholar 

  • Dzau VJ, Ingelfinger J, Pratt RE, Ellison KE. 1986. Identification of renin and angiotensinogen messenger RNA sequences in rat brain. Hypertension 8: 544–548.

    CAS  PubMed  Google Scholar 

  • Elliott DF, Perart WS. 1956. Amino acid sequence in a hypertensin. Nature 177: 527–528.

    CAS  PubMed  Google Scholar 

  • Epstein AN. 1982. Mineralocorticoids and cerebral angiotensin may act together to produce sodium appetite. Peptides 3: 493–494.

    CAS  PubMed  Google Scholar 

  • Epstein AN, Fitzsimons JT, Rolls BJ. 1970. Drinking induced by injection of angiotensin into the brain of the rat. J Physiol (Lond) 210: 457–474.

    CAS  Google Scholar 

  • Feener EP, Northrup JM, Aiello LP, King GL. 1995. Angiotensin II induces plasminogen activator inhibitor‐1 and ‐2 expression in vascular endothelial and smooth muscle cells. J Clin Invest 95: 1353–1362.

    CAS  PubMed  Google Scholar 

  • Ferrario CM. 2003. Contribution of angiotensin‐(1–7) to cardiovascular physiology and pathology. Curr Hypertens Rep 5: 129–134.

    PubMed  Google Scholar 

  • Ferrario CM, Chappell MC, Tallant EA, Brosnihan KB, Diz DI. 1997. Counterregulatory actions of angiotensin‐(1–7). Hypertension 30: 535–541.

    CAS  PubMed  Google Scholar 

  • Ferrario CM, Santos RA, Brosnihan KB, Block CH, Schiavone MT, et al 1988. A hypothesis regarding the function of angiotensin peptides in the brain. Clin Exp Hypertens A 10 (Suppl. 1): 107–121.

    PubMed  Google Scholar 

  • Fink GD, Bruner CA. 1985. Hypertension during chronic peripheral and central infusion of angiotensin III. Am J Physiol 249: E201–E208.

    CAS  PubMed  Google Scholar 

  • Fisher‐Ferraro, C, Nahmod VE, Goldstein DJ, Finkielman S. 1971. Angiotensin and renin in the rat and dog brain. J Exp Med 133: 353–361.

    Google Scholar 

  • Fitts DA, Masson DB. 1990. Preoptic angiotensin and salt appetite. Behav Neurosci 104: 643–650.

    CAS  PubMed  Google Scholar 

  • Fitzsimons JT. 1971. The effect on drinking of peptide precursors and of shorter chain peptide fragments of angiotensin II injected into the rat's diencephalons. J Physiol (Lond) 214: 295–303.

    CAS  Google Scholar 

  • Fitzsimons JT. 1980. Angiotensin stimulation of the central nervous system. Rev Physiol Biochem Pharmacol 87: 117–167.

    CAS  PubMed  Google Scholar 

  • Fitzsimons JT. 1998. Angiotensin, thirst, and sodium appetite. Physiol Rev 78: 583–686.

    CAS  PubMed  Google Scholar 

  • Flood JF, Morley JE. 1993. Dose–response differences in the ability of ramipril to improve retention in diabetic mice. Eur J Pharmacol 240: 311–314.

    CAS  PubMed  Google Scholar 

  • Ganong WF, Murakami K. 1987. The role of angiotensin II in the regulation of ACTH secretion. Ann N Y Acad Sci 512: 176–186.

    CAS  PubMed  Google Scholar 

  • Ganten D, Boucher R, Genest J. 1971a. Renin activity in brain tissue of puppies and adult dogs. Brain Res 33: 557–559.

    CAS  Google Scholar 

  • Ganten D, Hermann K, Bayer D, Unger T, Lang RE. 1983. Angiotensin synthesis in the brain and increased turnover in hypertensive rats. Science 221: 869–871.

    CAS  PubMed  Google Scholar 

  • Ganten D, Marquez‐Julio A, Granger P, Hayduk K, Karsunky KP, et al 1971b. Renin in dog brain. Am J Physiol 221: 1733–1737.

    CAS  Google Scholar 

  • Gard PR. 2002. The role of angiotensin II in cognition and behaviour. Eur J Pharmacol 438: 1–14.

    CAS  PubMed  Google Scholar 

  • Gard PR, Mandy A, Sutcliffe MA. 1999. Evidence of a possible role of altered angiotensin function in the treatment, but not aetiology, of depression. Biol Psychiatry 45: 1030–1034.

    CAS  PubMed  Google Scholar 

  • Gard PR, Mandy A, Whiting JM, Nickels DP, Meakin AJ. 1994. Reduction of responses to angiotensin II by antidepressant drugs. Eur J Pharmacol 264: 295–300.

    CAS  PubMed  Google Scholar 

  • Gard PR, Mycroft N. 1991. Reduction of angiotensin II-induced drinking in rats by 21 hour pretreatment with desipramine. J Pharm Pharmacol 43 (Suppl. 1).

    Google Scholar 

  • Germain L, Chouinard G. 1988. Treatment of recurrent unipolar major depression with captopril. Biol Psychiatry 23: 637–641.

    CAS  PubMed  Google Scholar 

  • Germain L, Chouinard G. 1989. Captopril treatment of major depression with serial measurements of blood cortisol concentrations. Biol Psychiatry 25: 489–493.

