Skip to main content

Regulation of Protein Metabolism

  • Reference work entry
  • First Online:
Handbook of Neurochemistry and Molecular Neurobiology
  • 862 Accesses

Abstract:

Translation is a sophisticated and complex mechanism requiring extensive biological machinery and subjected to an extremely fine regulation. Given that proteins account for a large fraction of biological macromolecules, a large proportion of the resource of cells is devoted to translation. Translation can be broken into three stages: initiation, elongation, termination. Regulation of translation can be exerted at many levels but in the first step, structural features in mRNAs in concert with the interactions among the initiation factors and other regulatory proteins, offer the possibility to regulate protein synthesis in rapid response to external stimuli, without invoking nuclear pathways for mRNA synthesis. The range of biological process that involve translational control of gene expression is expanding, in the brain, recent reports have provided evidences of the importance of translational control in process such us ischemia and reperfusion, neuronal plasticity and memory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AMPA:

alpha-amino-3-hydroxy-5methyl-4-isoxazolepropionic acid

ATF4:

activating transcription factor 4

AUG:

initiation codons

Cdk5:

cyclin-dependent kinase 5

4EBPs:

initiation factor 4E binding protein family

eEFs:

eukaryotic elongation factors

eIFs:

eukaryotic initiation factors

eIF2α:

the α subunit of initiation factor 2

eIF2(αP):

the phosphorylated form of eIF2α

ER:

endoplasmic reticulum

ERK:

extracellular signal-regulated kinase

GADD34:

growth arrest and DNA damage protein 34

GCN2:

general control nonderepressible-2 kinase

GluR2:

glutamate receptor 2 subunit of AMPA receptor

GRP78:

glucose-regulated protein of 78 kDa

GSK-3:

glycogen synthase kinase-3

HRI:

heme-regulated inhibitor

IRES:

internal ribosome entry sites

Met-tRNAi :

initiator methionyl transfer RNA

m7G cap:

5′-m7G(5′)ppp(5′)N cap structure

Mnk:

MAP kinase-interacting kinase

mTOR:

target of rapamycin

NR2A:

the N-metyl-D-aspartate (NMDA) receptor subunit 2A

uORF:

upstream open reading frame

PABP:

poly(A)-binding proteins

PKR:

the double-stranded RNA-dependent kinase

PERK:

mammalian ER resident kinase

PI3K/Akt-PKB:

phosphatidylinositol-3-kinase/phosphatidylinositol-3-kinase-protein B

poly (A):

3′-polyadenylated tail

PP1c:

catalytic subunit of protein phosphatase 1

S6K1/2:

ribosomal protein S6 kinase 1/2

5′TOP:

terminal oligopyrimidine tracts

UPR:

unfolded protein response

UTR:

untranslated region

References

  • Alcázar A, Martín ME, Soria E, Rodríguez S, Fando JL, et al. 1995. Purification and characterization of guanine nucleotide-exchange factor, eIF-2B, and p37 calmodulin-binding protein from calf brain. J Neurochem 65: 754–761.

    Article  PubMed  Google Scholar 

  • Alirezaei M, Marin P, Nairn AC, Glowinski J, Prémont J. 2001. Inhibition of protein synthesis in cortical neurons during exposure to hydrogen peroxide. J Neurochem 76: 1080–1088.

    Article  CAS  PubMed  Google Scholar 

  • Althausen S, Mengesdorf T, Mies G, Oláh L, Nairn AC, et al. 2001. Changes in the phosphorylation of initiation factor eIF-2α, elongation factor eEF-2, and p70 S6 kinase after transient focal cerebral ischemia in mice. J Neurochem 78: 779–787.

    Article  CAS  PubMed  Google Scholar 

  • Andersen GR, Nissen P, Nyborg J. 2003. Elongation factors in protein biosynthesis. Trends Biochem Sci 28: 434–441.

    Article  CAS  PubMed  Google Scholar 

  • Araki T, Kato H, Inoue T, Kogure K. 1990. Regional impairment of protein synthesis following brief cerebral ischemia in the gerbil. Acta Neuropathol 79: 501–505.

