Skip to main content

Actin, Actin-binding Proteins and Myosins in Nervous System

  • Reference work entry
  • First Online:
Handbook of Neurochemistry and Molecular Neurobiology
  • 820 Accesses

Abstract:

In this chapter, I summarize the basic properties of actin, including polymerization process, polarity of F-actin, and treadmiling, which are common in nerve cells as well as other nonmuscle and muscle cells. The properties are modulated by varieties of actin-binding proteins. Thus, I pick up some major actin-binding proteins expressing in nerve cells, and summarize (i) how these proteins affect actin properties, and (ii) possible functions of these proteins in nervous system. Finally, both conventional and unconventional myosins expressing in nerve cells are also shown, and discussed in the possible roles in actin dynamics in nerve cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

G-actin:

globular actin

F-actin:

filamentous actin

ATP:

adenosine 5′-triphosphate

ADP:

adenosine 5′-diphosphate

Cc:

critical concentration

NMDA:

N-methyl-D-aspartate

DRG:

dorsal root ganglion

ADF:

actin depolymerizing factor

Arp:

actin related protein

LPA:

lysophosphatidic acid

GTP:

guanosine 5′-triphosphate

References

  • Aizawa H, Wakatsuki S, Ishii A, Moriyama K, Sasaki Y, et al. 2001. Phosphorylation of cofilin by LIM-kinase is necessary for semaphorin 3A-induced growth cone collapse. Nat Neurosci 4: 367–373.

    CAS  PubMed  Google Scholar 

  • Arai M, Kwiatkowski DJ. 1999. Differential developmentally regulated expression of gelsolin family members in the mouse. Dev Dyn 215: 297–307.

    CAS  PubMed  Google Scholar 

  • Arakawa Y, Bito H, Furuyashiki T, Tsuji T, Takemoto-Kimura S, et al. 2003. Control of axon elongation via an SDF-1alpha/Rho/mDia pathway in cultured cerebellar granule neurons. J Cell Biol 161: 381–391.

    CAS  PubMed  Google Scholar 

  • Arber S, Barbayannis FA, Hanser H, Schneider C, Stanyon C, et al. 1998. Regulation of actin dynamics through phosphorylation of cofilin by LIM-kinase. Nature 393: 805–809.

    CAS  PubMed  Google Scholar 

  • Avraham KB, Hasson T, Steel KP, Kingsley DM, Russell LB, et al. 1995. The mouse Snell's waltzer deafness gene encodes an unconventional myosin required for structural integrity of inner ear hair cells. Nat Genet 11: 369–375.

    CAS  PubMed  Google Scholar 

  • Bamburg JR, Bray D. 1987. Distribution and cellular localization of actin depolymerizing factor. J Cell Biol 105: 2817–2825.

    CAS  PubMed  Google Scholar 

  • Barylko B, Wagner MC, Reizes O, Albanesi JP. 1992. Purification and characterization of a mammalian myosin I. Proc Natl Acad Sci USA 89: 490–494.

    CAS  PubMed  Google Scholar 

  • Berg JS, Derfler BH, Pennisi CM, Corey DP, Cheney RE. 2000. Myosin-X, a novel myosin with pleckstrin homology domains, associates with regions of dynamic actin. J Cell Sci 113: 3439–3451.

    CAS  PubMed  Google Scholar 

  • Berg JS, Powell BC, Cheney RE. 2001. A millennial myosin census. Mol Biol Cell 12: 780–794.

    CAS  PubMed  Google Scholar 

  • Berg JS, Cheney RE. 2002. Myosin-X is an unconventional myosin that undergoes intrafilopodial motility. Nat Cell Biol 4: 246–250.

    CAS  PubMed  Google Scholar 

  • Bernstein BW, Bamburg JR. 1982. Tropomyosin binding to F-actin protects the F-actin from disassembly by brain actin-depolymerizing factor (ADF). Cell Motil 2: 1–8.

    CAS  PubMed  Google Scholar 

  • Blikstad I, Sundkvist I, Eriksson S. 1980. Isolation and characterization of profilactin and profilin from calf thymus and brain. Eur J Biochem 105: 425–433.

