Skip to main content

GFAP and Astrocyte Intermediate Filaments

  • Reference work entry
  • First Online:
Handbook of Neurochemistry and Molecular Neurobiology

Abstract:

This chapter focuses on the role of glial fibrillary acidic protein (GFAP) and other intermediate filament (IF) proteins expressed in astroglial cells under physiological situations and it also discusses their functions in the context of selected central nervous system (CNS) pathologies. We have paid particular attention to mouse genetic models, which in the last decade have significantly advanced our understanding of the function of IF proteins in many cell types including astroglial cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 249.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CNS:

central nervous system

ENU:

ethylnitrosourea

GFAP:

glial fibrillary acidic protein

IF:

intermediate filament

References

  • Alves JA, Barone P, Engelender S, Froes MM, Menezes JR. 2002. Initial stages of radial glia astrocytic transformation in the early postnatal anterior subventricular zone. J Neurobiol 52: 251–265.

    PubMed  Google Scholar 

  • Anderova M, Kubinova S, Mazel T, Chvatal A, Eliasson C, et al 2001. Effect of elevated K(+), hypotonic stress, and cortical spreading depression on astrocyte swelling in GFAP‐deficient mice. Glia 35: 189–203.

    CAS  PubMed  Google Scholar 

  • Angelides KJ, Smith KE, Takeda M. 1989. Assembly and exchange of intermediate filament proteins of neurons: neurofilaments are dynamic structures. J Cell Biol 108: 1495–1506.

    CAS  PubMed  Google Scholar 

  • Baba A. 1998. Role of endothelin B receptor signals in reactive astrocytes. Life Sci 62: 1711–1715.

    CAS  PubMed  Google Scholar 

  • Balcarek JM, Cowan NJ. 1985. Structure of the mouse glial fibrillary acidic protein gene: implications for the evolution of the intermediate filament multigene family. Nucleic Acids Res 13: 5527–5543.

    CAS  PubMed  Google Scholar 

  • Barresi V, Condorelli DF, Giuffrida Stella AM. 1999. GFAP gene methylation in different neural cell types from rat brain. Int J Dev Neurosci 17: 821–828.

    CAS  PubMed  Google Scholar 

  • Bernal SD, Stahel RA. 1985. Cytoskeleton‐associated proteins: their role as cellular integrators in the neoplastic process. Crit Rev Oncol Hematol 3: 191–204.

    CAS  PubMed  Google Scholar 

  • Bernier L, Colman DR, D'Eustachio P. 1988. Chromosomal locations of genes encoding 2′,3′ cyclic nucleotide 3′‐phosphodiesterase and glial fibrillary acidic protein in the mouse. J Neurosci Res 20: 497–504.

    CAS  PubMed  Google Scholar 

  • Besnard F, Brenner M, Nakatani Y, Chao R, Purohit HJ, et al 1991. Multiple interacting sites regulate astrocyte‐specific transcription of the human gene for glial fibrillary acidic protein. J Biol Chem 266: 18877–18883.

    CAS  PubMed  Google Scholar 

  • Bigner SH, McLendon RE, Al‐dosari N, Rasheed A. 1998. Vogelstein B, Kinsler KW, editors. The genetic basis of human cancer. McGraw‐Hill; New York: pp. 661–670.

    Google Scholar 

  • Brenner M. 1994. Structure and transcriptional regulation of the GFAP gene. Brain Pathol 4: 245–257.

    CAS  PubMed  Google Scholar 

  • Brenner M, Johnson AB, Boespflug‐Tanguy O, Rodriguez D, Goldman JE, et al 2001. Mutations in GFAP, encoding glial fibrillary acidic protein, are associated with Alexander disease. Nat Genet 27: 117–120.

    CAS  PubMed  Google Scholar 

  • Brenner M, Kisseberth WC, Su Y, Besnard F, Messing A. 1994. GFAP promoter directs astrocyte‐specific expression in transgenic mice. J Neurosci 14: 1030–1037.

    CAS  PubMed  Google Scholar 

  • Brenner M, Messing A. 1996. GFAP transgenic mice. Methods 10: 351–364.

    CAS  PubMed  Google Scholar 

  • Bush TG, Puvanachandra N, Horner CH, Polito A, Ostenfeld T, et al 1999. Leukocyte infiltration, neuronal degeneration, and neurite outgrowth after ablation of scar‐forming, reactive astrocytes in adult transgenic mice. Neuron 2: 297–308.

    Google Scholar 

  • Bushong EA, Martone ME, Ellisman MH. 2004. Maturation of astrocyte morphology and the establishment of astrocyte domains during postnatal hippocampal development. Int J Dev Neurosci 22: 73–86.

    PubMed  Google Scholar 

  • Bushong EA, Martone ME, Jones YZ, Ellisman MH. 2002. Protoplasmic astrocytes in CA1 stratum radiatum occupy separate anatomical domains. J Neurosci 22: 183–192.

    CAS  PubMed  Google Scholar 

  • Cantiello HF. 1997. Role of actin filament organization in cell volume and ion channel regulation. J Exp Zool 279: 425–435.

    CAS  PubMed  Google Scholar 

  • Cantiello HF, Prat AG, Bonventre JV, Cunningham CC, Hartwig JH, et al 1993. Actin‐binding protein contributes to cell volume regulatory ion channel activation in melanoma cells. J Biol Chem 268: 4596–4599.

    CAS  PubMed  Google Scholar 

  • Chanas‐Sacre G, Rogister B, Moonen G, Leprince P. 2000. Radial glia phenotype: origin, regulation, and transdifferentiation. J Neurosci Res 61: 357–363.

    PubMed  Google Scholar 

  • Chen WJ, Liem RK. 1994. Reexpression of glial fibrillary acidic protein rescues the ability of astrocytoma cells to form processes in response to neurons. J Cell Biol 127: 813–823.

    CAS  PubMed  Google Scholar 

  • Cho KS, Yang L, Lu B, Feng Ma H, Huang X, Pekny M, Chen DF. 2005. Re‐establishing the regenerative potential of central nervous system axons in postnatal mice. J Cell Sci 118: 863–872.