    CAS  PubMed  Google Scholar 

  • Georgiev VP, Yonkov DI, Kambourova TS. 1988. Interactions between angiotensin II and baclofen in shuttle‐box and passive avoidance performance. Neuropeptides 12: 155–158.

    CAS  PubMed  Google Scholar 

  • Gesualdo L, Ranieri E, Monno R, Rossiello MR, Colucci M, et al 1999. Angiotensin IV stimulates plasminogen activator inhibitor‐1 expression in proximal tubular epithelial cells. Kidney Int 56: 461–470.

    CAS  PubMed  Google Scholar 

  • Giardina WJ, Ebert DM. 1989. Positive effects of captopril in the behavioural despair swim test. Biol Psychiatry 25: 697–702.

    CAS  PubMed  Google Scholar 

  • Glossmann H, Baukal A, Catt KJ. 1974. Angiotensin II receptors in bovine adrenal cortex. Modification of angiotensin II binding by guanyl nucleotides. J Biol Chem 249: 664–666.

    CAS  Google Scholar 

  • Goldstein JM, Knobloch‐Litwin, LC, Malick JB. 1985. Behavioural evidence for β‐adrenoceptor subsensitivity after subacute antidepressant/α2‐adrenoceptor antagonist treatment. Naunyn‐Schmiedeberg's Arch Pharmacol 329: 355–358.

    CAS  Google Scholar 

  • Graeff FG, Gentil CG, Peres VL, Covian MR. 1973. Lever‐pressing behavior caused by intraseptal angiotensin II in water satiated rats. Pharmacol Biochem Behav 1: 357–359.

    CAS  PubMed  Google Scholar 

  • Guo DF, Inagami T. 1994. The genomic organization of the rat angiotensin II receptor AT1B. Biochim Biophys Acta 1218: 91–94.

    CAS  PubMed  Google Scholar 

  • Hall KL, Hanesworth JM, Ball AE, Felgenhaner GP, Hosick HL, et al 1993. Identification and chracterization of a novel angiotensin binding site in cultured vascular smooth muscle cells that is specific for the hexapeptide (3–8) fragment of angiotensin II, angiotensin IV. Regul Pept 44: 225–232.

    CAS  PubMed  Google Scholar 

  • Hamilton TA, Handa RK, Harding JW, Wright JW. 2001. A role for the AT4/angiotensin IV system in mediating natriuresis in the rat. Peptides 22: 935–944.

    CAS  PubMed  Google Scholar 

  • Handa RI. 2001. Characterization of signaling of the AT(4) receptor in human proximal tubule epithelial (HK‐2) cells. J Am Soc Nephrol 12: 440–449.

    CAS  PubMed  Google Scholar 

  • Handa RK, Krebs LT, Harding JW, Handa SE. 1998. Angiotensin IV AT4‐receptor system in the rat kidney. Am J Physiol 274: F290–F299.

    CAS  PubMed  Google Scholar 

  • Hanesworth JM, Sardinia JF, Krebs LT, Hall KL, Harding JW. 1993. Elucidation of a specific binding site for angiotensin II(3–8), angiotensin IV, in mammalian heart membranes. J Pharmcol Exp Ther 266: 1036–1042.

    CAS  Google Scholar 

  • Harding JW, Cook VI, Miller‐Wing, AV, Hanesworth JM, Sardinia MF, et al 1992. Identification of an AII (3–8) AIV binding site in guinea pig hippocampus. Brain Res 583: 340–343.

    CAS  PubMed  Google Scholar 

  • Harding JW, Stone LP, Wright JW. 1981. The distribution of angiotensin II binding sites in rodent brain. Brain Res 205: 265–274.

    CAS  PubMed  Google Scholar 

  • Head GA. 1996. Role of AT1 receptors in the central control of sympathetic vasomotor function. Clin Exp Pharmacol Physiol 3 (Suppl.): S93–S98.

    CAS  Google Scholar 

  • Heinemann A, Sattler V, Jocic M, Wienen W, Holzer P. 1999. Effect of angiotensin II and telmisartan, an angiotensin 1 receptor antagonist, on rat gastric mucosal blood flow. Aliment Pharmacol Ther 13: 347–355.

    CAS  PubMed  Google Scholar 

  • Hermann K, Lang RE, Unger T, Bayer C, Ganten D. 1984. Combined high‐performance liquid chromatography radioimmunoassay for the characterization and quantitative measurement of neuropeptides. J Chromatogr 312: 273–284.

    CAS  PubMed  Google Scholar 

  • Iwai N, Inagami T. 1992. Identification of two subtypes in the rat type 1 angiotensin II receptor. FEBS Lett 298: 257–260.

    CAS  PubMed  Google Scholar 

  • Iwai N, Yamano Y, Chak S, Konishi F, Bardham S, et al 1991. Rat angiotensin II receptor: cDNA sequence and regulation of gene expression. Biochem Biophys Res Commun 177: 299–304.

    CAS  PubMed  Google Scholar 

  • Jaiswal N, Diz DI, Chappell MC, Khasla MC, Ferrario CM. 1992. Stimulation of endothelial cell prostaglandin production by angiotensin peptides. Characterization of receptors. Hypertension 21: 900–905.

    Google Scholar 

  • Jarvis MF, Gessner GW, Ly CG. 1992. The angiotensin hexapeptide 3–8 fragment potently inhibits [125I] angiotensin II binding to non‐AT1 or ‐AT2 recognition sites in bovine adrenal cortex. Eur J Pharmacol 219: 319–322.