    CAS  PubMed  Google Scholar 

  • Bridgman PC, Dave S, Asnes CF, Tullio AN, Adelstein RS. 2001. Myosin IIB is required for growth cone motility. J Neurosci 21: 6159–6169.

    CAS  PubMed  Google Scholar 

  • Brown ME, Bridgman PC. 2004. Myosin function in nervous and sensory systems. J Neurobiol 58: 118–130.

    CAS  PubMed  Google Scholar 

  • Burgueno J, Blake DJ, Benson MA, Tinsley CL, Esapa CT, et al. 2003. The adenosine A2A receptor interacts with the actin-binding protein alpha-actinin. J Biol Chem 278: 37545–37552.

    CAS  PubMed  Google Scholar 

  • Burridge K, Feramisco JR. 1981. Non-muscle alpha actinins are calcium-sensitive actin-binding proteins. Nature 294: 565–567.

    CAS  PubMed  Google Scholar 

  • Carlier M.-F, Laurent V, Santolini J, Melki R, Didry D, et al. 1997. Actin depolymerizing factor (ADF/cofilin) enhances the rate of filament turnover: implication in actin-based motility. J Cell Biol 136: 1307–1322.

    CAS  PubMed  Google Scholar 

  • Carlsson L, Nystrom LE, Sundkvist I, Markey F, Lindberg U. 1977. Actin polymerizability is influenced by profilin, a low molecular weight protein in non-muscle cells. J Mol Biol 115: 465–483.

    CAS  PubMed  Google Scholar 

  • Cheney RE, O'Shea MK, Heuser JE, Coelho MV, Wolenski JS, et al. 1993. Brain myosin-V is a two-headed unconventional myosin with motor activity. Cell 75: 13–23.

    CAS  PubMed  Google Scholar 

  • Chieregatti E, GartnerA, Stoffler H.-E, Bahler M. 1998. Myr 7 is a novel myosin IX-RhoGAP expressed in rat brain. J Cell Sci 111: 3597–3608.

    CAS  PubMed  Google Scholar 

  • Dabiri GA, Young CL, Rosenbloom J, Southwick FS. 1992. Molecular cloning of human macrophage capping protein cDNA. A unique member of the gelsolin/villin family expressed primarily in macrophages. J Biol Chem 267: 16545–16552.

    CAS  PubMed  Google Scholar 

  • De La Cruz EM, Well AL, Rosenfeld SS, Ostap EM, Sweeney HL. 1999. The kinetic mechanism of myosin V. Proc Natl Acad Sci USA 96: 13726–13731.

    CAS  PubMed  Google Scholar 

  • Eden S, Rohatgi R, Podtelejnikov AV, Mann M, Kirschner MW. 2002. Mechanism of regulation of WAVE1-induced actin nucleation by Rac1 and Nck. Nature 418: 790–793.

    CAS  PubMed  Google Scholar 

  • Edwards RA, Bryan J. 1995. Fascins, a family of actin bundling proteins. Cell Motil Cytoskeleton 32: 1–9.

    CAS  PubMed  Google Scholar 

  • Evans LL, Hammer J, Bridgman PC. 1997. Subcellular localization of myosin V in nerve growth cones and outgrowth from dilute-lethal neuron. J Cell Sci 110: 439–449.

    CAS  PubMed  Google Scholar 

  • Furukawa K, Fu W, Li Y, Witke W, Kwiatkowski, DJ. et al. 1997. The actin-severing protein gelsolin modulates calcium channel and NMDA receptor activities and vulnerability to excitotoxicity in hippocampal neurons. J Neurosci 17: 8178–8186.

    CAS  PubMed  Google Scholar 

  • Goldschmidt-Clermont PJ, Furman M, Wachsstock D, Safer D, Nachmias VT, et al. 1992. The control of actin nucleotide exchange by thymosin β 4 and profilin. A potential regulatory mechanism for actin polymerization in cells. Mol Biol Cell 3: 1015–1024.