    Article  CAS  PubMed  Google Scholar 

  • Asaki C, Usuda N, Nakazawa A, Kametani K, Suzuki T. 2003. Localization of translational components at the ultramicroscopic level at postsynaptic sites of the rat brain. Brain Res 972: 168–176.

    Article  CAS  PubMed  Google Scholar 

  • Atkins CM, Nozaki N, Shigeri Y, Soderling TR. 2004. Cytoplasmic polyadenylation element binding protein-dependent protein synthesis is regulated by calcium/calmodulin-dependent protein kinase II. J Neurosci 24: 5193–5201.

    Article  CAS  PubMed  Google Scholar 

  • Avdulov S, Li S, Michalek V, Burrichter D, Peterson M, et al. 2004. Activation of translation complex eIF4F is essential for the genesis and maintenance of the malignant phenotype in human mammary epithelial cells. Cancer Cell 5: 553–563.

    Article  CAS  PubMed  Google Scholar 

  • Banko JL. HouL, Klann E. 2004. NMDA receptor activation results in PKA- and ERK-dependent Mnk1 activation and increased eIF4E phosphorylation in hippocampal area CA1. J Neurochem 91: 462–470.

    Article  CAS  PubMed  Google Scholar 

  • Barone FC, White RF, Spera PA, Ellison J, Currie RW, et al. 1998. Ischemic preconditioning and brain tolerance. Temporal, histological, and functional outcomes, protein synthesis requirement, and interleukin-1 receptor antagonist and early gene expression. Stroke 29: 1937–1951.

    CAS  PubMed  Google Scholar 

  • Bear MF, Kimberly MH, Warren ST. 2004. The mGluR theory of fragile X mental retardation. Trends Neurosci 27: 370–377.

    Article  CAS  PubMed  Google Scholar 

  • Belsham GJ, Jackson RJ. 2000. Translation initiation on picornavirus RNA. Translational control of gene expression. Sonenberg N, Hershey JWB, Mathews MB, editors. New York: Cold Spring Harbor Laboratory Press; pp. 869–900.

    Google Scholar 

  • Beretta L, Gingras AC, Svitkin YV, Hall MN, Sonenberg N. 1996. Rapamycin blocks the phosphorylation of 4E-BP1 and inhibits cap-dependent initiation of translation. EMBO J 15: 658–664.

    CAS  PubMed  Google Scholar 

  • Berlanga JJ, Santoyo J, de Haro C. 1999. Characterization of a mammalian homolog of the GCN2 eukaryotic initiation factor 2α kinase. Eur J Biochem 265: 754–762.

    Article  CAS  PubMed  Google Scholar 

  • Blais JD, Filipenko V, Bi M, Harding HP, Ron D, et al. 2004. Activating transcription factor 4 is translationally regulated by hypoxic stress. Mol Cell Biol 24: 7469–7482.

    Article  CAS  PubMed  Google Scholar 

  • Brostrom CO, Brostrom MA. 1998. Regulation of translational initiation during cellular responses to stress. Prog Nucleic Acid Res 58: 79–125.

    Article  CAS  Google Scholar 

  • Brostrom MA, Brostrom CO. 2003. Calcium dynamics and endoplasmic reticular function in the regulation of protein synthesis: Implications for cell growth and adaptability. Cell Calcium 34: 345–363.

    Article  CAS  PubMed  Google Scholar 

  • Browing KS, Gallie DR, Hersey JWB, Hinnebusch AG, Maitra U, et al. 2001. Unified nomenclature for the subunits of eukaryotic initiation factor 3. Trends Biochem Sci 26: 284.

    Article  Google Scholar 

  • Browne GJ, Proud CG. 2002. Regulation of peptide-chain elongation in mammalian cells. Eur J Biochem 269: 5360–5368.

    Article  CAS  PubMed  Google Scholar 

  • Brush MH, Weiser DC, Shelinolikar S. 2003. Growth arrest and DNA-inducible protein GADD34 targets protein phosphatase 1α to the endoplasmic reticulum and promotes dephosphorylation of the α subunit of eukaryotic translation initiation factor 2. Mol Cell Biol 23: 1292–1303.