    CAS  PubMed  Google Scholar 

  • Jezova D, Ochedalski T, Kiss A, Aguilera GJ. 1998. Brain angiotensin II modulates sympathoadrenal and hypothalamic pituitary adrenocortical activation during stress. Neuroendocrinology 10: 67–72.

    CAS  Google Scholar 

  • Johnston CI. 1990. Biochemistry and pharmacology of the renin–angiotensin system. Drugs 39: 21–31.

    CAS  PubMed  Google Scholar 

  • Kakar SS, Sellers JC, Devor DC, Musgrove LC, Neill JD. 1992. Angiotensin II type‐1 receptor subtype cDNAs: differential tissue expression and hormonal regulation. Biochem Biophys Res Commun 31: 1090–1096.

    Google Scholar 

  • Kambayashi Y, Bardham S, Takahashi K, Tsuzuki S, Inui H, et al 1993. Molecular cloning of a novel angiotensin II receptor isoform involved in phosphotyrosine phosphatase inhibition. J Biol Chem 268: 24543–24546.

    CAS  PubMed  Google Scholar 

  • Kandror KV, Pilch PF. 1994. gp160, a tissue‐specific marker for insulin‐activated glucose transport. Proc Natl Acad Sci USA 91 (17): 8017–8021.

    CAS  PubMed  Google Scholar 

  • Katagiri H, Asano T, Yamada T, Aoyama T, Fukushima Y, et al 2002. Acyl‐coenzyme A dehydrogenases are localized on GLUT4‐containing vesicles via association with insulin‐regulated aminopeptidase in a manner dependent on its dileucine motif. Mol Endocrinol 16: 1049–1059.

    CAS  PubMed  Google Scholar 

  • Keller SR, Scott HM, Mastick CC, Aebersold R, Lienhard GE. 1995. Cloning and characterization of a novel insulin‐regulated membrane aminopeptidase from Glut4 vesicles. J Biol Chem 270: 23612–23618.

    CAS  PubMed  Google Scholar 

  • Kerins DM, Hao Q, Vaughan DE. 1995. Angiotensin induction of PAI‐1 expression in endothelial cells is mediated by the hexapeptide angiotensin IV. J Clin Invest 96: 2515–2520.

    CAS  PubMed  Google Scholar 

  • Köller, M, Krause HP, Hoffmeister F, Ganten D. 1979. Endogenous brain angiotensin II disrupts passive avoidance behavior in rats. Neurosci Lett 14: 71–75.

    PubMed  Google Scholar 

  • Konoshi H, Kuroda S, Inada Y, Fujisawa Y. 1994. Novel subtype of human angiotensin II type 1 receptor: cDNA cloning and expression. Biochem Biophys Res Commun 199: 467–474.

    Google Scholar 

  • Kramár, EA, Armstrong DL, Ikeda S, Wayner MJ, Harding JW, et al 2001. The effects of angiotensin IV on long‐term potentiation within the CA1 region of the hippocampus in vitro. Brain Res 897: 114–121.

    PubMed  Google Scholar 

  • Kramár, EA, Harding JW, Wright JW. 1997. Angiotensin II‐, and IV‐induced changes in cerebral blood flow: roles of AT1, AT2, and AT4 receptor subtypes. Regul Pept 68: 131–138.

    PubMed  Google Scholar 

  • Kucharewicz I, Chabielska E, Pawlak D, Matys T, Rolkowski R, et al 2000. The antithrombotic effect of angiotensin (1–7) closely resembles that of losartan. JRAAS 1: 268–272.

    CAS  PubMed  Google Scholar 

  • Kucharewicz I, Pawlak R, Matys T, Chabielska E, Buczko W. 2002. Angiotensin (1–7): an active member of the renin–angiotensin system. J Physiol Pharmacol 53: 533–540.

    CAS  PubMed  Google Scholar 

  • Kulakowska A, Karwowska W, Wisniewski K, Braszko JJ. 1996. Losartan influences behavioural effects of angiotensin II in rats. Pharmacol Res 34: 109–115.

    CAS  PubMed  Google Scholar 

  • Lawrence AC, Evin G, Kladis A, Campbell DJ. 1990. An alternative strategy for the radioimmunoassay of angiotensin peptides using amino‐terminal‐directed antisera: measurement of eight angiotensin peptides in human plasma. J Hypertens 8: 715–724.

    CAS  PubMed  Google Scholar 

  • Lee J, Albiston AL, Allen AM, Mendelsohn FAO, Ping SE, et al 2004. Effect of ICV injection of AT4 receptor ligands, Nle1‐angiotensin IV and LVV‐hemorphin 7, on spatial learning in rats. Neuroscience 124: 341–349.

    CAS  PubMed  Google Scholar 

  • Lee J, Chai SY, Mendelsohn FAO, Morris MJ, Allen AM. 2001. Potentiation of cholinergic transmission in the rat hippocampus by angiotensin IV and LVV‐hemorphin‐7. Neuropharmacology 40: 618–623.

    CAS  PubMed  Google Scholar 

  • Lee J, Mustafa T, McDowall SG, Mendelsohn FA, Brennan M, et al 2003. Structure–activity study of LVV‐hemorphin‐7: angiotensin AT4 receptor ligand and inhibitor of insulin‐regulated aminopeptidase. J Pharmacol Exp Ther 305: 205–211.

    CAS  PubMed  Google Scholar 

  • Leong DS, Terron JA, Falcon‐Neri, A, Armando I, Ito T, et al 2002. Restraint stress modulates brain, pituitary and adrenal expression of angiotensin II AT(1A), AT(1B) and AT(2) receptors. Neuroendocrinology 75: 227–240.