    CAS  PubMed  Google Scholar 

  • Gunning P, Hardeman E, Jeffrey P, Weinberger R. 1998. Creating intracellular structural domains: spatial segregation of actin and tropomyosin isoforms in neurons. BioEssay 20: 892–900.

    CAS  Google Scholar 

  • Harms C, Bosel J, Lautenschlager M, Harms U, Braun JS, et al. 2004. Neuronal gelsolin prevents apoptosis by enhancing actin depolymerization. Mol Cell Neurosci 25: 69–82.

    CAS  PubMed  Google Scholar 

  • Hasson T, Gillespie PG, Garcia JA, MacDonald RB, Zhao Y.-d, et al. 1997. Unconventional myosins in inner-ear sensory epithelia. J Cell Biol 137: 1287–1307.

    CAS  PubMed  Google Scholar 

  • Hatanaka H, Ogura K, Moriyama K, Ichikawa S, Yahara I, et al. 1996. Tertiary structure of destrin and structural similarity between two actin-regulating protein families. Cell 85: 1047–1055.

    CAS  PubMed  Google Scholar 

  • Hayashi K, IshikawaR, Ye L.-H, Takata K, Kohama K, et al. 1996. Modulatory role of drebrin on the cytoskeleton within dendritic spines in the rat cerebral cortex. J Neurosci 16: 7161–7170.

    CAS  PubMed  Google Scholar 

  • Hayashi K, Shirao T. 1999. Change in the shape of dendritic spines caused by overexpression of drebrin in cultured cortical neurons. J Neurosci 19: 3918–3925.

    CAS  PubMed  Google Scholar 

  • Higashida C, Miyoshi T, Fujita A, Oceguera-Yanez F, Monypenny J, et al. 2004. Actin polymerization-driven molecular movement of mDia1 in living cells. Science 303: 2007–2010.

    CAS  PubMed  Google Scholar 

  • Holmes KC, Popp D, Gebhard W, Kabsch W. 1990. Atomic model of the actin filament. Nature 347: 44–49.

    CAS  PubMed  Google Scholar 

  • Honda K, Yamada T, Endo R, Ino Y, Gotoh M, et al. 1998. Actinin-4, a novel actin-bundling protein associated with cell motility and cancer invasion. J Cell Biol 140: 1383–1393.

    CAS  PubMed  Google Scholar 

  • Ishikawa R, Hayashi K, Shrao T, Xue Y, Takagi T, et al. 1994. Drebrin, a development-associated brain protein from rat embryo, causes the dissociation of tropomyosin from actin filaments. J Biol Chem 269: 29928–29933.

    CAS  PubMed  Google Scholar 

  • Ishikawa R, Yamashiro S, Kohama K, Matsumura F. 1998. Regulation of actin binding and actin bundling activities of fascin by caldesmon coupled with tropomyosin. J Biol Chem 273: 26991–26997.

    CAS  PubMed  Google Scholar 

  • Ishikawa R, Sakamoto T, Ando T, Higashi-Fujime S, Kohama K. 2003. Polarized actin bundles formed by human fascin-1: their sliding and disassembly on myosin II and myosin V in vitro. J Neurochem 87: 676–685.

    CAS  PubMed  Google Scholar 

  • Ishikawa R, Yamashiro S, Matsumura F. 1989. Differential modulation of actin-severing activity of gelsolin by multiple isoforms of cultured rat cell tropomyosin. Potentiation of protective ability of tropomyosins by 83-kDa nonmuscle caldesmon. J Biol Chem 264: 7490–7497.

    CAS  PubMed  Google Scholar 

  • Itoh K, Adelstein RS. 1995. Neuronal cell expression of inserted isoforms of vertebrate nonmuscle myosin heavy chain II-B. J Biol Chem 270: 14533–14540.

    CAS  PubMed  Google Scholar 

  • Janmey PA, Stossel TP. 1987. Modulation of gelsolin function by phosphatidylinositol 4,5-bisphosphate. Nature 325: 362–364.

    CAS  PubMed  Google Scholar 

  • Kabsch W, Mannherz HG, Suck D, Pai EF, Holmes KK. 1990. Atomic structure of the actin: Dnase I complex. Nature 347: 21–22.