    CAS  PubMed  Google Scholar 

  • Choi BH, Lapham LW. 1980. Evolution of Bergmann glia in developing human fetal cerebellum: a Golgi, electron microscopic and immunofluorescent study. Brain Res 190: 369–383.

    CAS  PubMed  Google Scholar 

  • Chou YH, Helfand BT, Goldman RD. 2001. New horizons in cytoskeletal dynamics: transport of intermediate filaments along microtubule tracks. Curr Opin Cell Biol 13: 106–109.

    CAS  PubMed  Google Scholar 

  • Chou YH, Khuon S, Herrmann H, Goldman RD. 2003. Nestin promotes the phosphorylation‐dependent disassembly of vimentin intermediate filaments during mitosis. Mol Biol Cell 14: 1468–1478.

    CAS  PubMed  Google Scholar 

  • Colucci‐Guyon E, Gimenez YRM, Maurice T, Babinet C, Privat A. 1999. Cerebellar defect and impaired motor coordination in mice lacking vimentin. Glia 25: 33–43.

    PubMed  Google Scholar 

  • Colucci‐Guyon E, Portier MM, Dunia I, Paulin D, Pournin S, et al 1994. Mice lacking vimentin develop and reproduce without an obvious phenotype. Cell 79: 679–694.

    PubMed  Google Scholar 

  • Condorelli DF, Dell'Albani P, Conticello SG, Barresi V, Nicoletti VG, et al 1997. A neural‐specific hypomethylated domain in the 5′ flanking region of the glial fibrillary acidic protein gene. Dev Neurosci 19: 446–456.

    CAS  PubMed  Google Scholar 

  • Condorelli DF, Nicoletti VG, Barresi V, Caruso A, Conticello S, et al 1994. Tissue‐specific DNA methylation patterns of the rat glial fibrillary acidic protein gene. J Neurosci Res 39: 694–707.

    CAS  PubMed  Google Scholar 

  • Dahlstrand J, Lardelli M, Lendahl U. 1995. Nestin mRNA expression correlates with the central nervous system progenitor cell state in many, but not all, regions of developing central nervous system. Brain Res Dev Brain Res 84: 109–129.

    CAS  PubMed  Google Scholar 

  • Dahlstrand J, Zimmerman LB, McKay RD, Lendahl U. 1992. Characterization of the human nestin gene reveals a close evolutionary relationship to neurofilaments. J Cell Sci 103 (Pt. 2): 589–597.

    CAS  PubMed  Google Scholar 

  • deAzevedo LC, Fallet C, Moura‐Neto V, Daumas‐Duport C, Hedin‐Pereira C, et al 2003. Cortical radial glial cells in human fetuses: depth‐correlated transformation into astrocytes. J Neurobiol 55: 288–298.

    PubMed  Google Scholar 

  • Ding M, Eliasson C, Betsholtz C, Hamberger A, Pekny M. 1998. Altered taurine release following hypotonic stress in astrocytes from mice deficient for GFAP and vimentin. Brain Res Mol Brain Res 62: 77–81.

    CAS  PubMed  Google Scholar 

  • Doetsch F, Caille I, Lim DA, Garcia‐Verdugo JM, Alvarez‐Buylla A. 1999. Subventricular zone astrocytes are neural stem cells in the adult mammalian brain. Cell 97: 703–716.

    CAS  PubMed  Google Scholar 

  • Eckes B, Dogic D, Colucci‐Guyon E, Wang N, Maniotis A, et al 1998. Impaired mechanical stability, migration and contractile capacity in vimentin‐deficient fibroblasts. J Cell Sci 111 (Pt. 13): 1897–1907.

    CAS  PubMed  Google Scholar 

  • Eddleston M, Mucke L. 1993. Molecular profile of reactive astrocytes—implications for their role in neurologic disease. Neuroscience 54: 15–36.

    CAS  PubMed  Google Scholar 

  • Edwards MA, Yamamoto M, Caviness Jr. VS 1990. Organization of radial glia and related cells in the developing murine CNS. An analysis based upon a new monoclonal antibody marker. Neuroscience 36: 121–144.

    CAS  Google Scholar 

  • Eliasson C, Sahlgren C, Berthold CH, Stakeberg J, Celis JE, et al 1999. Intermediate filament protein partnership in astrocytes. J Biol Chem 274: 23996–24006.

    CAS  PubMed  Google Scholar 

  • Emsley JG, Arlotta P, Macklis JD. 2004. Star‐cross'd neurons: astroglial effects on neural repair in the adult mammalian CNS. Trends Neurosci 27: 238–240.

    CAS  PubMed  Google Scholar 

  • Eng LF, Ghirnikar RS, Lee YL. 2000. Glial fibrillary acidic protein: GFAP‐thirty‐one years (1969–2000). Neurochem Res 25: 1439–1451.

    CAS  PubMed  Google Scholar 

  • Eng LF, Vanderhaeghen JJ, Bignami A, Gerstl B. 1971. An acidic protein isolated from fibrous astrocytes. Brain Res 28: 351–354.

    CAS  PubMed  Google Scholar 

  • Faulkner JR, Herrmann JE, Woo MJ, Tansey KE, Doan NB, et al 2004. Reactive astrocytes protect tissue and preserve function after spinal cord injury. J Neurosci 24: 2143–2155.

    CAS  PubMed  Google Scholar 

  • Ferrari S, Battini R, Kaczmarek L, Rittling S, Calabretta B, et al 1986. Coding sequence and growth regulation of the human vimentin gene. Mol Cell Biol 6: 3614–3620.

    CAS  PubMed  Google Scholar 

  • Frisen J, Johansson CB, Torok C, Risling M, Lendahl U. 1995. Rapid, widespread, and longlasting induction of nestin contributes to the generation of glial scar tissue after CNS injury. J Cell Biol 131: 453–464.

    CAS  PubMed  Google Scholar 

  • Fuchs E, Cleveland DW. 1998. A structural scaffolding of intermediate filaments in health and disease. Science 279: 514–519.

    CAS  PubMed  Google Scholar 

  • Goldman RD, Chou YH, Prahlad V, Yoon M. 1999. Intermediate filaments: dynamic processes regulating their assembly, motility, and interactions with other cytoskeletal systems. FASEB J 13 (Suppl. 2): S261–S265.