    Article  CAS  PubMed  Google Scholar 

  • Burda J, Chavko M, Marsala J. 1980. Changes in ribosomes from ischemic spinal cord. Collect Czech Chem Commun 45: 2566–2571.

    CAS  Google Scholar 

  • Burda J, Hrehorovská M, Garcia L, Danielisova V, Cízková D, et al. 2003. Role of protein synthesis in the ischemic tolerance acquisition induced by transient forebrain ischemia in the rat. Neurochem Res 28: 1237–1243.

    Article  Google Scholar 

  • Burda J, Martín ME, García A, Alcázar A, Fando JL, et al. 1994. Phosphorylation of the α subunit of initiation factor 2 correlates with the inhibition of translation following transient cerebral ischemia in the rat. Biochem J 302: 335–338.

    CAS  PubMed  Google Scholar 

  • Burda J, Martín ME, Gottlieb M, Chavko M, Marsala J, et al. 1998. The intraischemic and early reperfusion changes of protein synthesis in the rat brain. eIF-2α kinase activity and role of initiation factors eIF-2α and eIF-4E. J Cereb Blood Flow Metab 18: 59–66.

    Article  CAS  PubMed  Google Scholar 

  • Bushell M, McKendrick L, Jänicke RU, Clemens MJ, Morley SJ. 1999. Caspase-3 is necessary and sufficient for cleavage of protein synthesis eukaryotic initiation factor 4G during apoptosis. FEBS Lett 451: 332–336.

    Article  CAS  PubMed  Google Scholar 

  • Bushell M, Wood W, Clemens MJ, Morley SJ. 2000. Changes in integrity and association of eukaryotic protein synthesis initiation factors during apoptosis. Eur J Biochem 267: 1083–1091.

    Article  CAS  PubMed  Google Scholar 

  • Caldarola S, Amaldi F, Proud CG, Loreni F. 2004. Translational regulation of terminal oligopyrimidine mRNAs induced by serum and amino acids involves distinct signaling events. J Biol Chem 279: 13522–13531.

    Article  CAS  PubMed  Google Scholar 

  • Calderon A, Jover T, Noh K, Tanaka H, Yokota H, et al. 2003. Ischemic insults derepress the gene silencer REST in neurons destined to die. J Neurosci 23: 2112–2121.

    Google Scholar 

  • Calés C, Salinas M, Fando JL. 1985. Isolation of eukaryotic initiation factor 2 from rat brain. J Neurochem 45: 1298–1302.

    Article  PubMed  Google Scholar 

  • Carter MS, Kuhn KM, Sarnow P. 2000. Cellular internal ribosome entry site elements and the use of cDNA microarrays in their investigation. Translational control of gene expression. Sonenberg N, Hershey JWB, Mathews MB, editors. New York: Cold Spring Harbor Laboratory Press; pp. 615–635.

    Google Scholar 

  • Chan PH. 1996. Role of oxidants in ischemic brain damage. Stroke 27: 1124–1129.

    CAS  PubMed  Google Scholar 

  • Chen J-J. 2000. Heme-regulated eIF2α kinase. Translational control of gene expression. Sonenberg N, Hershey JWB, Mathews MB, editors. New York: Cold Spring Harbor Laboratory Press; pp. 529–546.

    Google Scholar 

  • Choi DW. 1990. Limitations of in vitro models of ischemia. Current and future trends in anticonvulsant, anxiety, and stroke therapy. Meldrum BS, Williams M, editors. New York: Wiley-Liss; pp. 291–299.

    Google Scholar 

  • Clemens MJ. 1999. Translational Control: The cancer connection. Int J Biochem Cell Biol 31: 1–254.

    Article  CAS  PubMed  Google Scholar 

  • Clemens MJ. 2001. Initiation factor eIF2α phosphorylation in stress responses and apoptosis. Prog Mol Subcell Biol 27: 57–89.

    CAS  PubMed  Google Scholar 

  • Coller J, Parker R. 2004. Eukaryotic mRNA decapping. Annu Rev Biochem 73: 861–890.