    Google Scholar 

  • Kelley CA, Sellers JR, Gard DL, Bui D, Adelstein RS. 1996. Xenopus nonmuscle myosin heavy chain isoforms have different subcellular localizations and enzymatic activities. J Cell Biol 134: 675–687.

    CAS  PubMed  Google Scholar 

  • Kim AS, Kakalis LT, Abdul-Manan N, Liu GA, Rosen MK. 2000. Autoinhibition and activation mechanisms of the Wiskott-Aldrich syndrome protein. Nature 404: 151–158.

    CAS  PubMed  Google Scholar 

  • Knudsen KA, Soler AP, Johnson KR, Wheelock MJ. 1995. Interaction of alpha-actinin with the cadherin/catenin cell-cell adhesion complex via alpha-catenin. J Cell Biol 130: 67–77.

    CAS  PubMed  Google Scholar 

  • Komaba S, Inoue A, Maruta S, Hosoya H, Ikebe M. 2003. Determination of human myosin III as a motor protein having a protein kinase activity. J Biol Chem 278: 21352–21360.

    CAS  PubMed  Google Scholar 

  • Kureishy N, Sapountzi V, Prag S, Anikumar N, Adams JC. 2002. Fascins and their roles in cell structure and function. Bioessays 24: 350–361.

    CAS  PubMed  Google Scholar 

  • Larsson H, Lindberg U. 1988. The effect of divalent cations on the interaction between calf spleen profilin and different actins. Biochim Biophys Acta 953: 95–105.

    CAS  PubMed  Google Scholar 

  • Lassing I, Lindberg U. 1985. Specific interaction between phosphatidylinositol 4,5-bisphosphate and profilactin. Nature 314: 472–474.

    CAS  PubMed  Google Scholar 

  • Lazarides EB, Burridge K. 1975. Alpha-actinin: immunofluorescent localization of a muscle structural protein in nonmuscle cells. Cell 6: 289–298.

    CAS  PubMed  Google Scholar 

  • Lu M, Witke W, Kwiatkowski DJ, Kosik KS. 1997. Delayed retraction of filopodia in gelsolin null mice. J Cell Biol 138: 1279–1287.

    CAS  PubMed  Google Scholar 

  • Lugo DI, Chen SC, Hall AK, Ziai R, Hempstead JL, et al. 1991. Developmental regulation of β-thymosins in the rat central nervous system. J Neurochem 56: 457–461.

    CAS  PubMed  Google Scholar 

  • Machesky LM, Insall RH. 1998. Scar1 and the related Wiskott-Aldrich syndrome protein, WASP, regulate the actin cytoskeleton through the Arp2/3 complex. Curr Biol 8: 1347–1356.

    CAS  PubMed  Google Scholar 

  • Maciver SK, Hussey PJ. 2002. The ADF/cofilin family: actin-remodeling proteins. Genome Biol 3: 1–12.

    Google Scholar 

  • Maekawa S, Toriyama M, Hisanaga S, Yonezawa N, Endo S, et al. 1989. Purification and characterization of a Ca2+-dependent actin filament severing protein from bovine adrenal medulla. J Biol Chem 264: 7458–7465.

    CAS  PubMed  Google Scholar 

  • Mammoto A, Sasaki T, Asakura T, Hotta I, Imamura H, et al. 1998. Interactions of drebrin and gephyrin with profilin. Biochem Biophys Res Commun 243: 86–89.

    CAS  PubMed  Google Scholar 

  • Marks PW, Arai M, Bandura JL, Kwiatkowski D. 1998. Advillin (p92): a new member of the gelsolin/villin family of actin regulatory proteins. J Cell Sci 111: 2129–2136.

    CAS  PubMed  Google Scholar 

  • Matsumura F, Yamashiro S. 1993. Caldesmon. Curr Opin Cell Biol 5: 70–76.

    CAS  PubMed  Google Scholar 

  • Matsumura F, Yamashiro-Matsumura S. 1985. Purification and characterization of multiple isoforms of tropomyosin from rat cultured cells. J Biol Chem 260: 13851–13859.