    CAS  PubMed  Google Scholar 

  • Lew RA, Mustafa T, Ye S, McDowall SG, Chai SY, et al 2003. Angiotensin AT4 ligands are potent, competitive inhibitors of insulin regulated aminopeptidase (IRAP). J Neurochem 86: 344–350.

    CAS  PubMed  Google Scholar 

  • Li YD, Block ER, Patel JM. 2002. Activation of multiple signaling modules is critical in angiotensin IV‐induced lung endothelial cell proliferation. Am J Physiol Lung Cell Mol Physiol 283: L707–L716.

    CAS  PubMed  Google Scholar 

  • Li P, Chappell MC, Ferrarion CM, Broshinan KB. 1997. Angiotensin (1–7) augments bradykinin‐induced vasodilation by competing with ACE and releasing nitric oxide. Hypertension 29: 394–400.

    CAS  PubMed  Google Scholar 

  • Linazasoro JM, Diaz CJ, Mendoza HC. 1954. The kidney and thirst regulation. Bull Inst Med Res 7 (2): 53–61.

    CAS  Google Scholar 

  • Lind RW. 1988. Sites of action of angiotensin in the brain. Angiotensin and blood pressure regulation. Harding JW, Wright JW, Speth RC, Barnes CD, editors. San Diego: Academic Press; pp. 135–163.

    Google Scholar 

  • Llorens‐Cortes, C, Mendelsohn FAO. 2002. Organisation and functional role of the brain angiotensin system. JRAAS 3: S39–S48.

    PubMed  Google Scholar 

  • Loot AE, Roks AJ, Henning RH, Tio RA, Suurmeijer AM, et al 2002. Angiotensin‐(1–7) attenuates the development of heart failure after myocardial infarction in rats. Circulation 105: 1548–1550.

    CAS  PubMed  Google Scholar 

  • Lynch KR, Simnad VI, Ben‐Ari ET, Garrison JC. 1986. Localization of angiotensinogen messenger RNA sequences in the rat brain. Hypertension 8: 540–543.

    CAS  PubMed  Google Scholar 

  • Martin P, Massol J, Puech AJ. 1990. Captopril as an antidepressant? Effects on the learned helplessness paradigm in rats. Biol Psychiatry 27: 968–974.

    CAS  PubMed  Google Scholar 

  • McKinley MJ, Albiston AL, Allen AM, Mathai ML, May CN, et al 2003. The brain renin–angiotensin system: location and physiological roles. Int J Biochem Cell Biol 35: 901–918.

    CAS  PubMed  Google Scholar 

  • Mehta JL, Li DY, Yang H, Raizada MK. 2002. Angiotensin II and IV stimulate expression and release of plasminogen activator inhibitor‐1 in cultured human coronary artery endothelial cells. J Cardiovasc Pharmacol 39: 789–794.

    CAS  PubMed  Google Scholar 

  • Melo JC, Graeff FG. 1975. Effect of intracerebroventricular bradykinia and related peptides on rabbit operant behavior. J Pharmacol Exp Ther 193: 1–10.

    CAS  PubMed  Google Scholar 

  • Meng W, Busija DW. 1993. Comparative effects of angiotensin (1–7) and angiotensin II on piglet pial arterioles. Stroke 24: 2041–2044.

    CAS  PubMed  Google Scholar 

  • Mentlein R, Roos T. 1996. Proteases involved in the metabolism of angiotensin II, bradykinin, calcitonin gene‐related peptide (CGRP), and neuropeptide Y by vascular smooth muscle cells. Peptides 17: 709–720.

    CAS  PubMed  Google Scholar 

  • Miller‐Wing AV, Hanesworth JM, Sardinia MF, Wright JW, Speth RC, et al 1993. Central angiotensin IV receptors: distribution and specificity in guinea pig brain. J Pharmacol Exp Ther 266: 1718–1726.

    PubMed  Google Scholar 

  • Moe KE, Weiss ML, Epstein AN. 1984. Sodium appetite during captopril blockade of endogenous angiotensin II formation. Am J Physiol 247: R356–R365.

    CAS  PubMed  Google Scholar 

  • Møeller I, Clune EF, Fennessy PA, Bingley JA, Albiston AL, et al 1999. Up regulation of AT4 receptor levels in carotid arteries following balloon injury. Regul Pept 83: 25–30.

    PubMed  Google Scholar 

  • Møeller I, Lew RA, Mendelsohn FA, Smith AI, Brennan ME, et al 1997. The globin fragment LVV‐hemorphin‐7 is an endogenous ligand for the AT4 receptor in the brain. J Neurochem 68: 2530–2537.

    PubMed  Google Scholar 

  • Mondadori C, Etienne P. 1990. Nootropic effects of ACE inhibitors in mice. Psychopharmacology 100: 301–307.

    CAS  PubMed  Google Scholar 

  • Morgan TM, Routtenberg A. 1977. Angiotensin injected into the neostriatum after learning disrupts retention performance. Science 196: 87–89.

    CAS  PubMed  Google Scholar 

  • Morris RG. 1984. Development of a water‐maze procedure for studying spatial learning in the rat. J Neurosci Methods 11: 47–60.

    CAS  PubMed  Google Scholar 

  • Mukoyama M, Nakajiima M, Horiuchi M, Sasamura H, Pratt RE, et al 1993. Expression cloning of type‐2 angiotensin II receptor reveals a unique class of seven‐transmembrane receptors. J Biol Chem 268: 24539–24542.