    Article  CAS  PubMed  Google Scholar 

  • Colthurst DR, Campbell DG, Proud CG. 1987. Structure and regulation of eukaryotic initiation factor eIF-2. Sequence of the site in the α subunit phosphorylated by the heme-controlled repressor and by the double-stranded RNA-activated inhibitor. Eur J Biochem 166: 357–363.

    Article  CAS  PubMed  Google Scholar 

  • Cooper HK, Zaleswska T, Kawakami S, Hossmann KA, Kleihues P. 1977. The effect of ischemia and recirculation on protein synthesis in the rat brain. J Neurochem 28: 929–934.

    Article  CAS  PubMed  Google Scholar 

  • De Benedetti A, Harris AL. 1999. eIF4E expression in tumors: Its possible role in progression of malignancies. Int J Biochem Cell Biol 31: 59–72.

    Article  CAS  PubMed  Google Scholar 

  • De Gracia DJ. 2004. Acute and persistent protein synthesis inhibition following cerebral reperfusion. J Neurosci Res 77: 771–776.

    Article  CAS  Google Scholar 

  • De Gracia DJ, Neumar RW, White BC, Krause GS. 1996. Global brain ischemia and reperfusion: Modifications in eukaryotic initiation factors associated with inhibition of translation initiation. J Neurochem 67: 2005–2012.

    Article  CAS  Google Scholar 

  • De Gracia DJ, O'Neil BJ, Frisch C, Krause GS, Skjaerlund JM, et al. 1993. Studies of the protein synthesis system in the brain cortex during global ischemia and reperfusion. Resuscitation 25: 161–170.

    Article  CAS  Google Scholar 

  • Deng J, Harding HP, Raught B, Gingras AC, Berlanga JJ, et al. 2002. Activation of GCN2 in UV-irradiated cells inhibits translation. Curr Biol 12: 1279–1286.

    Article  CAS  PubMed  Google Scholar 

  • Dever TE. 2002. Gene-specific regulation by general translation factors. Cell 108: 545–556.

    Article  CAS  PubMed  Google Scholar 

  • Dever TE, Feng L, Wek RC, Cigan AM, Donahue TF, et al. 1992. Phosphorylation of initiation factor 2α by protein kinase GCN2 mediates gene-specific translational control of GCN4 in yeast. Cell 68: 585–596.

    Article  CAS  PubMed  Google Scholar 

  • Dhodda VK, Sailor KA, Bowen KK, Vemuganti R. 2004. Putative endogenous mediators of preconditioning-induced ischemic tolerance in rat brain identified by genomic and proteomic analysis. J Neurochem 89: 73–89.

    Article  CAS  PubMed  Google Scholar 

  • Dienel GA, Pulsinelli WA, Duffy TE. 1980. Regional protein synthesis in rat brain following acute hemispheric ischemia. J Neurochem 35: 1216–1226.

    Article  CAS  PubMed  Google Scholar 

  • Dmitriev SE, Terenin IM, Dunaevsky YE, Merrick WC, Shatsky IN. 2003. Assembly of 48S translation initiation complexes from purified components with mRNAs that have some base pairing within their 5′-untranslated regions. Mol Cell Biol 23: 8925–8933.

    Article  CAS  PubMed  Google Scholar 

  • Doutheil J, Althausen S, Gissel C, Paschen W. 1999. Activation of MYD116 (gadd34) expression following transient forebrain ischemia of rat: Implications for a role of disturbances of endoplasmic reticulum calcium homeostasis. Mol Brain Res 63: 225–232.

    Article  CAS  PubMed  Google Scholar 

  • Erdogdu G, Uto A, Hossmann KA. 1993. The effect of global ischemia and recirculation of rat brain on protein synthesis in vitro. Metab Brain Dis 8.

    Google Scholar 

  • Fingar DC, Richardson CJ, Tee AR, Cheatham L, Tsou C, et al. 2004. MTOR controls cell cycle progression through its cell growth effectors S6K1 and 4E-BP1/eukaryotic translation initiation factor 4E. Mol Cell Biol 24: 200–216.

    Article  CAS  PubMed  Google Scholar 

  • Fraser CS, Lee JY, Mayeur GL, Bushell M, Doudna JA, et al. 2004. The j-subunit of human translation initiation factor eIF3 is required for the stable binding of eIF3 and its subcomplexes to 40S ribosomal subunit in vitro. J Biol Chem 279: 8946–8956.

