Skip to main content

Cholecystokinin Peptides in Brain Function

  • Reference work entry
  • First Online:
Handbook of Neurochemistry and Molecular Neurobiology

Abstract:

Cholecystokinin (CCK) is a peptide originally discovered in the gastrointestinal tract but is also found in high density in the mammalian brain. The Cā€terminal sulfated octapeptide fragment of CCK8 constitutes one of the major neuropeptides in the brain. CCK8, interacting with nanomolar affinities with two different receptors designated CCK1 and CCK2, has been shown to be involved in numerous physiological functions and is involved in the modulation and control of multiple central functions. In particular, CCK is involved in the neurobiology of anxiety, depression, psychosis, cognition, nociception, and feeding behavior. The functional role of CCK has been facilitated thanks to the development of potent and selective CCK receptor antagonists and agonists. In this chapter, the strategies followed to design these probes, and their use to study the anatomy of CCK pathways, the neurochemical and pharmacological properties of this peptide, and the clinical perspectives offered by manipulation of the CCK system are reported.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 249.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ACC:

anterior cingulate cortex

APA:

aminopeptidase A

CCK:

cholecystokinin

CCKLM:

CCKā€like material

CNS:

central nervous system

GABA:

gammaā€aminobutyric acid

GPCR:

Gā€proteinā€coupled receptor

IP3:

inositol 1,4,5ā€triphosphate

JNK:

cā€Junā€NH2ā€terminal kinases

LETO:

Longā€“Evans Tokushima Otsuka

MAPK:

mitogenā€activated protein kinase

NTS:

nucleus tractus solitarius

OLETF:

Otsuka Longā€“Evans Tokushima fatty

PC:

prohormone convertase

PKA:

protein kinase A

PKC:

protein kinase C

PLA2:

phospholipase A2

PLC:

phospholipase C

PTX:

pertussis toxin

TM:

transmembraneā€spanning domains

VTA:

ventral tegmental area

References

  • Abramov U, Raud S, Koks S, Innos J, Kurrikoff K, et al 2004. Targeted mutation of CCK(2) receptor gene antagonises behavioural changes induced by social isolation in female, but not in male mice. Behav Brain Res 155: 1ā€“11.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Aquino CJ, Armour DR, Berman JM, Birkemo LS, Carr RAE, et al 1996. Discovery of 1,5ā€benzodiazepines with peripheral cholecystokinin (CCKā€A) receptor agonist activity. 1. Optimization of the agonist ā€œtriggerā€. J Med Chem 39: 562ā€“569.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Baamonde A, DaugĆ© V, Ruizā€Gayo M, Fulga IG, Turcaud S, et al 1992. Antidepressantā€type effects of endogenous enkephalins protected by systemic RB 101 are mediated by opioid Ī“ and dopamine D1 receptor stimulation. Eur J Pharmacol 216: 157ā€“166.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Baber NS, Dourish CT, Hill DR. 1989. The role of CCK, caerulein, and CCK antagonists in nociception. Pain 39: 307ā€“328.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Barrett RW, Steffey ME, Wolfram CAW. 1989. Typeā€A CCK receptors in CHP 212 neuroblastoma cells: evidence for association with G protein and activation of phosphoinositide hydrolysis. Mol Pharmacol 35: 394ā€“400.

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Becker C, Thiebot MH, Touitou Y, Hamon M, Cesselin F, et al 2001. Enhanced cortical extracellular levels of cholecystokininā€like material in a model of anticipation of social defeat in the rat. J Neurosci 21: 262ā€“269.

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Beinfeld MC. 2003a. Biosynthesis and processing of pro CCK: recent progress and future challenges. Life Sci 72: 747ā€“757.

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Beinfeld MC. 2003b. What we know and what we need to know about the role of endogenous CCK in psychostimulant sensitization. Life Sci 73: 643ā€“654.

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Beinfeld MC, Garver DL. 1991. Concentration of cholecystokinin in cerebrospinal fluid is decreased in psychosis: relationship to symptoms and drug response. Prog Neuropsychopharmacol Biol Psychiatry 15: 601ā€“609.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Bellier B, Crete D, Million ME, Beslot F, Bado A, et al 2004. New CCK(2) agonists confirming the heterogeneity of CCK(2) receptors: characterisation of BBL454. Naunyn Schmiedebergs Arch Pharmacol 370: 404ā€“413.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Ben Natan L, Chaillet P, Lecomte JM, MarƧais H, Uchida G, et al 1984. Involvement of endogenous enkephalins in the mouse ā€œbehavioral despairā€ test. Eur J Pharmacol 97: 301ā€“304.

    ArticleĀ  Google ScholarĀ 

  • Benoliel JJ, Bourgoin S, Mauborgne A, Legrand JC, Hamon M, et al 1991. Differential inhibitory/stimulatory modulation of spinal CCK release by mu and delta opioid agonists, and selective blockade of muā€dependent inhibition by kappa receptor stimulation. Neurosci Lett 124: 204ā€“207.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Benoliel JJ, Mauborgne A, Bourgoin S, Legrand JC, Hamon M, et al 1992. Opioid control of the in vitro release of CCKā€like material from the rat substantia nigra. J Neurochem 58: 916ā€“922.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Bernad N, Burgaud BG, Horwell DC, Lewthwaite RA, Martinez J, et al 2000. The design and synthesis of the high efficacy, nonā€peptide CCK1 receptor agonist PD170292. Bioorg Med Chem Lett 10: 1245ā€“1248.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Bi S, Moran TH. 2002. Actions of CCK in the controls of food intake and body weight: lessons from the CCKā€A receptor deficient OLETF rat. Neuropeptides 36: 171ā€“181.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Bignon E, Bachy A, Boigegrain R, Brodin R, Cottineau M, et al 1999. SR146131: a new potent, orally active, and selective nonpeptide cholecystokinin subtype 1 receptor agonist. I. In vitro studies. J Pharmacol Exp Ther 289: 742ā€“751.

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Blommaert AG, Weng JH, Dorville A, McCort I, Ducos B, et al 1993. Cholecystokinin peptidomimetics as selective CCKā€B antagonists: design, synthesis, and in vitro and in vivo biochemical properties. J Med Chem 36: 2868ā€“2877.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Blommaert AGS, DhĆ“tel H, Ducos B, Durieux C, Goudreau N, Bado A, Garbay C, Roques BP. 1997. Structureā€based design of new constrained cyclic agonists of the cholecystokinin CCKā€B receptor. J Med Chem 40: 647ā€“658.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Bock MG, DiPardo RM, Evans BE, Rittle KE, Whitter WL, et al 1989. Benzodiazepine gastrin and brain cholecystokinin receptor ligands: Lā€365,260. J Med Chem 32: 13ā€“16.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Boden PR, Higginbottom M, Hill DR, Horwell DC, Hughes J, et al 1993. Cholecystokinin dipeptoid antagonists: design, synthesis, and anxiolytic profile of some novel CCKā€A and CCKā€B selective and ā€œmixedā€ CCKā€A/CCKā€B antagonists. J Med Chem 36: 552ā€“565.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Bourin M, Malinge M, Vasar E, Bradwejn J. 1996. Two faces of cholecystokinin: anxiety and schizophrenia. Fundam Clin Pharmacol 10: 116ā€“126.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Bradwejn J, de Montigny C. 1984. Benzodiazepines antagonize cholecystokininā€induced activation of rat hippocampal neurons. Nature 312: 363ā€“364.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Bradwejn J, de Montigny C. 1985. Effects of PK 8165, a partial benzodiazepine receptor agonist, on cholecystokininā€induced activation of hippocampal pyramidal neurons: a microiontophoretic study in the rat. Eur J Pharmacol 112: 415ā€“418.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Bradwejn J, Koszycki D. 2001. Cholecystokinin and panic disorder: past and future clinical research strategies. Scand J Clin Lab Invest Suppl 234: 19ā€“27.