    CAS  PubMed  Google Scholar 

  • Mehta AD, Rock RS, Rief M, Spudich JA, Mooseker MS, et al. 1999. Myosin-V is a processive actin-based motor. Nature 400: 590–593.

    CAS  PubMed  Google Scholar 

  • Mercer JA, Seperack PK, Strobel MC, Copeland NG, Jenkins NJ. 1991. Novel heavy chain encoded by murine dilute coat colour locus. Nature 349: 709–713.

    CAS  PubMed  Google Scholar 

  • Meyer RK, Aebi U. 1990. Bundling of actin filaments by alpha-actinin depends on its molecular length. J Cell Biol 110: 2013–2024.

    CAS  PubMed  Google Scholar 

  • Miki H, Miura K, Takenawa T. 1996. N-WASP, a novel actin-depolymerizing protein, regulates the cortical cytoskeletal rearrangement in a PIP2-dependent manner downstream of tyrosine kinases. EMBO J 15: 5326–5335.

    PubMed  Google Scholar 

  • Miki H, Suetsugu S, Takenawa T. 1998. WAVE, a novel WASP-family protein involved in actin reorganization induced by Rac. EMBO J 17: 6932–6941.

    CAS  PubMed  Google Scholar 

  • Miki H, Yamaguchi H, Suetsugu S, Takenawa T. 2000. IRSp53 is an essential intermediate between Rac and WAVE in the regulation of membrane ruffling. Nature 408: 732–735.

    CAS  PubMed  Google Scholar 

  • Millard TH, Sharp SJ, Machesky LM. 2004. Signalling to actin assembly via the WASP (Wiskott-Aldrich syndrome protein)-family proteins and the Arp2/3 complex. Biochem J 380: 1–17.

    CAS  PubMed  Google Scholar 

  • Moon A, Drubin D. 1995. The ADF/cofilin proteins: stimulus-responsive modulators of actin dynamics. Mol Biol Cell 6: 1423–1431.

    CAS  PubMed  Google Scholar 

  • Moriyama K, Nishida E, Yonezawa N, Sakai H, Matsumoto S, Iida K, Yahara I. 1990. Destrin, a mammalian actin-depolymerizing protein, is closely helated to cofilin. Cloning and expression of porcine brain destrin cDNA. J Biol Chem 265: 5768–5773.

    CAS  PubMed  Google Scholar 

  • Moseley JB, Sagot I, Manning AL, Xu Y, Eck MJ, et al. 2004. A conserved mechanism for Bni1- and mDia1-induced actin assembly and dual regulation of Bni1 by Bud6 and profilin. Mol Biol Cell 15: 896–907.

    CAS  PubMed  Google Scholar 

  • Mounier N, Perriard J.-C, Gabbiani G, Chaponnier C. 1997. Transfected muscle and non-muscle actins are differentially sorted by cultured smooth muscle and non-muscle cells. J Cell Sci 110: 839–846.

    CAS  PubMed  Google Scholar 

  • Nakamura S, Sakurai T, Nonomura Y. 1994. Differential expression of bovine adseverin in adrenal gland revealed by in situ hybridization. Cloning of a cDNA for adseverin. J Biol Chem 269: 5890–5896.

    CAS  PubMed  Google Scholar 

  • Nishida E, Maekawa S, Sakai H. 1984. Characterization of the action of porcine brain profilin on actin polymerization. J Biochem (Tokyo) 95: 399–404.

    CAS  Google Scholar 

  • Ohshima S, Abe H, Obinata T. 1989. Isolation of profilin from embryonic chicken skeletal muscle and evaluation of its interaction with different actin isoforms. J Biochem (Tokyo) 105: 855–857.

    CAS  Google Scholar 

  • Ono S, Yamakita Y, Yamashiro S, Matsudaira PT, Gnara JR, et al. 1997. Identification of an actin binding region and a protein kinase C phosphorylation site on human fascin. J Biol Chem 272: 2527–2533.

    CAS  PubMed  Google Scholar 

  • Otey CA, Pavalko FM, Burridge K. 1990. An interaction between α-actinin and the β1 integrin subunit in vitro. J Cell Biol 111: 721–729.