    Article  CAS  PubMed  Google Scholar 

  • Fukuda TE, Adachi S, Kawashima I, Yoshiya I, Hashimoto PH. 1990. Immunohistochemical distribution of calcium-activated neutral proteinases and endogenous CANP inhibitor in the rabbit hippocampus. J Comp Neurol 302: 100–109.

    Article  CAS  PubMed  Google Scholar 

  • Fukunaga R, Hunter T. 1997. MNK1, a new MAP kinase-activated protein kinase, isolated by a novel expression screening method for identifying protein kinase substrates. EMBO J 16: 1921–1933.

    Article  CAS  PubMed  Google Scholar 

  • Fumagalli S, Thomas G. 2000. S6 phosphorylation and signal transduction. Translational control of gene expression. Sonenberg N, Hershey JWB, Mathews MB, editors. New York: Cold Spring Harbor Laboratory Press; pp. 695–717.

    Google Scholar 

  • Furuta S, Ohta S, Hatakeyama T, Nakamura K, Sakaki S. 1993. Recovery of protein synthesis in tolerance-induced hippocampal CA1 neurons after transient forebrain ischemia. Acta Neuropathol. 86: 329–336.

    Article  CAS  PubMed  Google Scholar 

  • García L, O'Loghlen A, Martín ME, Burda J, Salinas M. 2004a. Does phosphorylation of eukaryotic elongation factor eEF2 regulate protein synthesis in ischemic preconditioning? J Neurosci Res 77: 292–298.

    Article  CAS  Google Scholar 

  • García L, Burda J, Hrehorovská M, Burda R, Martín ME, et al. 2004b. Ischemic preconditioning in the rat brain: Effect on the activity of several initiation factors, Akt and extracellular signal-regulated protein kinase phosphorylation, and GRP78 and GADD34 expression. J Neurochem 88: 136–147.

    Article  Google Scholar 

  • Geballe AP, Sachs MS. 2000. Translational control by upstream open reading frames. Translational control of gene expression. Sonenberg N, Hershey JWB, Mathews MB, editors. New York: Cold Spring Harbor Laboratory Press; pp. 595–614.

    Google Scholar 

  • Gebauer F, Hentze MW. 2004. Molecular mechanisms of translational control. Nature Reviews 5: 827–835.

    CAS  PubMed  Google Scholar 

  • Gilbert RW, Costain WJ, Blanchard M-E, Mullen KL, Currie RW, et al. 2003. DNA microarray analysis of hippocampal gene expression measured 12 h after hypoxia-ischemia in the mouse. J Cereb Blood Flow Metab 23: 1195–1211.

    Article  CAS  PubMed  Google Scholar 

  • Gingras A.-C, Raught B, Sonenberg N. 2004. mTOR signaling to translation. Curr Top Microbiol Immunol 279: 169–198.

    CAS  PubMed  Google Scholar 

  • Gingras AC, Raught B, Gygi SP, Niedzwiecka A, Miron M, et al. 2001. Hierarchical phosphorylation of the translation inhibitor 4E-BP1. Genes Dev 15: 2852–2864.

    Article  CAS  PubMed  Google Scholar 

  • Gingras AC, Raught B, Sonenberg N. 1999. eIF4 initiation factors: Effectors of mRNA recruitment to ribosomes and regulators of translation. Annu Rev Biochem 68: 913–963.

    Article  CAS  PubMed  Google Scholar 

  • Gorter JA, Petrozzino JJ, Aronica EM, Rosenbaum DM, Opitz T, et al. 1997. Global ischemia induces downregulation of GluR2 mRNA and increases AMPA receptor-mediated Ca2+ influx in hippocampal CA1 neurons of gerbil. J Neurosci 15: 6179–6188.

    Google Scholar 

  • Groisman I, Huang YS, Mendez R, Cao Q, Theurkauf W, et al. 2000. CPEB, maskin, and cyclin B1 mRNA at the mitotic apparatus. Implication for local translational control of cell division. Cell 103: 435–447.