    CAS  PubMed  Google Scholar 

  • Gomi H, Yokoyama T, Fujimoto K, Ikeda T, Katoh A, et al 1995. Mice devoid of the glial fibrillary acidic protein develop normally and are susceptible to scrapie prions. Neuron 14: 29–41.

    CAS  PubMed  Google Scholar 

  • Gotz M, Hartfuss E, Malatesta P. 2002. Radial glial cells as neuronal precursors: a new perspective on the correlation of morphology and lineage restriction in the developing cerebral cortex of mice. Brain Res Bull 57: 777–788.

    PubMed  Google Scholar 

  • Hara A, Sakai N, Yamada H, Niikawa S, Ohno T, et al 1991. Proliferative assessment of GFAP‐positive and GFAP‐negative glioma cells by nucleolar organizer region staining. Surg Neurol 36: 190–194.

    CAS  PubMed  Google Scholar 

  • Helfand BT, Loomis P, Yoon M, Goldman RD. 2003. Rapid transport of neural intermediate filament protein. J Cell Sci 116: 2345–2359.

    CAS  PubMed  Google Scholar 

  • Hernandez MR, Agapova OA, Yang P, Salvador‐Silva M, Ricard CS, et al 2002. Differential gene expression in astrocytes from human normal and glaucomatous optic nerve head analyzed by cDNA microarray. Glia 38: 45–64.

    PubMed  Google Scholar 

  • Herrmann H, Aebi U. 2000. Intermediate filaments and their associates: multi‐talented structural elements specifying cytoarchitecture and cytodynamics. Curr Opin Cell Biol 12: 79–90.

    CAS  PubMed  Google Scholar 

  • Herrmann H, Aebi U. 2004. Intermediate filaments: Molecular structure, assembly mechanism, and integration into functionally distinct intracellular scaffolds. Annu Rev Biochem 73: 749–789.

    CAS  PubMed  Google Scholar 

  • Herrmann H, Hesse M, Reichenzeller M, Aebi U, Magin TM. 2003. Functional complexity of intermediate filament cytoskeletons: from structure to assembly to gene ablation. Int Rev Cytol 223: 83–175.

    CAS  PubMed  Google Scholar 

  • Hirako Y, Yamakawa H, Tsujimura Y, Nishizawa Y, Okumura M, et al 2003. Characterization of mammalian synemin, an intermediate filament protein present in all four classes of muscle cells and some neuroglial cells: co‐localization and interaction with type III intermediate filament proteins and keratins. Cell Tissue Res 313: 195–207.

    CAS  PubMed  Google Scholar 

  • Hockfield S, McKay RD. 1985. Identification of major cell classes in the developing mammalian nervous system. J Neurosci 5: 3310–3328.

    CAS  PubMed  Google Scholar 

  • Hoffman E. 1991. Volume regulation in cultured cells. Academic Press; New York: pp. 124–180.

    Google Scholar 

  • Holwell TA, Schweitzer SC, Evans RM. 1997. Tetracycline regulated expression of vimentin in fibroblasts derived from vimentin null mice. J Cell Sci 110: 1947–1956.

    CAS  PubMed  Google Scholar 

  • Hughes EG, Maguire JL, McMinn MT, Scholz RE, Sutherland ML. 2004. Loss of glial fibrillary acidic protein results in decreased glutamate transport and inhibition of PKA‐induced EAAT2 cell surface trafficking. Brain Res Mol Brain Res 124: 114–123.

    CAS  PubMed  Google Scholar 

  • Imura T, Kornblum HI, Sofroniew MV. 2003. The predominant neural stem cell isolated from postnatal and adult forebrain but not early embryonic forebrain expresses GFAP. J Neurosci 23: 2824–2832.

    CAS  PubMed  Google Scholar 

  • Inagaki M, Gonda Y, Nishizawa K, Kitamura S, Sato C, et al 1990. Phosphorylation sites linked to glial filament disassembly in vitro locate in a non‐alpha‐helical head domain. J Biol Chem 265: 4722–4729.

    CAS  PubMed  Google Scholar 

  • Inagaki M, Nakamura Y, Takeda M, Nishimura T, Inagaki N. 1994. Glial fibrillary acidic protein: dynamic property and regulation by phosphorylation. Brain Pathol 4: 239–243.

    CAS  PubMed  Google Scholar 

  • Ishikawa N, Takemura M, Koyama Y, Shigenaga Y, Okada T, et al 1997. Endothelins promote the activation of astrocytes in rat neostriatum through ET(B) receptors. Eur J Neurosci 9: 895–901.

    CAS  PubMed  Google Scholar 

  • Izmailova ES, Wieczorek E, Perkins EB, Zehner ZE. 1999. A GC‐box is required for expression of the human vimentin gene. Gene 235: 69–75.

    CAS  PubMed  Google Scholar 

  • Jacque CM, Kujas M, Poreau A, Raoul M, Collier P, et al 1979. GFA and S 100 protein levels as an index for malignancy in human gliomas and neurinomas. J Natl Cancer Inst 62: 479–483.

    CAS  PubMed  Google Scholar 

  • Jacque CM, Vinner C, Kujas M, Raoul M, Racadot J, et al 1978. Determination of glial fibrillary acidic protein (GFAP) in human brain tumors. J Neurol Sci 35: 147–155.

    CAS  PubMed  Google Scholar 

  • Johansson CB, Lothian C, Molin M, Okano H, Lendahl U. 2002. Nestin enhancer requirements for expression in normal and injured adult CNS. J Neurosci Res 69: 784–794.

    CAS  PubMed  Google Scholar 

  • Johansson CB, Momma S, Clarke DL, Risling M, Lendahl U, et al 1999. Identification of a neural stem cell in the adult mammalian central nervous system. Cell 96: 25–34.

    CAS  PubMed  Google Scholar 

  • Johnson WB, Ruppe MD, Rockenstein EM, Price J, Sarthy VP, et al 1995. Indicator expression directed by regulatory sequences of the glial fibrillary acidic protein (GFAP) gene: in vivo comparison of distinct GFAP‐lacZ transgenes. Glia 13: 174–184.