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Bradwejn J, Koszycki D, Payeur R, Bourin M, Borthwick H. 1992. Replication of action of cholecystokinin tetrapeptide in panic disorder: clinical and behavioral findings. Am J Psychiatry 149: 962ā€“964.

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Bradwejn J, Koszycki D, Shriqui C. 1991. Enhanced sensitivity to cholecystokinin tetrapeptide in panic disorder. Arch Gen Psychiatry 48: 603ā€“610.

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Bush DE, DeSousa NJ, Vaccarino FJ. 1999. Selfā€administration of intravenous amphetamine: effect of nucleus accumbens CCKB receptor activation on fixedā€ratio responding. Psychopharmacology (Berl) 147: 331ā€“334.

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Cain BM, Connolly K, Blum A, Vishnuvardham D, Marchand JE, et al 2003. Distribution and colocalization of cholecystokinin with the prohormone convertase enzymes PC1, PC2, and PC5 in rat brain. J Comp Neurol 467: 307ā€“325.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Cain BM, Connolly K, Blum AC, Vishnuvardhan D, Marchand JE, et al 2004. Genetic inactivation of prohormone convertase (PC1) causes a reduction in cholecystokinin (CCK) levels in the hippocampus, amygdala, pons and medulla in mouse brain that correlates with the degree of colocalization of PC1 and CCK mRNA in these structures in rat brain. J Neurochem 89: 307ā€“313.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Carruthers B, Dawbarn D, De Quidt M, Emson PC, Hunter J, et al 1984. Changes in neuropeptide content of amygdala in schizophrenia. Br J Pharmacol 81(Suppl): 190P.

    Google ScholarĀ 

  • Chang RSL, Lotti VJ, Monaghan RL, Birnbaum J, Stapley EO, et al 1985. A potent nonpeptide cholecystokinin antagonist selective for peripheral tissues isolated from Aspergillus alliaceus. Science 230: 177ā€“179.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Charpentier B, Dor A, Roy P, England P, Pham H, et al 1989. Synthesis and binding affinities of cyclic and related linear analogues of CCK8 selective for central receptors. J Med Chem 31: 1184ā€“1190.

    ArticleĀ  Google ScholarĀ 

  • Charpentier B, Durieux C, PĆ©laprat D, Dor A, Reibaud M, et al 1988b. Enzymeā€resistant CCK analogs with high affinities for central receptors. Peptides 9: 835ā€“841.

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Charpentier B, PĆ©laprat D, Durieux C, Dor A, Reibaud M, et al 1988a. Cyclic cholecystokinin analogues with high selectivity for central receptors. Proc Natl Acad Sci USA 85: 1968ā€“1972.

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Charrier D, Dangoumau L, Puech AJ, Hamon M, Thiebot MH. 1995. Failure of CCK receptor ligands to modify anxietyā€related behavioural suppression in an operant conflict paradigm in rats. Psychopharmacology (Berl) 121: 127ā€“134.

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Chen DY, Deutsch JA, Gonzalez MF, Gu Y. 1993. The induction and suppression of cā€fos expression in the rat brain by cholecystokinin and its antagonist Lā€364,718. Neurosci Lett 149: 91ā€“94.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Corringer PJ, Weng JH, Ducos B, Durieux C, Boudeau P, et al 1993. CCKā€B agonist or antagonist activities of structurally hindered and peptidaseā€resistant Bocā€CCK4 derivatives. J Med Chem 36: 166ā€“172.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Corwin RL, Gibbs J, Smith GP. 1991. Increased food intake after type A but not type B cholecystokinin receptor blockade. Physiol Behav 50: 255ā€“258.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • CoudorĆ©ā€Civiale MA, Courteix C, Fialip J, Boucher M, Eschalier A. 2000. Spinal effect of the cholecystokininā€B receptor antagonist CIā€988 on hyperalgesia, allodynia and morphineā€induced analgesia in diabetic and mononeuropathic rats. Pain 88: 15ā€“22.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  • CoudorĆ©ā€Civiale MA, Meen M, FourniĆ©ā€Zaluski MC, Boucher M, Roques BP, et al 2001. Enhancement of the effects of a complete inhibitor of enkephalinā€catabolizing enzymes, RB 101, by a cholecystokininā€B receptor antagonist in diabetic rats. Br J Pharmacol 133: 179ā€“185.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  • Crawley JN. 1985. Comparative distribution of cholecystokinin and other neuropeptides. Why is this peptide different from all other peptides? Ann NY Acad Sci 448: 1ā€“8.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Crawley JN, Corwin RL. 1994. Biological actions of cholecystokinin. Peptides 15: 731ā€“755.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Crespi F. 1998. The role of cholecystokinin (CCK), CCKā€A or CCKā€B receptor antagonists in the spontaneous preference for drugs of abuse (alcohol or cocaine) in naive rats. Methods Find Exp Clin Pharmacol 20: 679ā€“697.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Dabrowski A, Grady T, Logsdon CD, Williams JA. 1996. Jun kinases are rapidly activated by cholecystokinin in rat pancreas both in vitro and in vivo. J Biol Chem 271: 5686ā€“5690.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • DaugĆ© V, Roques BP. 1995. Opioid and CCK systems in anxiety and reward. Cholecystokinin and anxiety: from neuron to behavior. Bradwejn J, Vasar E, editors. Austin: RG Landes Company; pp. 151ā€“171.

    Google ScholarĀ 

  • DaugĆ© V, Sebret A, Beslot F, Matsui T, Roques BP. 2001. Behavioral profile of CCK2 receptorā€deficient mice. Neuropsychopharmacology 25: 690ā€“698.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  • Dawson GR, Rupniak NM, Iversen SD, Curnow R, Tye S, et al 1995. Lack of effect of CCKB receptor antagonists in ethological and conditioned animal screens for anxiolytic drugs. Psychopharmacology (Berl) 121: 109ā€“117.

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Day HE, McKnight AT, Poat JA, Hughes J. 1994. Evidence that cholecystokinin induces immediate early gene expression in the brainstem, hypothalamus and amygdala of the rat by a CCKA receptor mechanism. Neuropharmacology 33: 719ā€“727.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • de Leeuw AS, den Boer JA, Slaap BR, Westenberg HG. 1996. Pentagastrin has panicā€inducing properties in obsessive compulsive disorder. Psychopharmacology 126:339ā€“344.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • De Montigny C. 1989. Cholecystokinin tetrapeptide induces panicā€like attacks in healthy volunteers. Arch Gen Psychiatry 46: 511ā€“517.

    CASĀ  PubMedĀ  Google ScholarĀ 

  • De Weerth A, Pisegna JR, Huppi K, Wank SA. 1993. Molecular cloning, functional expression and chromosomal localization of the human cholecystokinin type A receptor. Biochem Biophys Res Commun 194: 811ā€“818.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • De Wied D, Sigling HO. 2002. Neuropeptides involved in the pathophysiology of schizophrenia and major depression. Neurotox Res 4: 453ā€“468.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Derrien M, DaugĆ© V, Blommaert A, Roques BP. 1994b. The selective CCKā€B agonist, BC 264, impairs socially reinforced memory in the threeā€panel runway test in rats. Behav Brain Res 65: 139ā€“146.

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Derrien M, Durieux M, Roques BP. 1994a. Antidepressantā€like effects of CCKā€B antagonists in mice: antagonism by naltrindole. Br J Pharmacol 111: 956ā€“960.