    CAS  PubMed  Google Scholar 

  • Pantaloni D, Carlier M.-F. 1993. How profilin promotes actin filament assembly in the presence of thymosin β 4. Cell 75: 1007–1014.

    CAS  PubMed  Google Scholar 

  • Pittenger MF, Kazzaz JA, Helfman, DM. 1994. Functional properties of non-muscle tropomyosin isoforms. Curr Opin Cell Biol 6: 96–104.

    CAS  PubMed  Google Scholar 

  • Post PL, Tyska MJ, O'Connell CB, Johung K, Hayward A, et al. 2002. Myosin IXb is a single-headed and processive Motor. J Biol Chem 277: 11679–11683.

    CAS  PubMed  Google Scholar 

  • Rochlin MW, Itoh K, Adelstein RS, Bridgman PC. 1995. Localization of myosin IIA and B isoforms in cultured neurons. Localization of myosin II A and B isoforms in cultured neurons. J Cell Sci 108: 3661–3670.

    CAS  PubMed  Google Scholar 

  • Rohatgi R, Ho H.-y, Kirschner MW. 2000. Mechanism of N-WASP activation by CDC42 and phosphatidylinositol 4, 5-bisphosphate. J Cell Biol 150: 1299–1309.

    CAS  PubMed  Google Scholar 

  • Roth LW, Bormann P, Bonnet A, Reinhard E. 1999. β-Thymosin is required for axonal tract formation in developing zebra fish brain. Development 126: 1365–1374.

    CAS  PubMed  Google Scholar 

  • Safer D, Golla R, Nachmias VT. 1990. Isolation of a 5-kDa actin-sequestering peptide from human blood platelets. Proc Natl Acad Aci USA 87: 2536–2540.

    CAS  Google Scholar 

  • Sakurai T, Ohmi K, Kurokawa H, Nonomura Y. 1990. Distribution of a gelsolin-like 74,000 mol. wt protein in neural and endocrine tissues. Neuroscience 38: 743–756.

    CAS  PubMed  Google Scholar 

  • Sasaki Y, Hayashi K, Shirao T, Ishikawa R, Kohama K. 1996. Inhibition by drebrin of the actin-bundling activity of brain fascin, a protein localized in filopodia of growth cones. J Neurochem 66: 980–988.

    CAS  PubMed  Google Scholar 

  • Sellers JR. 2000. Myosins: a diverse superfamily. Biochem Biophys Acta 1496: 3–22.

    CAS  PubMed  Google Scholar 

  • Shibata M, Ishii J, Koizumi H, Shibata N, Dohmae N, et al. 2004. Type F Scavenger Receptor SREC-I Interacts with Advillin, a Member of the Gelsolin/Villin Family, Induces Neurite-like Outgrowth. J Biol Chem 279: 40084–40090.

    CAS  PubMed  Google Scholar 

  • Shirao T. 1995. The roles of microfilament-associated proteins, drebrins, in brain morphogenesis: A review. J Biochem (Tokyo) 117: 231–236.

    CAS  Google Scholar 

  • Sobue K, Muramoto Y, Fujita M, Kakiuchi S. 1981. Purification of a calmodulin-binding protein from chicken gizzard that interacts with F-actin. Proc Natl Acad Sci USA 78: 5625–5655.

    Google Scholar 

  • Sobue K, Sellers JR. 1991. Caldesmon, a novel regulatory protein in smooth muscle and nonmuscle actomyosin systems. J Biol Chem 266: 12115–12118.

    CAS  PubMed  Google Scholar 

  • Stoffler H.-E, Bahler M. 1998. The ATPase activity of Myr3, a rat myosin I, is allosterically inhibited by its own tail domain and by Ca2+ binding to its light chain calmodulin. J Biol Chem 273: 14605–14611.

    CAS  PubMed  Google Scholar 

  • Sun HQ, Yamamoto M, Mejillano M, Yin HL. 1999. Gelsolin, a multifunctional actin regulatory protein. J Biol Chem 274: 33179–33182.