    CAS  PubMed  Google Scholar 

  • Josephson R, Muller T, Pickel J, Okabe S, Reynolds K, et al 1998. POU transcription factors control expression of CNS stem cell‐specific genes. Development 125: 3087–3100.

    CAS  PubMed  Google Scholar 

  • Kachinsky AM, Dominov JA, Miller JB. 1994. Myogenesis and the intermediate filament protein, nestin. Dev Biol 165: 216–228.

    CAS  PubMed  Google Scholar 

  • Kajiwara K, Orita T, Nishizaki T, Kamiryo T, Nakayama H, et al 1992. Glial fibrillary acidic protein (GFAP) expression and nucleolar organizer regions (NORs) in human gliomas. Brain Res 572: 314–318.

    CAS  PubMed  Google Scholar 

  • Kalman M, Ajtai BM. 2001. A comparison of intermediate filament markers for presumptive astroglia in the developing rat neocortex: immunostaining against nestin reveals more detail, than GFAP or vimentin. Int J Dev Neurosci 19: 101–108.

    CAS  PubMed  Google Scholar 

  • Kalman M, Szekely AD, Csillag A. 1998. Distribution of glial fibrillary acidic protein and vimentin‐immunopositive elements in the developing chicken brain from hatch to adulthood. Anat Embryol (Berl) 198: 213–235.

    CAS  Google Scholar 

  • Kaneko R, Sueoka N. 1993. Tissue‐specific versus cell type‐specific expression of the glial fibrillary acidic protein. Proc Natl Acad Sci USA 90: 4698–4702.

    CAS  PubMed  Google Scholar 

  • Kimelberg HK. 1991. Swelling and volume control in brain astroglial cells. Springer; New York: pp. 81–117.

    Google Scholar 

  • Kinouchi R, Takeda M, Yang L, Wilhelmsson U, Lundkvist A, et al 2003. Robust neural integration from retinal transplants in mice deficient in GFAP and vimentin. Nat Neurosci 6: 863–868.

    CAS  PubMed  Google Scholar 

  • Kosako H, Amano M, Yanagida M, Tanabe K, Nishi Y, et al 1997. Phosphorylation of glial fibrillary acidic protein at the same sites by cleavage furrow kinase and Rho‐associated kinase. J Biol Chem 272: 10333–10336.

    CAS  PubMed  Google Scholar 

  • Koyama Y, Takemura M, Fujiki K, Ishikawa N, Shigenaga Y, et al 1999. BQ788, an endothelin ET(B) receptor antagonist, attenuates stab wound injury‐induced reactive astrocytes in rat brain. Glia 26: 268–271.

    CAS  PubMed  Google Scholar 

  • Kryszke MH, Vicart P. 1998. Regulation of the expression of the human vimentin gene: application to cellular immortalization. Pathol Biol (Paris) 46: 39–45.

    CAS  Google Scholar 

  • Laywell ED, Rakic P, Kukekov VG, Holland EC, Steindler DA. 2000. Identification of a multipotent astrocytic stem cell in the immature and adult mouse brain. Proc Natl Acad Sci USA 97: 13883–13888.

    CAS  PubMed  Google Scholar 

  • Lendahl U, Zimmerman LB, McKay RD. 1990. CNS stem cells express a new class of intermediate filament protein. Cell 60: 585–595.

    CAS  PubMed  Google Scholar 

  • Leonard JR, D'Sa C, Klocke BJ, Roth KA. 2001. Neural precursor cell apoptosis and glial tumorigenesis following transplacental ethyl‐nitrosourea exposure. Oncogene 20: 8281–8286.

    CAS  PubMed  Google Scholar 

  • Lepekhin EA, Eliasson C, Berthold CH, Berezin V, Bock E, et al 2001. Intermediate filaments regulate astrocyte motility. J Neurochem 79: 617–625.

    CAS  PubMed  Google Scholar 

  • Levitt P, Rakic P. 1980. Immunoperoxidase localization of glial fibrillary acidic protein in radial glial cells and astrocytes of the developing rhesus monkey brain. J Comp Neurol 193: 815–840.

    CAS  PubMed  Google Scholar 

  • Li R, Messing A, Goldman JE, Brenner M. 2002. GFAP mutations in Alexander disease. Int J Dev Neurosci 20: 259–268.

    PubMed  Google Scholar 

  • Liedtke W, Edelmann W, Bieri PL, Chiu FC, Cowan NJ, et al 1996. GFAP is necessary for the integrity of CNS white matter architecture and long‐term maintenance of myelination. Neuron 17: 607–615.

    CAS  PubMed  Google Scholar 

  • Liedtke W, Edelmann W, Chiu FC, Kucherlapati R, Raine CS. 1998. Experimental autoimmune encephalomyelitis in mice lacking glial fibrillary acidic protein is characterized by a more severe clinical course and an infiltrative central nervous system lesion. Am J Pathol 152: 251–259.

    CAS  PubMed  Google Scholar 

  • Lilienbaum A, Paulin D. 1993. Activation of the human vimentin gene by the Tax human T‐cell leukemia virus. I. Mechanisms of regulation by the NF‐kappa B transcription factor. J Biol Chem 268: 2180–2188.

    CAS  Google Scholar 

  • Lothian C, Lendahl U. 1997. An evolutionarily conserved region in the second intron of the human nestin gene directs gene expression to CNS progenitor cells and to early neural crest cells. Eur J Neurosci 9: 452–462.

    CAS  PubMed  Google Scholar 

  • Lothian C, Prakash N, Lendahl U, Wahlstrom GM. 1999. Identification of both general and region‐specific embryonic CNS enhancer elements in the nestin promoter. Exp Cell Res 248: 509–519.

    CAS  PubMed  Google Scholar 

  • Lundkvist A, Reichenbach A, Betsholtz C, Carmeliet P, Wolburg H, et al 2004. Under stress, the absence of intermediate filaments from Muller cells in the retina has structural and functional consequences. J Cell Sci 117: 3481–3488.