    CASĀ  Google ScholarĀ 

  • Derrien M, Noble F, Maldonado R, Roques BP. 1993. Cholecystokininā€A but not cholecystokininā€B receptor stimulation induces endogenous opioidā€dependent antinociceptive effects in the hot plate test in mice. Neurosci Lett 160: 193ā€“196.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Deschenes RJ, Lorenz LJ, Haun RS, Roos BA, Collier KJ, et al 1984. Cloning and sequence analysis of cDNA encoding rat preprocholecystokinin. Proc Natl Acad Sci USA 81: 726ā€“730.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • DeSousa NJ, Wunderlich GR, De Cabo C, Vaccarino FJ. 1999. The expression of behavioral sensitization to amphetamine: role of CCK(A) receptors. Pharmacol Biochem Behav 62: 31ā€“37.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Dohlman HG, Thorner J, Caron MG, Lefkowitz RJ. 1991. Model systems for the study of sevenā€transmembraneā€segment receptors. Annu Rev Biochem 60: 653ā€“680.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Dourish CT, O'Neill MF, Couglan J, Kitchener SJ, Hawley D, Iversen SD. 1990. The selective CCKā€B antagonist Lā€365,260 enhances morphine analgesia and prevents morphine tolerance in rat. Eur J Pharmacol 175: 35ā€“44.

    ArticleĀ  Google ScholarĀ 

  • Dunlop J, Zhang Y, Evans N. 1997. Full and partial agonist activity of Cā€terminal cholecystokinin peptides at the cloned human CCKā€A receptor expressed in Chinese hamster ovary cells. Peptides 18: 865ā€“868.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Durieux C, Coppey M, Zajac JM, Roques BP. 1986. Occurrence of two cholecystokinin binding sites in guinea pig brain cortex. Biochem Biophys Res Commun 137: 1167ā€“1173.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Durieux C, Ruizā€Gayo M, Roques BP. 1991. In vivo binding affinities of cholecystokinin agonists and antagonists determined using the selective CCKā€B agonist [3H]pBC 264. Eur J Pharmacol 209: 185ā€“193.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Emson PC, Lee CM, Rehfeld JF. 1980. Cholecystokinin octapeptide: vesicular localization and calcium dependent release from rat brain in vitro. Life Sci 26: 2157ā€“2163.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Eppingā€Jordan MP, Markou A, Koob GF. 1998. The dopamine Dā€1 receptor antagonist SCH 23390 injected into the dorsolateral bed nucleus of the stria terminalis decreased cocaine reinforcement in the rat. Brain Res 784: 105ā€“115.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  • Erel U, Arborelius L, Brodin E. 2004. Increased cholecystokinin release in the rat anterior cingulate cortex during carrageenanā€induced arthritis. Brain Res 1022: 39ā€“46.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Evans BE, Bock MG, Rittle KE, de Pardo RM, Whitter WL, et al 1986. Design of potent, orally effective, nonpeptidal antagonists of the peptide hormone cholecystokinin. Proc Natl Acad Sci USA 83: 4922ā€“4948.

    Google ScholarĀ 

  • Faris PL, Komisaruk BR, Watkins LR, Mayer DJ. 1983. Evidence for the neuropeptide cholecystokinin as an antagonist of opiate analgesia. Science 219: 310ā€“312.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Faris PL, McLaughlin CL, Baile CA, Olney JW, Komisaruk BR. 1984. Morphine analgesia potentiated but tolerance not affected by active immunization against cholecystokinin. Science 226: 1215ā€“1217.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Farmery SM, Owen F, Poulter M, Crow TJ. 1985. Reduced high affinity cholecystokinin binding in hippocampus and frontal cortex of schizophrenic patients. Life Sci 36: 473ā€“477.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Ferrier IN, Roberts GW, Crow TJ, Johnstone EC, Owens DG, et al 1983. Reduced cholecystokininā€like and somatostatinā€like immunoreactivity in limbic lobe is associated with negative symptoms in schizophrenia. Life Sci 33: 475ā€“482.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • FourniĆ©ā€Zaluski MC, Belleney J, Lux B, Durieux C, GĆ©rard G, et al 1986. Conformational analysis of neuronal cholecystokinin CCK26ā€“33 and related fragments by 1H NMR spectroscopy, fluorescence transfer measurements and calculations. Biochemistry 25: 3778ā€“3787.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  • FourniĆ©ā€Zaluski MC, Coric P, Turcaud S, Lucas E, Noble F, et al 1992. Mixedā€inhibitorā€prodrug as a new approach towards systemically active inhibitors of enkephalin degrading enzymes. J Med Chem 35: 2474ā€“2481.

    Google ScholarĀ 

  • Frankland PW, Josselyn SA, Bradwejn J, Vaccarino FJ, Yeomans JS. 1997. Activation of amygdala cholecystokininB receptors potentiates the acoustic startle response in the rat. J Neurosci 17: 1838ā€“1847.

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Fraser KA, Davison JS. 1993. Mealā€induced cā€fos expression in brain stem is not dependent on cholecystokinin release. Am J Physiol Regul Integr Comp Physiol 265: R235ā€“R239.

    CASĀ  Google ScholarĀ 

  • Fuxe K, Andersson K, Locatelli V, Agnati LF, Hokfelt T, et al 1980. Cholecystokinin peptides produce marked reduction of dopamine turnover in discrete areas in the rat brain following intraventricular injection. Eur J Pharmacol 67: 329ā€“331.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Galas MC, Bernard N, Martinez J. 1992. Pharmacological studies on CCKā€B receptors in guinea pig synaptoneurosomes. Eur J Pharmacol 226: 35ā€“41.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Gall C, Lauterborn J, Burks D, Seroogy K. 1987. Coā€localization of enkephalins and cholecystokinin in discrete areas of rat brain. Brain Res 403: 403ā€“408.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Gaudreau P, St. Pierre S, Pert CB, Quirion R. 1985. Cholecystokinin receptors in mammalian brain: a comparative characterization and visualization. Ann NY Acad Sci 448: 198ā€“219.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Geracioti TD, Nicholson WE, Orth DN, Ekhator NN, Loosen PT. 1993. Cholecystokinin in human cerebrospinal fluid: concentrations, dynamics, molecular forms and relationship to fasting and feeding in health, depression and alcoholism. Brain Res 629: 260ā€“268.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Gerhardt P, Voits M, Fink H, Huston JP. 1994. Evidence for mnemotropic action of cholecystokinin fragments Bocā€CCKā€4 and CCKā€8S. Peptides 15: 689ā€“697.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Ghijsen WE, Leenders AG, Wiegant VM. 2001. Regulation of cholecystokinin release from central nerve terminals. Peptides 22: 1213ā€“1221.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Gibertā€Rahola J, Tejedor P, Chover AJ, Payana M, Rodriguez MM, et al 1990. RB 38B, a selective endopeptidase inhibitor, induced several of escape deficits caused by inescapable shock pretreatment in rats. Eur J Pharmacol 183: 2317ā€“2325.