    CAS  PubMed  Google Scholar 

  • Suetsugu S, Miki H, Takenawa T. 1998. The essential role of profilin in the assembly of actin for microspike formation. EMBO J 17: 6516–6526.

    CAS  PubMed  Google Scholar 

  • Suter DM, Espindola FS, Lin C.-H, Forscher P, Mooseker MS. 2000. Localization of unconventional myosin V and VI in neuronal growth cones. J Neurobiol 42: 370–382.

    CAS  PubMed  Google Scholar 

  • Svitkina TM, Borisy GG. 1999. Arp2/3 complex and actin depolymerizing factor/cofilin in dendritic organization and treadmilling of actin filament array in lamellipodia. J Cell Biol 145: 1009–1026.

    CAS  PubMed  Google Scholar 

  • Takahashi M, Kawamoto S, Adelstein RS. 1992. Evidence for inserted sequences in the head region of nonmuscle myosin specific to the nervous system. Cloning of the cDNA encoding the myosin heavy chain-B isoform of vertebrate nonmuscle myosin. J Biol Chem 267: 17864–17871.

    CAS  PubMed  Google Scholar 

  • Takenawa T, Miki H. 2001. WASP and WAVE family proteins: Key molecules for rapid rearrangement of cortical actin filaments and cell movement. J Cell Sci 114: 1801–1809.

    CAS  PubMed  Google Scholar 

  • Tanaka H, Homma K, Iwane AH, Katayama E, Ikebe R, et al. 2002. The motor domain determines the large step of myosin-V. Nature 415: 192–195.

    CAS  PubMed  Google Scholar 

  • Tanaka J, Sobue K. 1994. Localization and characterization of gelsolin in nervous tissues: gelsolin is specifically enriched in myelin-forming cells. J Neurosci 14: 1038–1052.

    CAS  PubMed  Google Scholar 

  • Trybus KM, Krementsove E, Freyzon Y. 1999. Kinetic characterization of a monomeric unconventional myosin V construct. J Biol Chem 274: 27448–27456.

    CAS  PubMed  Google Scholar 

  • Volkmann N, Amann KJ, Stoilova-McPhie S, Egile C, Winter DC, et al. 2001. Structure of Arp2/3 complex in its activated state and in actin filament branch junctions. Science 293: 2456–2459.

    CAS  PubMed  Google Scholar 

  • Von Arx P, Bantle S, Soldati T, Perriard J.-C. 1995. Dominant negative effect of cytoplasmic actin isoproteins on cardiomyocyte cytoarchitecture and function. J Cell Biol 131: 1759–1773.

    CAS  PubMed  Google Scholar 

  • Walker LM, Burgess SA, Sellers JR, Wang F, Hammer III JA, et al. 2000. Two-headed binding of a processive myosin to F-actin. Nature 405: 804–807.

    CAS  PubMed  Google Scholar 

  • Walsh T, Walsh V, Vreugde S, Hertzano R, Shahin H, et al. 2002. From flies’ eyes to our ears: mutations in a human class III myosin cause progressive nonsyndromic hearing loss DFNB30. Proc Natl Acad Sci USA 99: 7518–7523.

    CAS  PubMed  Google Scholar 

  • Wang FS, Wolenski JS, Cheney RE, Mooseker MS, Jay DG. 1996. Function of myosin V in filopodia extension of neuronal growth cones. Science 273: 660–663.

    CAS  PubMed  Google Scholar 

  • Watanabe N, Madaule P, Reid T, Ishizaki T, Watanabe G, et al. 1997. p140mDia, a mammalian homolog of Drosophila diaphanous, is a target protein for Rho small GTPase and is a ligand for profilin. EMBO J 16: 3044–3056.

    CAS  PubMed  Google Scholar 

  • Weaver AM, Young ME, Lee W.-L, Cooper JA. 2003. Integration of signals to the Arp2/3 complex. Cur Opin Cell Biol 15: 23–30.

    CAS  Google Scholar 

  • Weber A, Nachmias VT, Pennise CR, Pring M, Safer D. 1992. Interaction of thymosin β4 with muscle and platelet actin: Implications for actin sequestration in resting platelets. Biochemistry 31: 6179–6185.