    CAS  PubMed  Google Scholar 

  • Masood K, Besnard F, Su Y, Brenner M. 1993. Analysis of a segment of the human glial fibrillary acidic protein gene that directs astrocyte‐specific transcription. J Neurochem 61: 160–166.

    CAS  PubMed  Google Scholar 

  • Matsuoka Y, Nishizawa K, Yano T, Shibata M, Ando S, et al 1992. Two different protein kinases act on a different time schedule as glial filament kinases during mitosis. Embo J 11: 2895–2902.

    CAS  PubMed  Google Scholar 

  • McCall MA, Gregg RG, Behringer RR, Brenner M, Delaney CL, et al 1996. Targeted deletion in astrocyte intermediate filament (Gfap) alters neuronal physiology. Proc Natl Acad Sci USA 93: 6361–6366.

    CAS  PubMed  Google Scholar 

  • Menet V, Gimenez YRM, Chauvet N, Drian MJ, Lannoy J, Colucci‐Guyon E, Privat A. 2001. Inactivation of the glial fibrillary acidic protein gene, but not that of vimentin, improves neuronal survival and neurite growth by modifying adhesion molecule expression. J Neurosci 21: 6147–6158.

    CAS  PubMed  Google Scholar 

  • Menet V, Gimenez YRM, Sandillon F, Privat A. 2000. GFAP null astrocytes are a favorable substrate for neuronal survival and neurite growth. Glia 31: 267–272.

    CAS  PubMed  Google Scholar 

  • Menet V, Prieto M, Privat A, Gimenez YRM. 2003. Axonal plasticity and functional recovery after spinal cord injury in mice deficient in both glial fibrillary acidic protein and vimentin genes. Proc Natl Acad Sci USA 100: 8999–9004.

    CAS  PubMed  Google Scholar 

  • Messing A, Brenner M. 2003a. Alexander disease: GFAP mutations unify young and old. Lancet Neurol 2: 75.

    Google Scholar 

  • Messing A, Brenner M. 2003b. GFAP: functional implications gleaned from studies of genetically engineered mice. Glia 43: 87–90.

    Google Scholar 

  • Messing A, Head MW, Galles K, Galbreath EJ, Goldman JE, et al 1998. Fatal encephalopathy with astrocyte inclusions in GFAP transgenic mice. Am J Pathol 152: 391–398.

    CAS  PubMed  Google Scholar 

  • Miller RK, Vikstrom K, Goldman RD. 1991. Keratin incorporation into intermediate filament networks is a rapid process. J Cell Biol 113: 843–855.

    CAS  PubMed  Google Scholar 

  • Miura M, Tamura T, Mikoshiba K. 1990. Cell‐specific expression of the mouse glial fibrillary acidic protein gene: identification of the cis‐ and trans‐acting promoter elements for astrocyte‐specific expression. J Neurochem 55: 1180–1188.

    CAS  PubMed  Google Scholar 

  • Moran J, Maar T, Pasantes‐Morales H. 1994. Cell volume regulation in taurine deficient cultured astrocytes. Adv Exp Med Biol 359: 361–367.

    CAS  PubMed  Google Scholar 

  • Moran J, Sabanero M, Meza I, Pasantes‐Morales H. 1996. Changes of actin cytoskeleton during swelling and regulatory volume decrease in cultured astrocytes. Am J Physiol 271: C1901–C1907.

    CAS  PubMed  Google Scholar 

  • Morshead CM, Garcia AD, Sofroniew MV, van Der Kooy D. 2003. The ablation of glial fibrillary acidic protein‐positive cells from the adult central nervous system results in the loss of forebrain neural stem cells but not retinal stem cells. Eur J Neurosci 18: 76–84.

    PubMed  Google Scholar 

  • Moura‐Neto V, Kryszke MH, Li Z, Vicart P, Lilienbaum A, et al 1996. A 28‐bp negative element with multiple factor‐binding activity controls expression of the vimentin‐encoding gene. Gene 168: 261–266.

    PubMed  Google Scholar 

  • Nakamura Y, Takeda M, Aimoto S, Hojo H, Takao T, et al 1992. Assembly regulatory domain of glial fibrillary acidic protein. A single phosphorylation diminishes its assembly‐accelerating property. J Biol Chem 267: 23269–23274.

    CAS  Google Scholar 

  • Nakamura Y, Takeda M, Angelides KJ, Tada K, Hariguchi S, et al 1991. Assembly, disassembly, and exchange of glial fibrillary acidic protein. Glia 4: 101–110.

    CAS  PubMed  Google Scholar 

  • Nakamura Y, Takeda M, Nishimura T. 1996. Dynamics of bovine glial fibrillary acidic protein phosphorylation. Neurosci Lett 205: 91–94.

    CAS  PubMed  Google Scholar 

  • Namekawa M, Takiyama Y, Aoki Y, Takayashiki N, Sakoe K, et al 2002. Identification of GFAP gene mutation in hereditary adult‐onset Alexander's disease. Ann Neurol 52: 779–785.

    CAS  PubMed  Google Scholar 

  • Nawashiro H, Messing A, Azzam N, Brenner M. 1998. Mice lacking GFAP are hypersensitive to traumatic cerebrospinal injury. Neuroreport 9: 1691–1696.

    CAS  PubMed  Google Scholar 

  • Nielsen AL, Jorgensen AL. 2003. Structural and functional characterization of the zebrafish gene for glial fibrillary acidic protein, GFAP. Gene 310: 123–132.

    CAS  PubMed  Google Scholar 

  • Nishizawa K, Yano T, Shibata M, Ando S, Saga S, et al 1991. Specific localization of phosphointermediate filament protein in the constricted area of dividing cells. J Biol Chem 266: 3074–3079.

    CAS  PubMed  Google Scholar 

  • Oda H, Zhang S, Tsurutani N, Shimizu S, Nakatsuru Y, et al 1997. Loss of p53 is an early event in induction of brain tumors in mice by transplacental carcinogen exposure. Cancer Res 57: 646–650.

    CAS  PubMed  Google Scholar 

  • Okabe M, Ikawa M, Kominami K, Nakanishi T, Nishimune Y. 1997. ‘Green mice’ as a source of ubiquitous green cells. FEBS Lett 407: 313–319.