    ArticleĀ  Google ScholarĀ 

  • Goltermann NR, Stengaardā€Pedersen K, Rehfeld JF, Christensen NJ. 1981. Newly synthesized cholecystokinin in subcellular fractions of the rat brain. J Neurochem 36: 959ā€“965.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Goudreau N, Weng JH, Roques BP. 1994. Conformational analysis of CCKā€B agonists using 1Hā€NMR and restrained molecular dynamics: comparison of biologically active Bocā€Trpā€(NMe)Nleā€Aspā€Pheā€NH2 and inactive Bocā€Trpā€(NMe)Pheā€Aspā€Pheā€NH2. Biopolymers 34: 155ā€“159.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Gully D, FrĆ©hel D, Marcy C, Spinazze A, Lespy L, et al 1993. Peripheral biological activity of SR 27897: a new potent nonā€peptide antagonist of CCKā€A receptors. Eur J Pharmacol 232: 13ā€“19.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Gulpinar MA, Yegen BC. 2004. The physiology of learning and memory: role of peptides and stress. Curr Protein Pept Sci 5: 457ā€“473.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Gustafsson H, Stiller CO, Brodin E. 2000. Peripheral axotomy increases cholecystokinin release in the rat anterior cingulate cortex. Neuroreport 11: 3345ā€“3348.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Hadjiivanova C, Belcheva S, Belcheva I. 2003. Cholecystokinin and learning and memory processes. Acta Physiol Pharmacol Bulg 27: 83ā€“88.

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Harhammer R, Schafer U, Henklein P, Ott T, Repke H. 1991. CCKā€8ā€related Cā€terminal tetrapeptides: affinities for central CCKB and peripheral CCKA receptors. Eur J Pharmacol 209: 263ā€“266.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Harro J, Marcusson J, Oreland L. 1992. Alterations in brain cholecystokinin receptors in suicide victims. Eur Neuropsychopharmacol 2: 57ā€“63.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Harro J, Oreland L. 1993. Cholecystokinin receptors and memory: a radial maze study. Pharmacol Biochem Behav 44: 509ā€“517.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Harro J, Vasar E, Bradwejn J. 1993. Cholecystokinin in animal and human research on anxiety. Trends Pharmacol Sci 14: 244ā€“249.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Hattori E, Yamada K, Ebihara M, Toyota T, Nankai M, et al 2002. Association study of the short tandem repeat in the 5ā€² upstream region of the cholecystokinin gene with mood disorders in the Japanese population. Am J Med Genet 114: 523ā€“526.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  • Hendrie CA, Neill JC, Shepherd JK, Dourish CT. 1993. The effects of CCKA and CCKB antagonists on activity in the black/white exploration model of anxiety in mice. Physiol Behav 54: 689ā€“693.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Hendry SH, Jones EG, DeFelipe J, Schmechel D, Brandon C, et al 1984. Neuropeptideā€containing neurons of the cerebral cortex are also GABAergic. Proc Natl Acad Sci USA 81: 6526ā€“6530.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Henke BR, Aquino CJ, Birkemo LS, Croom DK, Dougherty RW, et al 1997. Optimization of 3ā€(1Hā€indazolā€3ā€ylmethyl)ā€1,5ā€benzodiazepines as potent, orally active CCKā€A agonists. J Med Chem 40: 2706ā€“2725.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Hernando F, Fuentes JA, FourniĆ©ā€Zaluski MC, Roques BP, Ruizā€Gayo M. 1996. Antidepressantā€like effects of CCKā€B receptor antagonists: involvement of the opioid system. Eur J Pharmacol 318: 221ā€“229.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Hernando F, Fuentes JA, Roques BP, Ruizā€Gayo M. 1994. The CCKā€B receptor antagonist, Lā€365,260, elicits antidepressantā€type effects in the forcedā€swim test in mice. Eur J Pharmacol 261: 257ā€“263.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Herranz R. 2003. Cholecystokinin antagonists: pharmacological and therapeutic potential. Med Res Rev 23: 559ā€“605.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Hokfelt T, Rehfeld JF, Skirboll L, Ivemark B, Goldstein M, et al 1980. Evidence for coexistence of dopamine and CCK in mesoā€limbic neurones. Nature 285: 476ā€“478.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Honda T, Wada E, Battey JF, Wank SA. 1993. Differential gene expression of CCKA and CCKB receptors in the rat brain. Mol Cell Neurosci 4: 143ā€“154.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Horwell DC. 1991. Development of CCKā€B antagonists. Neuropeptides 19 (Suppl): 57ā€“64.

    ArticleĀ  Google ScholarĀ 

  • Hosing VG, Schirmacher A, Kuhlenbaumer G, Freitag C, Sand P, et al 2004. Cholecystokininā€A and cholecystokininā€Bā€receptor gene polymorphisms in panic disorder. J Neural Transm Suppl 68: 147ā€“156.

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Howbert JJ, Lobb KL, Brown RF, Reel JK, Neel DA, et al 1992. A novel series of nonā€peptide CCK and gastrin antagonists: medicinal chemistry and electrophysiological demonstration of antagonism. Multiple cholecystokinin receptors progress toward CNS therapeutic targets. Dourish CT, Cooper SJ, editors. London: Oxford University Press; pp. 28ā€“37.

    Google ScholarĀ 

  • Hull RAD, Shankley NP, Harper EA, Gerskowitch VP, Black JW. 1993. 2ā€Naphthalenesulphonyl lā€aspartylā€(2ā€phenethyl)amide (2ā€NAP)ā€”a selective cholecystokinin CCKā€A receptor antagonist. Br J Pharmacol 108: 734ā€“740.

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Innis RB, Snyder SH. 1980. Distinct cholecystokinin receptors in brain and pancreas. Proc Natl Acad Sci USA 77: 6917ā€“6921.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Ise K, Akiyoshi J, Horinouchi Y, Tsutsumi T, Isogawa K, et al 2003. Association between the CCKā€A receptor gene and panic disorder. Am J Med Genet 118B: 29ā€“31.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  • Ito H, Sogabe H, Nakarai T, Sato Y, Tomoi M, et al 1994. Pharmacological profile of FKā€480, a novel cholecystokinin typeā€A receptor antagonist: comparison to loxiglumide. J Pharmacol Exp Ther 268: 571ā€“575.

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Ivy AC, Oldberg E. 1928. A hormone mechanism for gallbladder contraction and evacuation. Am J Physiol 86: 599ā€“613.

    CASĀ  Google ScholarĀ 

  • Jagerschmidt A, Popovici T, O'Donohue M, Roques BP. 1994. Identification and characterization of various cholecystokinin B receptor mRNA forms in rat brain tissue and partial determination of the cholecystokinin B receptor gene structure. J Neurochem 63: 1199ā€“1206.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Jensen RT, Huang SC, von Schrenck T, Wank SA, Gardner JD. 1990. Cholecystokinin receptor antagonists: ability to distinguish various classes of cholecystokinin receptors. Gastrointestinal endocrinology: receptors and postā€receptor mechanisms. Thompson JT, Townsend CM, Greely GA, Rayford PL, Wooper CW, et al editors. New York: Academic; pp. 95ā€“113.

    Google ScholarĀ 

  • Jensen RT, Qian JM, Lin JT, Mantey SA, Pisegna JR, et al 1994. Distinguishing multiple CCK receptor subtypes: studies with guinea pig chief cells and transfected human CCK receptors. Ann NY Acad Sci 713: 88ā€“106.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Jorpes JE, Mutt V. 1966. Cholecystokinin and pancreozymin, one single hormone? Acta Physiol Scand 66: 196.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Kariya K, Tanaka J, Nomura M. 1994. Systemic administration of CCKā€8S, but not CCKā€4, enhances dopamine turnover in the posterior nucleus accumbens: a microdialysis study in freely moving rats. Brain Res 657: 1ā€“6.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Kennedy JL, Bradwejn J, Koszycki D, King N, Crowe R, et al 1999. Investigation of cholecystokinin system genes in panic disorder. Mol Psychiatry 4: 284ā€“285.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Khaznadar T, David C, Crete D, FourniĆ©ā€Zaluski MC, Roques BP, et al 1997. Aminopeptidase A involved in the inactivation of endogenous CCK8: a microdialysis study. J Neuropsychopharmacol 11: A50.