    CAS  PubMed  Google Scholar 

  • Weil D, Levy G, Sahly I, Levi-Acobas F, Blanchard S, et al. 1996. Human myosin VIIA responsible for the Usher 1B syndrome: a predicted membrane-associated motor protein expressed in developing sensory epithelia. Proc Natl Acad Sci USA 93: 3232–3237.

    CAS  PubMed  Google Scholar 

  • Weinberger R, Schevzov G, Jeffrey P, Gordon K, Hill M, et al. 1996. The molecular composition of neuronal microfilaments is spatially and temporally regulated. J Neurosci 16: 238–252.

    CAS  PubMed  Google Scholar 

  • Wells AL, Lin AW, Chen LQ, Safer D, Cain SM, et al. 1999. Myosin VI is an actin-based motor that moves backwards. Nature 401: 505–508.

    CAS  PubMed  Google Scholar 

  • Williams R, Coluccio LM. 1994. Novel 130-kDa rat liver myosin-1 will translocate actin filaments. Cell Motil Cytoskeleton 27: 41–48.

    CAS  PubMed  Google Scholar 

  • Wylie SR, Wu P.-J, Patel H, Chantler PD. 1998. A conventional myosin motor drives neurite outgrowth. Proc Natl Acad Sci USA 95: 12967–12972.

    CAS  PubMed  Google Scholar 

  • Wylie SR, Chantler PD. 2001. Separate but linked function of conventional myosins modulate adhesion and neurite outgrowth Nat Cell Biol 3: 88–92.

    CAS  PubMed  Google Scholar 

  • Wylie SR, Chantler PD. 2003. Myosin IIA drives neurite retraction. Mol Biol Cell 14: 4654–4666.

    CAS  PubMed  Google Scholar 

  • Wyszynski M, Lin J, Rao A, Nigh E, Beggs AH, et al. 1997. Competitive binding of α-actinin and calmodulin to the NMDA receptor. Nature 385: 439–442.

    CAS  PubMed  Google Scholar 

  • Yamakita Y, Oosawa F, Yamashiro S, Matsumura F. 2003. Caldesmon inhibits Arp2/3-mediated actin nucleation. J Biol Chem 278: 17937–17944.

    CAS  PubMed  Google Scholar 

  • Yamashiro S, Yamakita Y, Hosoya H, Matsumura F. 1991. Phosphorylation of non-muscle caldesmon by p34cdc2 kinase during mitosis. Nature 344: 675–678.

    Google Scholar 

  • Yang N, Higuchi O, Ohashi K, Nagata K, Wada A, et al. 1998. Cofilin phosphorylation by LIM-kinase 1 and its role in Rac-mediated actin reorganization. Nature 393: 809–812.

    CAS  PubMed  Google Scholar 

  • Yin HL, Stossel TP. 1979. Control of cytoplasmic actin gel-sol transformation by gelsolin, a calcium-dependent regulatory protein. Nature 281: 583–586.

    CAS  PubMed  Google Scholar 

  • Zhang H, Berg J, Zhilun L, Wang Y, Lang P, et al. 2004. Myosin-X provides a motor-based link between integrins and the cytoskeleton. Nature Cell Biol 6: 523–531.

    PubMed  Google Scholar 

  • Zhao LP, Koslovsky JS, Reinhard J, Bahler M, Witt AE, et al. 1996. Cloning and characterization of myr 6, an unconventional myosin of the dilute/myosin-V family. Proc Natl Acad Sci USA 93: 10826–10831.

    CAS  PubMed  Google Scholar 

  • Zhu T, Beckingham K, Ikebe M. 1998. High affinity Ca2+-binding sites of calmodulin are critical for the regulation of myosin Iβ motor function. J Biol Chem 273: 20481–20486.

    CAS  PubMed  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science+Business Media, LLC

About this entry

Cite this entry

Ishikawa, R. (2007). Actin, Actin-binding Proteins and Myosins in Nervous System. In: Lajtha, A., Banik, N. (eds) Handbook of Neurochemistry and Molecular Neurobiology. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-30379-6_6

Download citation

Publish with us

Policies and ethics