    CAS  PubMed  Google Scholar 

  • Okamoto Y, Mitsuyama H, Jonosono M, Hirata K, Arimura K, et al 2002. Autosomal dominant palatal myoclonus and spinal cord atrophy. J Neurol Sci 195: 71–76.

    PubMed  Google Scholar 

  • Pasantes‐Morales H, Moran J, Schousboe A. 1990. Volume‐sensitive release of taurine from cultured astrocytes: properties and mechanism. Glia 3: 427–432.

    PubMed  Google Scholar 

  • Paulin D, Lilienbaum A, Duprey P, Li Z, Vicart P. 1990. Regulatory elements of the human vimentin gene: activation during proliferation. Reprod Nutr Dev 30: 423–429.

    CAS  PubMed  Google Scholar 

  • Pekny M. 2001. Astrocytic intermediate filaments: lessons from GFAP and vimentin knock‐out mice. Prog Brain Res 132: 23–30.

    CAS  PubMed  Google Scholar 

  • Pekny M, Eliasson C, Chien CL, Kindblom LG, Liem R, et al 1998a. GFAP‐deficient astrocytes are capable of stellation in vitro when cocultured with neurons and exhibit a reduced amount of intermediate filaments and an increased cell saturation density. Exp Cell Res 239: 332–343.

    CAS  Google Scholar 

  • Pekny M, Eliasson C, Siushansian R, Ding M, Dixon SJ, et al 1999a. The impact of genetic removal of GFAP and/or vimentin on glutamine levels and transport of glucose and ascorbate in astrocytes. Neurochem Res 24: 1357–1362.

    CAS  Google Scholar 

  • Pekny M, Johansson CB, Eliasson C, Stakeberg J, Wallen A, et al 1999b. Abnormal reaction to central nervous system injury in mice lacking glial fibrillary acidic protein and vimentin. J Cell Biol 145: 503–514.

    CAS  Google Scholar 

  • Pekny M, Leveen P, Pekna M, Eliasson C, Berthold CH, et al 1995. Mice lacking glial fibrillary acidic protein display astrocytes devoid of intermediate filaments but develop and reproduce normally. EMBO J 14: 1590–1598.

    CAS  PubMed  Google Scholar 

  • Pekny M, Pekna M, Wilhelmsson U, Chen DF. 2004. Response to Quinlan and Nilsson: astroglia sitting at the controls? Trends Neurosci 27: 243–244.

    CAS  PubMed  Google Scholar 

  • Pekny M, Stanness KA, Eliasson C, Betsholtz C, Janigro D. 1998b. Impaired induction of blood–brain barrier properties in aortic endothelial cells by astrocytes from GFAP‐deficient mice. Glia 22: 390–400.

    CAS  Google Scholar 

  • Peters CM, Rogers SD, Pomonis JD, Egnazyck GF, Keyser CP, et al 2003. Endothelin receptor expression in the normal and injured spinal cord: potential involvement in injury‐induced ischemia and gliosis. Exp Neurol 180: 1–13.

    CAS  PubMed  Google Scholar 

  • Pieper FR, Van de Klundert FA, Raats JM, Henderik JB, Schaart G, et al 1992. Regulation of vimentin expression in cultured epithelial cells. Eur J Biochem 210: 509–519.

    CAS  PubMed  Google Scholar 

  • Pieper FR, Slobbe RL, Ramaekers FC, Cuypers HT, Bloemendal H. 1987. Upstream regions of the hamster desmin and vimentin genes regulate expression during in vitro myogenesis. Embo J 6: 3611–3618.

    CAS  PubMed  Google Scholar 

  • Pixley SK, Kobayashi Y, de Vellis J. 1984. A monoclonal antibody against vimentin: characterization. Brain Res 317: 185–199.

    CAS  PubMed  Google Scholar 

  • Pixley SK, de Vellis J. 1984. Transition between immature radial glia and mature astrocytes studied with a monoclonal antibody to vimentin. Brain Res 317: 201–209.

    CAS  PubMed  Google Scholar 

  • Prahlad V, Yoon M, Moir RD, Vale R D, Goldman RD. 1998. Rapid movements of vimentin on microtubule tracks: kinesin‐dependent assembly of intermediate filament networks. J Cell Biol 143: 159–170.

    CAS  PubMed  Google Scholar 

  • Quinlan R, Nilsson M. 2004. Reloading the retina by modifying the glial matrix. Trends Neurosci 27: 241–242.

    CAS  PubMed  Google Scholar 

  • Reeves SA, Helman LJ, Allison A, Israel MA. 1989. Molecular cloning and primary structure of human glial fibrillary acidic protein. Proc Natl Acad Sci USA 86: 5178–5182.

    CAS  PubMed  Google Scholar 

  • Renner W, Franke WW, Schmid E, Geisler N, Weber K, et al 1981. Reconstitution of intermediate‐sized filaments from denatured monomeric vimentin. J Mol Biol 149: 285–306.

    CAS  PubMed  Google Scholar 

  • Riol H, Fages C, Tardy M. 1992. Transcriptional regulation of glial fibrillary acidic protein (GFAP)‐mRNA expression during postnatal development of mouse brain. J Neurosci Res 32: 79–85.

    CAS  PubMed  Google Scholar 

  • Rueger DC, Huston JS, Dahl D, Bignami A. 1979. Formation of 100 A filaments from purified glial fibrillary acidic protein in vitro. J Mol Biol 135: 53–68.

    CAS  PubMed  Google Scholar 

  • Rutka JT, Hubbard SL, Fukuyama K, Matsuzawa K, Dirks PB, et al 1994. Effects of antisense glial fibrillary acidic protein complementary DNA on the growth, invasion, and adhesion of human astrocytoma cells. Cancer Res 54: 3267–3272.

    CAS  PubMed  Google Scholar 

  • Rutka JT, Smith SL. 1993. Transfection of human astrocytoma cells with glial fibrillary acidic protein complementary DNA: analysis of expression, proliferation, and tumorigenicity. Cancer Res 53: 3624–3631.