    CAS  PubMed  Google Scholar 

  • Munoz JM, Braun‐Menendez E, Fasciolo JC, Leloir LF. 1939. Hypertension: the substance causing renal hypertension. Nature 144: 980.

    Google Scholar 

  • Muratami H, Teruya H, Sesoko S, Takishita S, Fukiyama K. 1996. Brain angiotensin and circulatory control. Clin Exp Pharmacol Physiol 23: 458–464.

    Google Scholar 

  • Murphy TJ, Alexander RW, Griendling KK, Runge MS, Berstein KE. 1991. Isolation of a cDNA encoding the vascular type‐1 angiotensin receptor. Nature 351: 233–236.

    CAS  PubMed  Google Scholar 

  • Mustafa T, Chai SY, Mendelsohn FA, Moeller I, Albiston AL, 2001. Characterization of the AT(4) receptor in a human neuroblastoma cell line (SK‐N‐MC). J Neurochem 76: 1679–1687.

    CAS  PubMed  Google Scholar 

  • Muthalif MM, Benter IF, Uddin MR, Harper JL, Malik KU. 1998. Signal transduction mechanisms involved in angiotensin (1–7)‐stimulated arachidonic acid release and prostanoid synthesis in rabbit aortic smooth muscle cells. J Pharmacol Exp Ther 284: 388–398.

    CAS  PubMed  Google Scholar 

  • Nairn RC, Mason CM, Corcoran AC. 1956. The production of serous effusions in nephrectomized animals by the administration of renal extracts and renin. J Pathol Bacteriol 71: 155–163.

    CAS  PubMed  Google Scholar 

  • Neves LA, Averill DB, Ferrario CM, Chappell MC, Aschner JL, et al 2003. Characterization of angiotensin‐(1–7) receptor subtype in mesenteric arteries. Peptides 24: 455–462.

    CAS  PubMed  Google Scholar 

  • Nishimura Y, Ito T, Hoe KL, Saavedra JM. 2000. Chronic peripheral administration of the angiotensin II AT(1) receptor antagonist candesartan blocks brain AT(1) receptors. Brain Res 871: 29–38.

    CAS  PubMed  Google Scholar 

  • Olson ML, Olson EA, Qualls JH, Stratton JJ, Harding HW, et al 2004. Norleucine1‐angiotensin IV alleviates mecamylamine‐induced spatial memory deficits. Peptides 25: 233–241.

    CAS  PubMed  Google Scholar 

  • Osei SY, Ahima RS, Minkes RK, Weaver JP, Khosla MC, et al 1993. Differential responses to angiotensin (1–7) in the feline mesenteric and hindquarters vascular beds. Eur J Pharmacol 234: 35–42.

    CAS  PubMed  Google Scholar 

  • Overmier JB, Murison R. 2000. Anxiety and helplessness in the face of stress predisposes, precipitates, and sustains gastric ulceration. Brain Res 110: 161–174.

    CAS  Google Scholar 

  • Page IH, Helmer OM. 1940. A crystalline pressor substance (angiotonin) resulting from the action between renin and renin‐activator. J Exp Med 71: 29–42.

    CAS  PubMed  Google Scholar 

  • Paula RD, Lima CV, Khosla MC. 1995. Angiotensin (1–7) potentiates hypotensive effect of bradykinin in conscious rats. Hypertension 26: 1154–1159.

    CAS  PubMed  Google Scholar 

  • Pederson ES, Harding JW, Wright JW. 1998. Attenuation of scopolamine‐induced spatial learning impairments by an angiotensin IV analog. Regul Pept 74: 97–103.

    CAS  PubMed  Google Scholar 

  • Pederson ED, Krishnan R, Harding JW, Wright JW. 2001. A role for the angiotensin AT4 receptor subtype in overcoming scopolamine‐induced spatial memory deficits. Regul Pept 102: 147–156.

    CAS  PubMed  Google Scholar 

  • Peng J, Phillips MI. 2001. Opposite regulation of brain angiotensin type 1 and type 2 receptors in cold‐induced hypertension. Regul Pept 97: 91–102.

    CAS  PubMed  Google Scholar 

  • Phillips MI. 1987. Functions of angiotensin in the central nervous system. Annu Rev Physiol 49: 413–435.

    CAS  PubMed  Google Scholar 

  • Phillips MI, Sumners C. 1998. Angiotensin II in central nervous system physiology. Regul Pept 78: 1–11.

    CAS  PubMed  Google Scholar 

  • Phillips MI, Weyhenmeyer JA, Felix D, Ganten D. 1979. Evidence for an endogenous brain renin–angiotensin system. Fed Proc 38 (7): 2260–2266.

    CAS  PubMed  Google Scholar 

  • Przegalinski E, Siwanowicz J, Baran L. 1988. Effect of repeated administration of antidepressant drugs on the isoprenaline‐induced drinking in rats. Pol J Pharmacol 40: 251–258.

    CAS  Google Scholar 

  • Raizada MK, editor. 1995. Current concepts: tissue renin angiotensin systems as local regulators in reproductive and endocrine organs. Plenum Press: New York.

    Google Scholar 

  • Rich DH, Moon BJ, Harbeson S. 1984. Inhibition of aminopeptidases by amastatin and bestatin derivatives, effect of inhibitor structure on slow‐binding processes. J Med Chem 27: 417–422.