    Google ScholarĀ 

  • Knapp RJ, Vaughn LK, Fang SN, Bogert CL, Yamamura MS, et al 1990. A new, highly selective CCKā€B receptor radioligand ([3H][Nā€methylā€Nle28,31]CCK26ā€“33): evidence for CCKā€B receptor heterogeneity. J Pharmacol Exp Ther 255: 1278ā€“1286.

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Kobayashi S, Ohta M, Miyasaka K, Funakoshi A. 1996. Decrease in exploratory behavior in naturally occurring cholecystokinin (CCK)ā€A receptor gene knockout rats. Neurosci Lett 214: 61ā€“64.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Koks S, Abramov U, Veraksits A, Bourin M, Matsui T, et al 2003. CCK2 receptorā€deficient mice have increased sensitivity of dopamine D2 receptors. Neuropeptides 37: 25ā€“29.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Koks S, Volke V, Veraksits A, Runkorg K, Sillat T, et al 2001. Cholecystokinin2 receptorā€deficient mice display altered function of brain dopaminergic system. Psychopharmacology 158: 198ā€“204.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Kolodziej SA, Nikiforovich GV, Skeean R, Lignon MF, Martinez J, et al 1995. Acā€[3ā€ and 4ā€alkylthioproline31]ā€CCK4 analogs: synthesis, and implication for the CCKā€B receptorā€bound conformation. J Med Chem 38: 137ā€“149.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Kopin AS, Mathes WF, McBride EW, Nguyen M, Alā€Haider W, et al 1999. The cholecystokininā€A receptor mediates inhibition of food intake yet is not essential for the maintenance of body weight. J Clin Invest 103: 383ā€“391.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Lanaud P, Popovici T, Normand E, Lemoine C, Bloch B, et al 1989. Distribution of CCK mRNA in particular regions (hippocampus, periaqueductal grey and thalamus) of the rat by in situ hybridization. Neurosci Lett 104: 38ā€“42.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Le Melledo JM, Bradwejn J, Koszycki D, Bichet D. 1995. Premenstrual dysphoric disorder and response to cholecystokininā€tetrapeptide. Arch Gen Psychiatry 52: 605ā€“606.

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Lemaire M, Piot O, Roques BP, Bƶhme AG, Blanchard JC. 1992. Evidence for an endogenous cholecystokininergic balance in social memory. Neuroreport 3: 925ā€“932.

    ArticleĀ  Google ScholarĀ 

  • LĆ©na I, Simon H, Roques BP, DaugĆ© V. 1999. Opposing effects of two selective CCKā€B agonists, on the retrieval phase of a twoā€trial memory task after systemic injection in the rat. Neuropharmacology 38: 543ā€“553.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  • Lo WWY, Hughes J. 1988. Differential regulation of cholecystokininā€ and muscarinicā€receptorā€mediated phosphoinositide turnover in flow 900 cells. Biochem J 251: 625ā€“630.

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Lƶfberg C, Agren H, Harro J, Oreland L. 1998. Cholecystokinin in CSF from depressed patients: possible relations to severity of depression and suicidal behaviour. Eur Neuropsychopharmacol 8: 153ā€“157.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  • Magnuson DSK, Sullivan AF, Simonnet G, Roques BP, Dickenson AH. 1990. Differential interactions of cholecystokinin and FLFQPQRFā€NH2 with Ī¼ and Ī“ opioid antinociception in the rat spinal cord. Neuropeptides 16: 213ā€“218.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Makovec F, Chiste R, Bani M, Pacini MA, Setnikar I, et al 1995. New glutaramic acid derivatives with potent competitive specific cholecystokininā€antagonistic activity. Arzneimittelforschung 35: 1048ā€“1051.

    Google ScholarĀ 

  • Maldonado R, Valverde O, Ducos B, Blommaert AG, FourniĆ©ā€Zaluski MC, et al 1995. Inhibition of morphine withdrawal by the association of RB 101, an inhibitor of enkephalin catabolism, and the CCKā€B antagonist PDā€134,308. Br J Pharmacol 114: 1031ā€“1039.

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Marshall FH, Barnes S, Hughes J, Woodruff GN, Hunter JC. 1991. Cholecystokinin modulates the release of dopamine from the anterior and posterior nucleus accumbens by two different mechanisms. J Neurochem 56: 917ā€“922.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Martinā€Martinez M, BartolomĆ©ā€Nebreda JM, Gomezā€Monterrey I, Gonzalezā€Muniz R, Garciaā€Lopez MT, et al 1997. Synthesis and stereochemical structureā€“activity relationships of 1,3ā€dioxoperhydropyrido[1,2ā€c]pyrimidine derivatives: potent and selective cholecystokininā€A receptor antagonists. J Med Chem 40: 3402ā€“3407.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  • Matsushita H, Akiyoshi J, Kai K, Ishii N, Kodama K, et al 2003. Spatial memory impairment in OLETF rats without cholecystokininā€”a receptor. Neuropeptides 37: 271ā€“276.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Menozzi D, Gardner JD, Maton PN. 1989. Properties of receptors for gastrin and CCK on gastric smooth muscle cells. Am J Physiol 257: G73ā€“G79.

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Mercer LD, Beart PM. 1997. Histochemistry in rat brain and spinal cord with an antibody directed at the cholecystokininA receptor. Neurosci Lett 225: 97ā€“100.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Migaud M, Durieux C, Viereck J, Sorocaā€Lucas E, FourniĆ©ā€Zaluski MC, et al 1996. The in vivo metabolism of cholecystokinin (CCKā€8) is essentially ensured by aminopeptidase A. Peptides 17: 601ā€“607.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Migaud M, Roques BP, Durieux C. 1995. Evidence for a high affinity uptake system for cholecystokinin octapeptide (CCK8) in rat cortical synaptosomes. Eur J Neurosci 7: 1074ā€“1079.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Millan MJ. 2003. The neurobiology and control of anxious states. Prog Neurobiol 70: 83ā€“244.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Million ME, LĆ©na I, Da Nascimento S, Noble F, DaugĆ© V, et al 1997. Development of new potent agonists able to interact with two postulated subsites of the cholecystokinin CCKā€B receptor. Lett Pept Sci 4: 407ā€“410.

    CASĀ  Google ScholarĀ 

  • Miyasaka K, Kobayashi S, Ohta M, Kanai S, Yoshida Y, et al 2002. Anxietyā€related behaviors in cholecystokininā€A, ā€B, and ā€AB receptor gene knockout mice in the plusā€maze. Neurosci Lett 335: 115ā€“118.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Miyasaka K, Yoshida Y, Matsushita S, Higuchi S, Shirakawa O, et al 2004. Association of cholecystokininā€A receptor gene polymorphisms and panic disorder in Japanese. Am J Med Genet 127B: 78ā€“80.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  • Moran TH. 2004. Gut peptides in the control of food intake: 30 years of ideas. Physiol Behav 82: 175ā€“180.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Moran TH, Robinson PH, Goldrich MS, McHugh PR. 1986. Two brain cholecystokinin receptors: implications for behavioral actions. Brain Res 362: 175ā€“179.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Moran TH, Schwartz GJ. 1994. Neurobiology of cholecystokinin. Crit Rev Neurobiol 9: 1ā€“28.