    CAS  PubMed  Google Scholar 

  • Sanchez‐Olea R, Moran J, Schousboe A, Pasantes‐Morales H. 1991. Hyposmolarity‐activated fluxes of taurine in astrocytes are mediated by diffusion. Neurosci Lett 130: 233–236.

    PubMed  Google Scholar 

  • Sancho‐Tello M, Valles S, Montoliu C, Renau‐Piqueras J, Guerri C. 1995. Developmental pattern of GFAP and vimentin gene expression in rat brain and in radial glial cultures. Glia 15: 157–166.

    PubMed  Google Scholar 

  • Sarid J. 1991. Identification of a cis‐acting positive regulatory element of the glial fibrillary acidic protein gene. J Neurosci Res 28: 217–228.

    CAS  PubMed  Google Scholar 

  • Sarkar S, Cowan NJ. 1991. Regulation of expression of glial filament acidic protein. J Cell Sci Suppl 15: 97–102.

    CAS  PubMed  Google Scholar 

  • Sejersen T, Lendahl U. 1993. Transient expression of the intermediate filament nestin during skeletal muscle development. J Cell Sci 106(Pt. 4): 1291–1300.

    CAS  PubMed  Google Scholar 

  • Shaw G, Osborn M, Weber K. 1981. An immunofluorescence microscopical study of the neurofilament triplet proteins, vimentin and glial fibrillary acidic protein within the adult rat brain. Eur J Cell Biol 26: 68–82.

    CAS  PubMed  Google Scholar 

  • Shibuki K, Gomi H, Chen L, Bao S, Kim JJ, et al 1996. Deficient cerebellar long‐term depression, impaired eyeblink conditioning, and normal motor coordination in GFAP mutant mice. Neuron 16: 587–599.

    CAS  PubMed  Google Scholar 

  • Smith LE, Wesolowski E, McLellan A, Kostyk SK, D'Amato R, et al 1994. Oxygen‐induced retinopathy in the mouse. Invest Ophthalmol Vis Sci 35: 101–111.

    CAS  PubMed  Google Scholar 

  • Smith QR. 2003. A review of blood–brain barrier transport techniques. Methods Mol Med 89: 193–208.

    CAS  PubMed  Google Scholar 

  • Sommers CL, Skerker JM, Chrysogelos SA, Bosseler M, Gelmann EP. 1994. Regulation of vimentin gene transcription in human breast cancer cell lines. Cell Growth Differ 5: 839–846.

    CAS  PubMed  Google Scholar 

  • Song H, Stevens CF, Gage FH. 2002. Astroglia induce neurogenesis from adult neural stem cells. Nature 417: 39–44.

    CAS  PubMed  Google Scholar 

  • Song MR, Ghosh A. 2004. FGF2‐induced chromatin remodeling regulates CNTF‐mediated gene expression and astrocyte differentiation. Nat Neurosci 7: 229–235.

    PubMed  Google Scholar 

  • Steinert PM, Parry DA. 1985. Intermediate filaments: conformity and diversity of expression and structure. Annu Rev Cell Biol 1: 41–65.

    CAS  PubMed  Google Scholar 

  • Steinert PM, Roop DR. 1988. Molecular and cellular biology of intermediate filaments. Annu Rev Biochem 57: 593–625.

    CAS  PubMed  Google Scholar 

  • Su M, Hu H, Lee Y, d'Azzo A, Messing A, et al 2004. Expression specificity of GFAP transgenes. Neurochem Res 29: 2075–2093.

    CAS  PubMed  Google Scholar 

  • Sugawara K, Kurihara H, Negishi M, Saito N, Nakazato Y, et al 2002. Nestin as a marker for proliferative endothelium in gliomas. Lab Invest 82: 345–351.

    CAS  PubMed  Google Scholar 

  • Sultana S, Sernett SW, Bellin RM, Robson RM, Skalli O. 2000. Intermediate filament protein synemin is transiently expressed in a subset of astrocytes during development. Glia 30: 143–153.

    CAS  PubMed  Google Scholar 

  • Takemura M, Gomi H, Colucci‐Guyon E, Itohara S. 2002a. Protective role of phosphorylation in turnover of glial fibrillary acidic protein in mice. J Neurosci 22: 6972–6979.

    CAS  Google Scholar 

  • Takemura M, Nishiyama H, Itohara S. 2002b. Distribution of phosphorylated glial fibrillary acidic protein in the mouse central nervous system. Genes Cells 7: 295–307.

    CAS  Google Scholar 

  • Takizawa T, Nakashima K, Namihira M, Ochiai W, Uemura A, et al 2001. DNA methylation is a critical cell‐intrinsic determinant of astrocyte differentiation in the fetal brain. Dev Cell 1: 749–758.

    CAS  PubMed  Google Scholar 

  • Tanaka H, Katoh A, Oguro K, Shimazaki K, Gomi H, et al 2002. Disturbance of hippocampal long‐term potentiation after transient ischemia in GFAP deficient mice. J Neurosci Res 67: 11–20.

    CAS  PubMed  Google Scholar 

  • Tardy M, Fages C, Riol H, Le Prince G, Rataboul P, et al 1989. Developmental expression of the glial fibrillary acidic protein mRNA in the central nervous system and in cultured astrocytes. J Neurochem 52: 162–167.

    CAS  PubMed  Google Scholar 

  • Tascos NA, Parr J, Gonatas NK. 1982. Immunocytochemical study of the glial fibrillary acidic protein in human neoplasms of the central nervous system. Hum Pathol 13: 454–458.

    CAS  PubMed  Google Scholar 

  • Tatzelt J, Maeda N, Pekny M, Yang SL, Betsholtz C, et al 1996. Scrapie in mice deficient in apolipoprotein E or glial fibrillary acidic protein. Neurology 47: 449–453.

    CAS  PubMed  Google Scholar 

  • Teter B, Osterburg HH, Anderson CP, Finch CE. 1994. Methylation of the rat glial fibrillary acidic protein gene shows tissue‐specific domains. J Neurosci Res 39: 680–693.

    CAS  PubMed  Google Scholar 

  • Teter B, Rozovsky I, Krohn K, Anderson C, Osterburg H, et al 1996. Methylation of the glial fibrillary acidic protein gene shows novel biphasic changes during brain development. Glia 17: 195–205.