    CAS  PubMed  Google Scholar 

  • Richter CP. 1936. Increased salt appetite in adrenalectomized rats. Am J Physiol 115: 155–161.

    CAS  Google Scholar 

  • Roberts KA, Krebs LT, Kramár, EA, Shaffer MJ, Harding JW, et al 1995. Autoradiographic identification of brain angiotensin IV binding sites and differential c‐Fos expression following intracerebroventricular injection of angiotensin II and IV in rats. Brain Res 682: 13–21.

    CAS  PubMed  Google Scholar 

  • Rolls BJ, Jones BP, Fallows DJ. 1972. A comparison of the motivational properties of thirst. Physiol Behav 9: 777–782.

    CAS  PubMed  Google Scholar 

  • Ryu J, Hah JS, Park JS, Lee W, Rampal AL, et al 2002. Protein kinase C‐zeta phosphorylates insulin‐responsive aminopeptidase in vitro at Ser‐80 and Ser‐91. Arch Biochem Biophys 403: 71–82.

    CAS  PubMed  Google Scholar 

  • Saavedra JM. 1992. Brain and pituitary angiotensin. Endocr Rev 13: 329–380.

    CAS  PubMed  Google Scholar 

  • Saavedra JM. 1999. Emerging features of brain angiotensin receptors. Regul Pept 85: 31–45.

    CAS  PubMed  Google Scholar 

  • Sadamura H, Hein L, Krieger JE, Pratt RE, Kobilka BK, et al 1992. Cloning, characterization, and expression of two angiotensin receptor (AT‐1) isoforms from the mouse genome. Biochem Biophys Res Commun 185: 253–259.

    Google Scholar 

  • Sakai RR, Epstein AN. 1990. Dependence of adrenalectomy‐induced sodium appetite on the action of angiotensin II in the brain of the rat. Behav Neurosci 104: 167–176.

    CAS  PubMed  Google Scholar 

  • Sandberg K, Ji H, Catt KJ. 1994. Regulation of angiotensin II receptors in rat brain during dietary sodium changes. Hypertension 23: I‐137–I‐141.

    Google Scholar 

  • Santos RA, Campagnole‐Santos MJ, Andrade SP. 2000. Angiotensin(1–7): an update. Regul Pept 91: 45–62.

    CAS  PubMed  Google Scholar 

  • Santos RA, Campagnole‐Santos MJ, Baracho NC, Fontes MA, Silva LC, et al 1994. Characterization of a new angiotensin antagonist selective for angiotensin‐(1–7): evidence that the actions of angiotensin‐(1–7) are mediated by specific angiotensin receptors. Brain Res Bull 35: 293–298.

    CAS  PubMed  Google Scholar 

  • Sardinia MF, Hanesworth JM, Krebs LT, Harding JW. 1993. AT4 receptor binding characteristics: d‐amino acid‐ and glycine‐substituted peptides. Peptides 14: 949–954.

    CAS  PubMed  Google Scholar 

  • Sasaki K, Yamano Y, Bardhan S, Iwai N, Murray JJ, et al 1991. Cloning and expression of a complementary DNA encoding a bovine adrenal angiotensin II type‐1 receptor. Nature (Lond) 351: 230–233.

    CAS  Google Scholar 

  • Sayeski PP, Ali MS, Semeniuk DJ, Doan TN, Bernstein KE. 1998. Angiotensin II signal transduction pathways. Regul Pept 78: 19–29.

    CAS  PubMed  Google Scholar 

  • Schiavone MT, Santos RAS, Brosnihan KB, Khosla MC, Ferrario CM. 1988. Release of vasopressin from the rat hypothalamo‐neurohypophysial system by angiotensin (1–7) heptapeptide. Proc Natl Acad Sci USA 85: 4095–4098.

    CAS  PubMed  Google Scholar 

  • Silva‐Barcellos NM, Frezard F, Caligiorne S, Santos RA. 2001. Long‐lasting cardiovascular effects of liposome‐entrapped angiotensin (1–7) at the rostral ventrolateral medulla. Hypertension 38: 1266–1271.

    PubMed  Google Scholar 

  • Simpson JB, Routtenberg A. 1973. Subfornical organ: site of drinking elicitation by angiotensin II. Science 181: 1172–1175.

    CAS  PubMed  Google Scholar 

  • Sirrett NE, McLean AS, Bray JJ, Hubbard JL. 1977. Distribution of angiotensin II receptors in rat brain. Brain Res 122: 299–312.

    Google Scholar 

  • Skeggs LT, Kahn JR, Lentz KE, Shumway NP. 1957. The preparation, purification and amino acid sequence of polypeptide renin substrate. J Exp Med 106: 439–453.

    CAS  PubMed  Google Scholar 

  • Slinker BK, Wu Y, Brennan AJ, Campbell KB, Harding JW. 1999. Angiotensin IV has mixed effects on left ventricle systolic function and speeds relaxation. Cardiovasc Res 42: 660–669.

    CAS  PubMed  Google Scholar 

  • Song L, Wilk S, Healy DP. 1997. Aminopeptidase A antiserum inhibits intracerebroventricular angiotensin II‐induced dipsogenic and pressor responses. Brain Res 744: 1–6.

    CAS  PubMed  Google Scholar 

  • Speth RC, Brown TE, Barnes RD, Wright JW. 2003. Brain angiotensinergic activity: the state of our current knowledge. Proc West Pharmacol Soc 46: 11–15.