    CAS  Google Scholar 

  • Harding HP, Calfon M, Urano F, Novoa I, Ron D. 2002. Transcriptional and translational control in the mammalian unfolded protein response. Annu Rev Cell Dev Biol 18: 575–599.

    Article  CAS  PubMed  Google Scholar 

  • Harding HP, Zhang Y, Ron Z. 1999. Protein translation and folding are coupled by an endoplasmic-reticulum-resident kinase. Nature 397: 271–274.

    Article  CAS  PubMed  Google Scholar 

  • de Haro C, Méndez R, Santoyo J. 1996. The eIF-2α kinases and the control of protein synthesis. FASEB J 10: 1378–1387.

    CAS  PubMed  Google Scholar 

  • Hata R, Mies G, Wiessner C, Fritze K, Hesselbarth D, et al. 1998. A reproducible model of middle cerebral artery occlusion in mice: hemodynamic, biochemical, and magnetic resonance imaging. J Cereb Blood Flow Metab 18: 367–375.

    Article  CAS  PubMed  Google Scholar 

  • Hay N, Sonenberg N. 2004. Upstream and downstream of mTOR. Genes Dev 18: 1926–1945.

    Article  CAS  PubMed  Google Scholar 

  • Hayashi T, Saito A, Okuno S, Ferrand-Drake M, Dodd RL, et al. 2003a. Oxidative damage to the endoplasmic reticulum is implicated in ischemic neuronal cell death. J Cereb Blood Flow Metab 23: 1117–1128.

    Article  CAS  Google Scholar 

  • Hayashi T, Saito A, Okuno S, Ferrand-Drake M, Chan PH. 2003b. Induction of GRP78 by ischemic preconditioning reduces endoplasmic reticulum stress and prevents delayed neuronal cell death. J Cereb Blood Flow Metab 23: 949–961.

    Article  Google Scholar 

  • Hellen CUT, Sarnow P. 2001. Internal ribosome entry sites in eukaryotic mRNA molecules. Genes Dev 15: 1593–1612.

    Article  CAS  PubMed  Google Scholar 

  • Hentze MW, Kuhn LC. 1996. Molecular control of vertebrate iron metabolism: mRNA-based regulatory circuits operate by iron, nitric oxide, and oxidative stress. Proc Natl Acad Sci USA 93: 8175–8182.

    Article  CAS  PubMed  Google Scholar 

  • Herbert TP, Tee AR, Proud CG. 2002. The extracellular signal-regulated kinase pathway regulates the phosphorylation of 4E-BP1 at multiple sites. J Biol Chem 277: 11591–11596.

    Article  CAS  PubMed  Google Scholar 

  • Hershey JWB. 1991. Translational control in mammalian cells. Annu Rev Biochem 60: 717–755.

    Article  CAS  PubMed  Google Scholar 

  • Hershey JWB, Merrick WC. 2000. The pathway and mechanism of initiation of protein synthesis. Translational control of gene expression. Sonenberg N, Hershey JWB, Mathews MB, editors. New York: Cold Spring Harbor Laboratory Press; pp. 33–88.

    Google Scholar 

  • Hinnebusch AG. 1993. Gene-specific translational control of the yeast GCN4 gene by phosphorylation of eukaryotic initiation factor 2. Mol Microbiol 10: 215–223.

    Article  CAS  PubMed  Google Scholar 

  • HinnebuschAG. 1997. Translational regulation of yeast GCN4. A window on factors that control initiator-tRNA binding to the ribosome. J Biol Chem 272: 21661–21664.

    Article  CAS  PubMed  Google Scholar 

  • Hinnebusch AG. 2000. Mechanism and regulation of initiator methionyl-tRNA binding to ribosomes. Translational control of gene expression. Sonenberg N, Hershey JWB, Mathews MB, editors. New York: Cold Spring Harbor Laboratory Press; pp. 185–243.

    Google Scholar 

  • Hodgman R, Tay J, Mendez R, Ritcher JD. 2001. CPEB phosphorylation and cytoplasmic polyadenylation are catalyzed by the kinase IAK1/Eg2 in maturing mouse oocytes. Development 128: 2815–2822.