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Morino P, Herreraā€Marschitz M, Castel MN, Ungerstedt U, Varro A, et al 1994. Cholecystokinin in corticoā€striatal neurons in the rat: immunohistochemical studies at the light and electron microscopical level. Eur J Neurosci 6: 681ā€“692.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Mutt V, Jorpes JE. 1968. Structure of porcine cholecystokininā€“pancreozymin. Eur J Biochem 6: 156ā€“162.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Nadzan AM, Garvey DS, Holladay MW, Shiosaki K, Tufano MD, et al 1991. Design of cholecystokinin analogs with high affinity and selectivity for brain receptors. Peptides, chemistry and biology, Proceedings of the 12th American Peptide Symposium. Smith JA, Rivier JE, editors. Leiden, The Netherlands: ESCOM; pp. 101ā€“102.

    Google ScholarĀ 

  • Niehoff DL. 1989. Quantitative autoradiographic localization of cholecystokinin receptors in rat and guinea pig brain using 125Iā€Boltonā€Hunterā€CCK8. Peptides 10: 265ā€“274.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Nishida A, Miyata K, Tsutsumi R, Yuki H, Akuzawa S, et al 1994. Pharmacological profile of (R)ā€1ā€[2,3ā€dihydroā€1ā€(2ā€²ā€methylā€phenacyl)ā€2ā€oxoā€5ā€phenylā€1Hā€1,4ā€benzodiazepinā€3ā€yl]ā€3ā€(3ā€methylphenyl)urea (YM022), a new potent and selective gastrin/cholecystokininā€B receptor antagonist, in vitro and in vivo. J Pharmacol Exp Ther 269: 725ā€“731.

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Noble F, Derrien M, Roques BP. 1993. Modulation of opioid analgesia by CCK at the supraspinal level: evidence of regulatory mechanisms between CCK and enkephalin systems in the control of pain. Br J Pharmacol 109: 1064ā€“1070.

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Noble F, Wank S, Crawley J, Bradwejn J, Seroogy K, et al 1999. International Union of Pharmacology. XXI. Structure, distribution, and functions of cholecystokinin receptors. Pharmacol Rev 51: 745ā€“781.

    CASĀ  Google ScholarĀ 

  • O'Dowd B, Hnatowich M, Caron MG, Lefkowitz RJ, Bouvier M. 1988. Siteā€directed mutagenesis of the cytoplasmatic domains of the human Ī²ā€2 adrenergic receptor. Localization of regions involved in Gā€proteinā€receptor coupling. J Biol Chem 263: 15985ā€“15992.

    PubMedĀ  Google ScholarĀ 

  • Okubo T, Harada S, Higuchi S, Matsushita S. 2002. Investigation of quantitative trait loci in the CCKAR gene with susceptibility to alcoholism. Alcohol Clin Exp Res 26: 2Sā€“5S.

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Ovchinikov YA, Ablulajew NG, Bogachuck AS. 1988. Two adjacent cysteine residues in the Cā€terminal cytoplasmatic fragment of bovine rhodopsin are palmitoylated. FEBS Lett 230: 1ā€“5.

    ArticleĀ  Google ScholarĀ 

  • Ozcelebi F, Miller LJ. 1995. Phosphopeptide mapping of cholecystokinin receptors on agonistā€stimulated native pancreatic acinar cells. J Biol Chem 270: 3435ā€“3441.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Patel S, Smith AJ, Chapman KL, Fletcher AE, Kemp JA, et al 1994. Biological properties of the benzodiazepine amide derivative Lā€740,093, a cholecystokininā€B/gastrin receptor antagonist with high affinity in vitro and high potency in vivo. Mol Pharmacol 46: 943ā€“948.

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Pendley CE, Fitzpatrick LR, Capolino AJ, Davis MA, Esterline NJ, et al 1995. RP 73870, a gastrin/cholecystokininā€B receptor antagonist with potent antiā€ulcer activity in the rat. J Pharmacol Exp Ther 273: 1015ā€“1022.

    CASĀ  PubMedĀ  Google ScholarĀ 

  • PĆ©laprat D, Broer Y, Studler JM, Peschanski M, Tassin JP, et al 1987. Autoradiography of CCK receptors in the rat brain using [3H]Boc[Nle28,31]CCK27ā€“33 and [125I]Boltonā€Hunter CCK8. Neurochem Int 10: 495ā€“508.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  • Pohl M, Benoliel JJ, Bourgoin S, Lombard MC, Mauborgne A, et al 1990. Regional distribution of calcitonin geneā€related peptideā€, substance Pā€, cholecystokininā€, Met5ā€enkephalinā€, and dynorphin A (1ā€8)ā€like materials in the spinal cord and dorsal root ganglia of adult rats: effects of dorsal rhizotomy and neonatal capsaicin. J Neurochem 55: 1122ā€“1130.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Pommier B, Da Nascimento S, Dumont S, Bellier B, Million E, Garbay C, Roques BP, Noble F. 1999. The CCKā€B receptor is coupled to two effector pathways through pertussis toxin sensitive and insensitive G proteins. J Neurochem 73: 281ā€“288.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Pommier B, Marieā€Claire C, Da Nascimento S, Wang HL, Roques BP, et al 2003. Further evidence that the CCK2 receptor is coupled to two transduction pathways using siteā€directed mutagenesis. J Neurochem 85: 454ā€“461.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Pu SF, Zhuang HX, Lu ZB, Wu XR, Han JS. 1994. Cholecystokinin gene expression in rat amygdaloid neurons. Normal distribution and effect of morphine tolerance. Mol Brain Res 21: 183ā€“189.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Radu D, Ahlin A, Svanborg P, Lindefors N. 2003. Pentagastrin test for anxietyā€”psychophysiology and personality. Psychopharmacology (Berl) 166: 139ā€“145.

    CASĀ  Google ScholarĀ 

  • Rattray M, De Belleroche J. 1987. Morphine action on cholecystokinin octapeptide release from rat periaqueductal grey slices: sensitization by naloxone. Neuropeptides 10: 189ā€“200.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Rehfeld JF, Bungaard JR, Friisā€Hansen L, Goetze JP. 2003. On the tissueā€specific processing of procholecystokinin in the brain and gutā€”a short review. J Physiol Pharmacol 54 (Suppl. 4): 73ā€“79.

    PubMedĀ  Google ScholarĀ 

  • Rehfeld JF, Holst JJ, Jensen SL. 1982. The molecular nature of vascularly released cholecystokinin from the isolated perfused porcine duodenum. Regul Pept 3: 15ā€“28.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Rehfeld JF, Lindberg I, Friisā€Hansen L. 2002. Increased synthesis but decreased processing of neuronal proCCK in prohormone convertase 2 and 7B2 knockout animals. J Neurochem 83: 1329ā€“1337.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Rehfeld JH, Nielsen FC. 1995. Molecular forms and regional distribution of cholecystokinin in the central nervous system. Cholecystokinin and anxiety. Bradwejn J, Vasar E, editors. Austin: RG Landes Company; pp. 33ā€“56.

    Google ScholarĀ 

  • Reidelberger RD, Varga G, Solomon TE. 1991. Effects of selective cholecystokinin antagonists L364,718 and L365,260 on food intake in rats. Peptides 12: 1215ā€“1221.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Revel L, Ferrari F, Makovec F, Rovati LC, Impicciatore M. 1992. Characterization of antigastrin activity in vivo of CR 2194, a new Rā€4ā€benzamidoā€5ā€oxoā€pentanoic acid derivative. Eur J Pharmacol 216: 217ā€“224.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Rodriguez RE, Sacristan MP. 1989. In vivo release of CCKā€8 from the dorsal horn of the rat: inhibition by DAGOL. FEBS Lett 250: 215ā€“217.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Roques BP. 2000. Novel approaches to targeting neuropeptide systems. Trends Pharmacol Sci 21: 475ā€“483.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Roques BP, Noble F. 1995. NIDA Research Monograph, Dual inhibitors of enkephalinā€degrading enzymes (neutral endopeptidase 24.11 and aminopeptidase N) as potential new medications in the management of pain and opioid addiction. Discovery of novel opioid medications, Rapaka RS, Sorer H, editors. pp. 104ā€“145.