    CAS  PubMed  Google Scholar 

  • Speth RC, Thompson SM, Johns SJ. 1995. Angiotensin II receptors: structural and functional considerations. Current concepts: tissue rennin angiotensin systems as local regulators in reproductive and endocrine organs. Mukhopadhyay AK, Raizada MK, editors. New York: Plenum Press; pp. 169–192.

    Google Scholar 

  • Stubley‐Weatherly LA, Harding JW, Wright JW. 1996. Effects of discrete kainic acid‐induced hippocampal lesions on spatial and contextual learning and memory. Brain Res 716: 29–38.

    PubMed  Google Scholar 

  • Summy‐Long JY, Keil LC, Sells G, Kirby A, Ohee O, et al 1983. Cerebroventricular sites for enkephalin inhibition of the central actions of angiotensin. Am J Physiol 244: R522–R529.

    PubMed  Google Scholar 

  • Swanson GN, Hanesworth JM, Sardinia MF, Coleman JK, Wright JW, et al 1992. Discovery of a distinct binding site for angiotensin II (3–8), a putative angiotensin IV receptor. Regul Pept 40: 409–419.

    CAS  PubMed  Google Scholar 

  • Tallant EA, Lu X, Weiss RB, Chappell MC, Ferrario CM. 1997. Bovine aortic endothelial cells contain an angiotensin‐(1–7) receptor. Hypertension 29 (Pt 2): 388–393.

    CAS  PubMed  Google Scholar 

  • Thomas WG, Mendelsohn FAO. 2003. Molecules in focus: angiotensin receptors: form and function and distribution. Int J Biochem Cell Biol 35: 774–779.

    CAS  PubMed  Google Scholar 

  • Tiegerstedt R, Bergman PG. 1898. Niere und kreislauf. Skand Arch Physiol 8: 223–231.

    Google Scholar 

  • Tonnaer JA, Wiegant VM, DeJong W, DeWied, D. 1982. Central effects of angiotensin on drinking and blood pressure; structure–activity relationships. Brain Res 236: 417–428.

    CAS  PubMed  Google Scholar 

  • Tsujimoto M, Mizutani S, Adachi H, Kimura M, Nakazato H, et al 1992. Identification of human placental leucine aminopeptidase as oxytocinase. Arch Biochem Biophys 292: 388–392.

    CAS  PubMed  Google Scholar 

  • Tuncel N, Erkasap N, Sahinturk V, Ak DD, Tuncel M. 1998. The protective effect of vasoactive intestinal peptide (VIP) on stress‐induced gastric ulceration in rats. Ann N Y Acad Sci 865: 309–322.

    CAS  PubMed  Google Scholar 

  • Ueda S, Masumori‐Maemoto S, Ashino K, Nagohara T, Gotoh E, et al 2000. Angiotensin (1–7) attenuates vasoconstriction evoked by angiotensin II but not by noradrenaline in man. Hypertension 35: 998–1001.

    CAS  PubMed  Google Scholar 

  • Unger T, Badoer E, Ganten D, Lang RE, Rettig R. 1988. Brain angiotensin: pathways and pharmacology. Circulation 77: 140–154.

    Google Scholar 

  • Unger T, Becker H, Petty M, Demmert G, Schneider B, et al 1985. Differential effects of central angiotensin II and substance P on sympathetic nerve activity in conscious rats. Implications for cardiovascular adaptation to behavioral responses. Circ Res 56: 563–575.

    CAS  Google Scholar 

  • Unger T, Horst PJ, Bauer M, Demmert G, Rettig R, et al 1989. Natriuretic action of central angiotensin II in conscious rats. Brain Res 486: 33–38.

    CAS  PubMed  Google Scholar 

  • Vaughan DE, Lazos SA, Tong K. 1995. Angiotensin II regulates the expression of plasminogen activator inhibitor‐1 in cultured endothelial cells. A potential link between the renin–angiotensin system and thrombosis. J Clin Invest 95: 995–1001.

    CAS  Google Scholar 

  • Vauquelin G, Michotte Y, Smolders I, Sarre S, Ebinger G, et al 2002. Cellular targets for angiotensin II fragments: pharmacological and molecular evidence. JRAAS 3: 195–204.

    CAS  PubMed  Google Scholar 

  • Waters SB, D'Auria M, Martin SS, Nguyen C, Kozma LM, et al 1997. The amino terminus of insulin‐responsive aminopeptidase causes Glut4 translocation in 3T3‐L1 adipocytes. J Biol Chem 272: 23323–23327.

    CAS  PubMed  Google Scholar 

  • Wayner MJ, Armstrong DL, Phelix CF, Wright JW, Harding JW. 2001. Angiotensin IV enhances LTP in rat dentate gyrus in vivo. Peptides 22: 1403–1414.

    CAS  PubMed  Google Scholar 

  • Weiss MI, Moe KE, Epstein AN. 1986. Interference with central action of angiotensin II suppresses sodium appetite. Am J Physiol 250: R250–R259.

    CAS  PubMed  Google Scholar 

  • Whitebread S, Mele M, Kamber B, deGasparo M. 1989. Preliminary biochemical characterization of two angiotensin II receptor subtypes. Biochem Biophys Res Commun 163: 284–288.

    CAS  PubMed  Google Scholar 

  • Wilk S, Healy DP. 1993. Glutamyl aminopeptidase (aminopeptidase A), the BP‐1/6C3 antigen. Adv Neuroimmunol 3: 195–207.