    CAS  PubMed  Google Scholar 

  • Toda M, Miura M, Asou H, Toya S, Uyemura K. 1994. Cell growth suppression of astrocytoma C6 cells by glial fibrillary acidic protein cDNA transfection. J Neurochem 63: 1975–1978.

    CAS  PubMed  Google Scholar 

  • Tsujimura K, Tanaka J, Ando S, Matsuoka Y, Kusubata M, et al 1994. Identification of phosphorylation sites on glial fibrillary acidic protein for cdc2 kinase and Ca(2+)‐calmodulin‐dependent protein kinase II. J Biochem (Tokyo) 116: 426–434.

    CAS  Google Scholar 

  • Turner DA, Buhl EH, Hailer NP, Nitsch R. 1998. Morphological features of the entorhinal‐hippocampal connection. Prog Neurobiol 55: 537–562.

    CAS  PubMed  Google Scholar 

  • van de Klundert FA, van Eldik GJ, Pieper FR, Jansen HJ, Bloemendal H. 1992. Identification of two silencers flanking an AP‐1 enhancer in the vimentin promoter. Gene 122: 337–343.

    CAS  PubMed  Google Scholar 

  • van der Meulen JD, Houthoff HJ, Ebels EJ. 1978. Glial fibrillary acidic protein in human gliomas. Neuropathol Appl Neurobiol 4: 177–190.

    CAS  PubMed  Google Scholar 

  • Velasco ME, Dahl D, Roessmann U, Gambetti P. 1980. Immunohistochemical localization of glial fibrillary acidic protein in human glial neoplasms. Cancer 45: 484–494.

    CAS  PubMed  Google Scholar 

  • Vikstrom KL, Lim SS, Goldman RD, Borisy GG. 1992. Steady state dynamics of intermediate filament networks. J Cell Biol 118: 121–129.

    CAS  PubMed  Google Scholar 

  • Vitarella D, DiRisio DJ, Kimelberg HK, Aschner M. 1994. Potassium and taurine release are highly correlated with regulatory volume decrease in neonatal primary rat astrocyte cultures. J Neurochem 63: 1143–1149.

    CAS  PubMed  Google Scholar 

  • Wang X, Messing A, David S. 1997. Axonal and nonneuronal cell responses to spinal cord injury in mice lacking glial fibrillary acidic protein. Exp Neurol 148: 568–576.

    CAS  PubMed  Google Scholar 

  • Weinstein DE, Shelanski ML, Liem RK. 1991. Suppression by antisense mRNA demonstrates a requirement for the glial fibrillary acidic protein in the formation of stable astrocytic processes in response to neurons. J Cell Biol 112: 1205–1213.

    CAS  PubMed  Google Scholar 

  • Wieczorek E, Lin Z, Perkins EB, Law DJ, Merchant JL, et al 2000. The zinc finger repressor, ZBP‐89, binds to the silencer element of the human vimentin gene and complexes with the transcriptional activator, Sp1. J Biol Chem 275: 12879–12888.

    CAS  PubMed  Google Scholar 

  • Wiegers W, Honer B, Traub P. 1991. Microinjection of intermediate filament proteins into living cells with and without preexisting intermediate filament network. Cell Biol Int Rep 15: 287–296.

    CAS  PubMed  Google Scholar 

  • Wilhelmsson U, Eliasson C, Bjerkvig R, Pekny M. 2003. Loss of GFAP expression in high‐grade astrocytomas does not contribute to tumor development or progression. Oncogene 22: 3407–3411.

    CAS  PubMed  Google Scholar 

  • Wilhelmsson U, Li L, Pekna M, Berthold CH, Blom S, et al 2004. Absence of glial fibrillary acidic protein and vimentin prevents hypertrophy of astrocytic processes and improves post‐traumatic regeneration. J Neurosci 24: 5016–5021.

    CAS  PubMed  Google Scholar 

  • Xu K, Malouf AT, Messing A, Silver J. 1999. Glial fibrillary acidic protein is necessary for mature astrocytes to react to beta‐amyloid. Glia 25: 390–403.

    CAS  PubMed  Google Scholar 

  • Yasui Y, Amano M, Nagata K, Inagaki N, Nakamura H, et al 1998. Roles of Rho‐associated kinase in cytokinesis; mutations in Rho‐associated kinase phosphorylation sites impair cytokinetic segregation of glial filaments. J Cell Biol 143: 1249–1258.

    CAS  PubMed  Google Scholar 

  • Yaworsky PJ, Kappen C. 1999. Heterogeneity of neural progenitor cells revealed by enhancers in the nestin gene. Dev Biol 205: 309–321.

    CAS  PubMed  Google Scholar 

  • Yoon M, Moir RD, Prahlad V, Goldman RD. 1998. Motile properties of vimentin intermediate filament networks in living cells. J Cell Biol 143: 147–157.

    CAS  PubMed  Google Scholar 

  • Yu AC, Lee YL, Fu WY, Eng LF. 1995. Gene expression in astrocytes during and after ischemia. Prog Brain Res 105: 245–253.

    CAS  PubMed  Google Scholar 

  • Zhang X, Diab IH, Zehner ZE. 2003. ZBP‐89 represses vimentin gene transcription by interacting with the transcriptional activator, Sp1. Nucleic Acids Res 31: 2900–2914.

    CAS  PubMed  Google Scholar 

  • Zimmerman L, Parr B, Lendahl U, Cunningham M, McKay R, et al 1994. Independent regulatory elements in the nestin gene direct transgene expression to neural stem cells or muscle precursors. Neuron 12: 11–24.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors acknowledge research support from the Swedish Research Council (4124), the Swedish Medical Society (16850), the Arvid Carlsson Institute for Neuroscience, Swedish stroke foundation, åhlén‐stiftelsen and Torsten och Ragnar Söderbergs.

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, LLC

About this entry

Cite this entry

Pekny, M., Wilhelmsson, U. (2006). GFAP and Astrocyte Intermediate Filaments. In: Lajtha, A., Lim, R. (eds) Handbook of Neurochemistry and Molecular Neurobiology. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-30381-9_14

Download citation

Publish with us

Policies and ethics