    Google ScholarĀ 

  • Roques BP, Noble F. 1996. Association of enkephalin catabolism inhibitors and CCKā€B antagonists: a potential use in the management of pain and opioid addiction. Neurochem Res 21: 1395ā€“1409.

    ArticleĀ  Google ScholarĀ 

  • Roques BP, Noble F, DaugĆ© V, FourniĆ©ā€Zaluski MC, Beaumont A. 1993. Neutral endopeptidase 24.11: structure, inhibition, and experimental and clinical pharmacology. Pharmacol Rev 45: 87ā€“146.

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Rose C, Vargas F, Facchinetti P, Bourgeat P, Bambal RB, et al 1996. Characterization and inhibition of a cholecystokininā€inactivating serine peptidase. Nature (Lond) 380: 403ā€“409.

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Ruizā€Gayo M, DaugĆ© V, Menant I, BĆ©guĆ© D, Gacel G, et al 1985. Synthesis and biological activity of Boc(Nle28, Nle31)CCK27ā€33 a highly potent CCK8 analogue. Peptides 6: 415ā€“420.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  • Ruizā€Gayo M, Durieux C, FourniĆ©ā€Zaluski MC, Roques BP. 1992. Stimulation of Ī“ opioid receptors reduces the in vivo binding of the CCKā€B selective agonist [3H]pBC264: evidence for a physiological regulation of CCKergic systems by endogenous enkephalins. J Neurochem 59: 1805ā€“1811.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  • Saito AH, Sankaran H, Goldfine ID, Williams JA. 1980. Cholecystokinin receptors in the brain: characterization and distribution. Science 208: 1155ā€“1156.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Sanjuan J, Toirac I, Gonzalez JC, Leal C, Molto MD, et al 2004. A possible association between the CCKā€AR gene and persistent auditory hallucinations in schizophrenia. Eur Psychiatry 19: 349ā€“353.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Sankaran H, Goldfine ID, Deveney CW, Wong KY, Williams JA. 1980. Binding of cholecystokinin to high affinity receptors on isolated rat pancreatic acini. J Biol Chem 255: 1849ā€“1853.

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Schalling M, Friberg K, Seroogy K, Riederer P, Bird E, et al 1990. Analysis of expression of cholecystokinin in dopamine cells in the ventral mesencephalon of several species and in humans with schizophrenia. Proc Natl Acad Sci USA 87: 8427ā€“8431.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Sebret A, LĆ©na I, CrĆ©tĆ© D, Matsui T, Roques BP, et al 1999. Rat hippocampal neurons are critically involved in physiological improvement of memory processes induced by cholecystokininā€B receptor stimulation. J Neurosci 19: 7230ā€“7237.

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Seidah NG, Chretien M. 1999. Proprotein and prohormone convertases: a family of subtilases generating diverse bioactive polypeptides. Brain Res 848: 45ā€“62.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Sherrill RG, Berman JM, Birkemo L, Croom DK, Dezube M, et al 2001. 1,4ā€Benzodiazepine peripheral cholecystokinin (CCKā€A) receptor agonists. Bioorg Med Chem Lett 11: 1145ā€“1148.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Shiosaki K, Graig R, Lin CW, Barrett R, Miller T, et al 1990. Toward development of peptidomimetics: diketopiperazine templates for the Trpā€Met segment of CCK4. Peptides: chemistry, structure and biology. Proceedings of the 11th American Peptide Symposium. Rivier JE, Marshall GR, editors. Leiden: ESCOM; pp. 978ā€“980.

    Google ScholarĀ 

  • Shlik J, Aluoja A, Vasar V, Vasar E, Podar T, Bradwejn J. 1997. Effects of citalopram treatment of behavioural, cardiovascular, and neuroendocrine response to cholecystokinin tetrapeptide challenge in patients with panic disorder. J Psychiatry Neurosci 22: 332ā€“340.

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Shlik J, Koszycki D, Bradwejn J. 1998. Decrease in shortā€term memory function induced by CCKā€4 in healthy volunteers. Peptides 19: 969ā€“975.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Silventeā€Poirot S, Escrieut C, Wank SA. 1998. Role of the extracellular domains of the cholecystokinin receptor in agonist binding. Mol Pharmacol 54: 364ā€“371.

    PubMedĀ  Google ScholarĀ 

  • Simmons RD, Blosser JC, Rosamond JR. 1994. FPL 14294: a novel CCKā€8 agonist with potent intranasal anorectic activity in the rat. Pharmacol Biochem Behav 47: 701ā€“708.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Singh L, Field MJ, Hughes J, Menzies R, Oles RJ, et al 1991. The behavioural properties of CIā€988, a selective cholecystokininB receptor antagonist. Br J Pharmacol 104: 239ā€“245.

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Singh P, Owlia A, Espeijo R, Dai B. 1995. Novel gastrin receptors mediate mitogenic effects of gastrin processing intermediates of gastrin on Swiss 3T3 fibroblasts. J Biol Chem 270: 8429ā€“8438.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Smadja C, Maldonado R, Turcaud S, FourniĆ©ā€Zaluski MC, Roques BP. 1995. Opposite role of CCKā€A and CCKā€B receptors in the modulation of endogenous enkephalins antidepressantā€like effects. Psychopharmacology 128: 400ā€“408.

    ArticleĀ  Google ScholarĀ 

  • Smadja C, Ruiz F, Coric P, Fournieā€Zaluski MC, Roques BP, et al 1997. CCKā€B receptors in the limbic system modulate the antidepressantā€like effects induced by endogenous enkephalins. Psychopharmacology (Berl) 132: 227ā€“236.

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Smith GP, Gibbs J. 1992. The development and proof of the CCK hypothesis of satiety. Multiple cholecystokinin receptors in the CNS. Dourish CT, Cooper SJ, Iversen SD, Iversen LL, editors. Oxford: Oxford University Press; pp. 166ā€“182.

    Google ScholarĀ 

  • Tachikawa H, Harada S, Kawanishi Y, Okubo T, Shiraishi H. 1999. Novel polymorphism in the promoter and coding regions of the human cholecystokinin B receptor gene: an association analysis with schizophrenia. Am J Med Genet 88: 700ā€“704.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Tachikawa H, Harada S, Kawanishi Y, Okubo T, Shiraishi H. 2000. Novel polymorphisms of the human cholecystokinin A receptor gene: an association analysis with schizophrenia. Am J Med Genet 96: 141ā€“145.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Taghzouti K, LĆ©na I, Dellu F, Roques BP, DaugĆ© V, et al 1999. Cognitive enhancing effects in young and old rats of pBC 264, a selective CCKā€B receptor agonist. Psychopharmacology 143: 141ā€“149.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Takinami Y, Yuki H, Nishida A, Akuzawa S, Uchida A, et al 1997. YF476 is a new potent and selective gastrin/cholecystokininā€B receptor antagonist in vitro and in vivo. Aliment Pharmacol Ther 11: 113ā€“120.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Talkad VD, Fortune KP, Pollo DA, Shah GN, Wank SA, et al 1994. Direct demonstration of three different states of the pancreatic cholecystokinin receptor. Proc Natl Acad Sci USA 91: 1868ā€“1872.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Taniguchi T, Matsui T, Ito M, Murayama T, Tsukamoto T, et al 1994. Cholecystokininā€B/gastrin receptor signaling pathway involves tyrosine phosphorylations of p125FAK and p42MAP. Oncogene 9: 861ā€“867.