    CAS  Google Scholar 

  • Wilson WL, Roques BP Llorens‐Coxtes C, Speth RC, Harding JW, et al 2005. Roles of brain angiotensins II and III in thirst and sodium appetite. Brain Res 1060: 108–117.

    CAS  PubMed  Google Scholar 

  • Wong PC, Price WA, Chiu AT, Duncia JV, Carini DJ, et al 1990. Non‐peptide angiotensin II receptor antagonists. IX. Antihypertensive activity in rats of DuP 753, an orally active antihypertensive agent. J Pharmacol Exp Ther 252: 726–732.

    CAS  Google Scholar 

  • Wright JW, Harding JW. 1992. Regulatory role of brain angiotensins in the control of physiological and behavioral responses. Brain Res Rev 17: 227–262.

    CAS  PubMed  Google Scholar 

  • Wright JW, Harding JW. 1994. Brain angiotensin receptor subtypes in the control of physiological and behavioral responses. Neurosci Biobehav Rev 18: 21–53.

    CAS  PubMed  Google Scholar 

  • Wright JW, Harding JW. 1995. Brain angiotensin receptor subtypes AT1, AT2, and AT4 and their functions. Regul Pept 59: 269–295.

    CAS  PubMed  Google Scholar 

  • Wright JW, Harding JW. 1997. Important roles for angiotensin III and IV in the brain renin–angiotensin system. Brain Res Rev 25: 96–124.

    CAS  PubMed  Google Scholar 

  • Wright JW, Harding JW. 2004. The brain angiotensin system and extracellular matrix molecules in neural plasticity, learning, and memory. Prog Neurobiol 72: 263–293.

    CAS  PubMed  Google Scholar 

  • Wright JW, Jensen LL, Roberts KA, Sardinia MF, Harding JW. 1989. Structure–function analyses of brain angiotensin control of pressor action in rats. Am J Physiol 257: R1551–R1557.

    CAS  PubMed  Google Scholar 

  • Wright JW, Kramar EA, Meighan SE, Harding JW. 2002a. Extracellular matrix molecules, long‐term potentiation, memory consolidation and the brain angiotensin system. Peptides 23: 221–246.

    CAS  Google Scholar 

  • Wright JW, Krebs LT, Stobb JW, Harding JW. 1995. The angiotensin IV system: functional implications. Front Neuroendocrinol 16: 23–52.

    CAS  PubMed  Google Scholar 

  • Wright JW, Miller‐Wing, AV, Shaffer MJ, Higginson C, Wright DE, et al 1993. Angiotensin II(3‐8) [ANG IV] hippocampal binding: potential role in the facilitation of memory. Brain Res Bull 32: 497–502.

    CAS  PubMed  Google Scholar 

  • Wright JW, Morseth SL, Abhold RH, Harding JW. 1985. Pressor action and dipsogenicity induced by angiotensin II and III in rats. Am J Physiol 249: R514–R521.

    CAS  PubMed  Google Scholar 

  • Wright JW, Stubley L, Pederson ES, Kramar EA, Hanesworth JM, et al 1999. Contributions of the brain angiotensin IV‐AT4 receptor subtype system to spatial learning. J Neurosci 19: 3952–3961.

    CAS  PubMed  Google Scholar 

  • Wright JW, Tamura‐Myers E, Wilson WL, Roques BP, Llorens‐Cortes C, et al 2002b. Conversion of brain angiotensin II to angiotensin III is critical for pressor response in rats. Am J Physiol Regul Integr Comp Physiol 284: R725–R733.

    Google Scholar 

  • Yang G, Wan Y, Zhu Y. 1996. Angiotensin II‐an important stress hormone. Biol Signals 5: 1–8.

    CAS  PubMed  Google Scholar 

  • Zhang JH, Hanesworth JM, Sardinia M, Alt JA, Wright JW, et al 1999. Structural analysis of angiotensin IV receptor (AT4) from selected bovine tissues. J Pharmacol Exp Ther 289: 1075–1083.

    CAS  PubMed  Google Scholar 

  • Zhu B, Herbert J. 1996. Central antagonism of atrial natriuretic peptides on behavioral and hormonal responses to angiotensin II: mapping with c‐Fos. Brain Res 734: 55–60.

    CAS  PubMed  Google Scholar 

  • Zini S, Fournie‐Zaluski MC, Chauvel E, Roques BP, Corvol P, et al 1996. Identification of metabolic pathways of brain angiotensin II and III using specific aminopeptidase inhibitors: predominant role of angiotensin III in the control of vasopressin release. Proc Natl Acad Sci USA 93: 11968–11973.

    CAS  PubMed  Google Scholar 

  • Zubenko GS, Nixon RA. 1984. Mood elevating effect of captopril in depressed patients. Am J Psychiatry 141: 110–111.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The work from our laboratory presented in this chapter was supported by NIH grant R01‐HL64245‐03, NSF grant IBN‐0091337, the Edward E. and Lucille I. Lainge Endowment for Alzheimer's Disease Research, and funds provided for medical and biological research by the State of Washington Initiative Measure No. 171. We thank Mrs. Ruth Day for secretarial assistance provided during the course of writing this manuscript, and Mrs. Donna Wright for assistance with preparing the references.

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, LLC

About this entry

Cite this entry

Wright, J.W., Harding, J.W. (2006). Angiotensins in Brain Function. In: Lajtha, A., Lim, R. (eds) Handbook of Neurochemistry and Molecular Neurobiology. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-30381-9_27

Download citation

Publish with us

Policies and ethics