    CAS  PubMed  Google Scholar 

  • Horman S, Browne GJ, Krause U, Patel JV, Vertommen D, et al. 2002. Activation of AMP-activated protein kinase leads to the phosphorylation of elongation factor 2 and an inhibition of protein synthesis. Curr Biol 12: 1419–1423.

    Article  CAS  PubMed  Google Scholar 

  • Hoshino S, Iai M, Kobayashi T, Uchida N, Katada T. 1999. The eukaryotic polypeptide chain releasing factor (eRF3/GSPT) carrying the translation termination signal to the 3′-poly(A) tail of mRNA. Direct association of erf3/GSPT with polyadenylate-binding protein. J Biol Chem 274: 16677–16680.

    Article  CAS  PubMed  Google Scholar 

  • Hossmann KA. 1993. Disturbances of cerebral protein synthesis and ischemic cell death. Prog Brain Res 96: 161–177.

    Article  CAS  PubMed  Google Scholar 

  • Hou ST, Mac Manus JP. 2002. Molecular mechanisms of cerebral ischemia-induced neuronal death. Int Rev Cytol 221: 93–148.

    Article  CAS  PubMed  Google Scholar 

  • Hu BR, Martone ME, Jones YZ, Liu CL. 2000. Protein aggregation after transient cerebral ischemia. J Neurosci 20: 3191–3199.

    CAS  PubMed  Google Scholar 

  • Hu BR, Wieloch T. 1993. Stress-induced inhibition of protein synthesis initiation: Modulation of initiation factor 2 guanine nucleotide exchange factor activities following transient cerebral ischemia in the rat. J Neurosci 13: 1830–1838.

    CAS  PubMed  Google Scholar 

  • Huang YS, Carson JH, Barbarese E, Ritcher JD. 2003. Facilitation of dendritic mRNA transport by CPEB. Genes Dev 17: 638–653.

    Article  CAS  PubMed  Google Scholar 

  • Huang YS, Jung MY, Sarkissian M, Richter JD. 2002. N-metyl-d-aspartate receptor signaling results in Aurora kinase-catalyzed CEBP phosphorylation and α-CaMKII mRNA polyadenylation at synapses. EMBO J 21: 2139–2148.

    Article  CAS  PubMed  Google Scholar 

  • Huber KM, Kayser MS, Bear MF. 2000. Role for rapid dendritic protein synthesis in hippocampal mGluR-dependent long-term depression. Science 288: 1254–1257.

    Article  CAS  PubMed  Google Scholar 

  • Hui DJ, Blasker CR, Merrick WC, Sen GC. 2003. Viral stress-inducible protein p56 inhibits translation by blocking the interaction of eIF3 with ternary complex eIF2·GTP·Met-tRNAi. J Biol Chem 278: 39477–39482.

    Article  CAS  PubMed  Google Scholar 

  • Iadecola C. 1999. Mechanisms of cerebral ischemic damage. Cerebral Ischemia: Molecular and Cellular Pathophysiology. Walz W, editor. Totowa, NJ: Humana Press; pp. 3–32.

    Google Scholar 

  • Jackson RJ. 2000. A comparative view of initiation site selection mechanisms. Translational control of gene expression. Sonenberg N, Hershey JWB, Mathews MB, editors. New York: Cold Spring Harbor Laboratory Press; pp. 127–183.

    Google Scholar 

  • Jan E, Kinzy TG, Sarnow P. 2003. Divergent tRNA-like element supports initiation, elongation, and termination of protein synthesis. Proc Natl Acad Sci USA 100: 15410–15415.

    Article  CAS  PubMed  Google Scholar 

  • Jefferies H, Fumagalli S, Dennis P, Reinhard C, Pearson R, et al. 1997. Rapamycin suppresses 5′-TOP mRNA translation through inhibition of p70s6K. EMBO J 16: 3693–3704.

    Article  CAS  PubMed  Google Scholar 

  • Jin K, Mao XO, Eshoo MW, Nagayama T, Minami M, et al. 2001. Microarray analysis of hippocampal gene expression in global cerebral ischemia. Ann Neurol 50: 93–103.