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Tejedorā€Real R, Mico JA, Maldonado R, Roques BP, Gibertā€Rahola J. 1993. Effect of a mixed (RB 38A) and selective (RB 38B) inhibitors of enkephalinā€degrading enzymes on a model of depression in the rat. Biol Psychiatry 34: 100ā€“107.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  • Tejedorā€Real R, Mico TP, Maldonado R, Roques BP, Gibertā€Rahola J. 1995. Implication of endogenous opioid system in the learned helplessness model of depression. Pharmacol Biochem Behav 52: 145ā€“152.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  • Tortorici V, Nogueira L, Salas R, Vanegas H. 2003. Involvement of local cholecystokinin in the tolerance induced by morphine microinjections into the periaqueductal gray of rats. Pain 102: 9ā€“16.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Trivedi BK, Padia JK, Holmes A, Rose S, Wright DS, et al 1998. Second generation ā€œpeptoidā€ CCKā€B receptor antagonists: identification and development of Nā€(adamantyloxycarbonyl)ā€aā€methylā€(R)ā€tryptophan derivative (CIā€1015) with an improved pharmacokinetic profile. J Med Chem 41: 38ā€“45.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Valverde O, Blommaert AGS, FourniĆ©ā€Zaluski MC, Roques BP, Maldonado R. 1995. Weak tolerance to the antinociceptive effect induced by the association of a peptidase inhibitor and a CCKā€B antagonist. Eur J Pharmacol 286: 79ā€“93.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Valverde O, Maldonado R, FourniĆ©ā€Zaluski MC, Roques BP. 1994. Cholecystokinin B antagonists strongly potentiate antinociception mediated by endogenous enkephalins. J Pharmacol Exp Ther 270: 77ā€“88.

    CASĀ  PubMedĀ  Google ScholarĀ 

  • van der Kooy D, Hunt SP, Steinbusch HW, Verhofstad AA. 1981. Separate populations of cholecystokinin and 5ā€hydroxytryptamineā€containing neuronal cells in the rat dorsal raphe, and their contribution to the ascending raphe projections. Neurosci Lett 26: 25ā€“30.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • van Vliet IM, Westenberg HG, Slaap BR, den Boer JA, Ho Pian KL. 1997. Anxiogenic effects of pentagastrin in patients with social phobia and healthy controls. Biol Psychiatry 42: 76ā€“78.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Vanderhaeghen JJ, Signeau JC, Gepts W. 1975. New peptide in the vertebrate CNS reacting with antigastrin antibodies. Nature (Lond) 257: 604ā€“605.

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Vanderschuren LJ, Kalivas PW. 2000. Alterations in dopaminergic and glutamatergic transmission in the induction and expression of behavioral sensitization: a critical review of preclinical studies. Psychopharmacology (Berl) 151: 99ā€“120.

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Verhage M, McMahon HT, Ghijsen WE, Boomsma F, Scholten G, Wiegant VM, Nicholls DG. 1991. Differential release of amino acids, neuropeptides, and catecholamines from isolated nerve terminals. Neuron 6: 517ā€“524.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Voigt MM, Wang RY, Westfall TC. 1985. The effects of cholecystokinin on the in vivo release of newly synthesized [3H]dopamine from the nucleus accumbens of the rat. J Neurosci 5: 2744ā€“2749.

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Wank SA. 1995. Cholecystokinin receptors. Am J Physiol 269: G628ā€“G646.

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Wank SA, Harkins RT, Jensen RT, Shapira H, de Weerth A, et al 1992. Purification, molecular cloning and functional expression of the cholecystokinin receptor from rat pancreas. Proc Natl Acad Sci USA 89: 3125ā€“3129.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Watkins LR, Kinscheck IB, Mayer DJ. 1984. Potentiation of opiate analgesia and apparent reversal of morphine tolerance by proglumide. Science 224: 395ā€“396.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Wei J, Hemmings GP. 1999. The CCKā€A receptor gene possibly associated with auditory hallucinations in schizophrenia. Eur Psychiatry 14: 67ā€“70.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Wettstein JG, Bueno L, Junien JL. 1994. CCK antagonists: pharmacology and therapeutic interest. Pharmacol Ther 62: 267ā€“282.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Whiteford HA, Stedman TJ, Welham J, Csernansky JG, Pond SM. 1992. Placeboā€controlled, doubleā€blind study of the effects of proglumide in the treatment of schizophrenia. J Clin Psychopharmacol 12: 337ā€“340.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Wiesenfeldā€Hallin Z, Lucas GA, Alster P, Xu XJ, Hƶkfelt T. 1999. Cholecystokinin/opioid interactions. Brain Res 848: 78ā€“89.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  • Willner P. 1990. Animal models of depression: an overview. Pharmacol Ther 45: 425ā€“455.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Wolkowitz OM, Gertz B, Weingartner H, Beccaria L, Thompson K, et al 1990. Hunger in humans induced by MKā€329, a specific peripheralā€type cholecystokinin receptor antagonist. Biol Psychiatry 28: 169ā€“173.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Wunderlich GR, DeSousa NJ, Vaccarino FJ. 2000. Cholecystokinin modulates both the development and the expression of behavioral sensitization to amphetamine in the rat. Psychopharmacology (Berl) 151: 283ā€“290.

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Wunderlich GR, Raymond R, De Sousa NJ, Nobrega JN, Vaccarino FJ. 2002. Decreased CCK(B) receptor binding in rat amygdala in animals demonstrating greater anxietyā€like behavior. Psychopharmacology (Berl) 164: 193ā€“199.

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Wunderlich GR, Rotzinger S, Bush DE, DeSousa NJ, Vaccarino FJ. 2004. Cholecystokinin modulation of locomotor behavior in rats is sensitized by chronic amphetamine and chronic restraint stress exposure. Brain Res 1001: 95ā€“107.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Yule DI, Tseng MJ, Williams JA, Logsdon CD. 1993. A cloned CCKā€A receptor transduces multiple signals in response to full and partial agonists. Am J Physiol 265: G999ā€“G1004.

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Zarbin MA, Innis RB, Wamsley JK, Snyder SH, Kuhar MJ. 1983. Autoradiographic localization of cholecystokinin receptors in rodent brain. J Neurosci 3: 877ā€“906.

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Zhang LJ, Lu XY, Han JS. 1992. Influences of cholecystokinin octapeptide on phosphoinositide turnover in neonatalā€rat brain cells. Biochem J 285: 847ā€“850.

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Zhou Y, Sun YH, Zhang ZW, Han JS. 1992. Accelerated expression of cholecystokinin gene in the brain of rats rendered tolerant to morphine. Neuroreport 3: 1121ā€“1123.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Zhu PC, Thuresonā€Klein A, Klein RL. 1986. Exocytosis from large dense cored vesicles outside the active synaptic zones of terminals within the trigeminal subnucleus caudalis: a possible mechanism for neuropeptide release. Neuroscience 19: 43ā€“54.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Zittel TT, Glatzle J, Kreis M, Starlinger M, Eichner M, et al 1999. Cā€Fos protein expression in the solitary tract correlates with cholecystokinin dose injected and food intake. Brain Res 848: 1ā€“11.

    ArticleĀ  Google ScholarĀ 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2006 Springer Science+Business Media, LLC

About this entry

Cite this entry

Noble, F., Roques, B.P. (2006). Cholecystokinin Peptides in Brain Function. In: Lajtha, A., Lim, R. (eds) Handbook of Neurochemistry and Molecular Neurobiology. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-30381-9_24

Download citation

Publish with us

Policies and ethics