    Article  CAS  PubMed  Google Scholar 

  • Jin P, Zarnescu DC, Ceman S, Nakaoro M, Mowrey J, et al. 2004. Biochemical and genetic interaction between the fragile X mental retardation protein and the microRNA pathway. Nat Neurosci 7: 113–117.

    Article  CAS  PubMed  Google Scholar 

  • Jin P, Warren ST. 2003. New insights into fragile X syndrome: from molecules to neurobehaviors. Trends Biochem Sci 28: 152–158.

    Article  CAS  PubMed  Google Scholar 

  • Job C, Eberwine J. 2001. Identification of sites for exponential translation in living dendrites. Proc Natl Acad Sci USA 98: 13307–13042.

    Article  Google Scholar 

  • Johnstone O, Lasko P. 2004. Interaction with eIF5B is essential for Vasa function during development. Development 131: 4167–4178.

    Article  CAS  PubMed  Google Scholar 

  • Kaplan BB, Lavina ZS, Gioio AE. 2004. Subcellular compartmentation of neuronal protein synthesis: New insights into the biology of the neuron. Ann N Y Acad Sci 1018: 244–254.

    Article  CAS  PubMed  Google Scholar 

  • Kato H, Kogure K, Nakata N, Araki T, Itoyama Y. 1995. Facilitated recovery from postischemic supression of protein synthesis in the gerbil brain with ischemic tolerance. Brain Res Bull 36: 205–208.

    Article  CAS  PubMed  Google Scholar 

  • Kaufman RJ. 2000. The double-stranded RNA-activated protein kinase PKR. Translational control of gene expression. Sonenberg N, Hershey JWB, Mathews MB, editors. New York: Cold Spring Harbor Laboratory Press; pp. 503–527.

    Google Scholar 

  • Kaufman RJ. 2002. Orchestrating the unfolded protein response in health and disease. J Clin Invest 110: 1389–1398.

    CAS  PubMed  Google Scholar 

  • Kawahara N, Wang Y, Mukasa A, Furuya K, Shimizu T, et al. 2004. Genome-wide gene expression analysis for induced ischemic tolerance and delayed neuronal death following transient global ischemia in rats. J Cereb Blood Flow Metab 24: 212–223.

    Article  CAS  PubMed  Google Scholar 

  • Kelleher RJ, Govindarajan A, Jung H-Y, Kang H, Tonegawa S. 2004a. Translational control by MAPK signaling in long-term synaptic plasticity and memory. Cell 116: 467–479.

    Article  CAS  Google Scholar 

  • Kelleher RJ, Govindarajan A, Tonegawa S. 2004b. Translational regulatory mechanisms in persistent forms of synaptic plasticity. Neuron 44: 59–73.

    Article  CAS  Google Scholar 

  • Kimball SR, Mellor H, Flowers KM, Jefferson LS. 1996. Role of translation initiation factor eIF-2B in the regulation of protein synthesis in mammalian cells. Prog Nucleic Acid Res Mol Biol 54: 165–196.

    Article  CAS  PubMed  Google Scholar 

  • Kitagawa K, Matsumoto M, Tagaya M, Hata R, Ueda H, et al. 1990. “Ischemic tolerance” phenomenon found in the brain. Brain Res 528: 21–24.

    Article  CAS  PubMed  Google Scholar 

  • Knauf U, Tschopp C, Gram H. 2001. Negative regulation of protein translation by mitogen-activated protein kinase-interacting kinases 1 and 2. Mol Cell Biol 21: 5500–5511.

    Article  CAS  PubMed  Google Scholar 

  • Kochetov AV, Ischenko IV, Vorobiev DG, Kel AE, Babenko VN, et al. 1998. Eukaryotic mRNAs encoding abundant and scarce proteins are statistically dissimilar in many structural features. FEBS Lett 440: 351–355.

    Article  CAS  PubMed  Google Scholar 

  • Kojima E, Takeuchi A, Haneda M, Yagi F, Hasegawa T, et al. 2003. The function of GADD34 is a recovery from a shutoff of protein synthesis induced by ER stress-elucidation by GADD34-deficient mice. FASEB J 17, 1573-1575.

    Google Scholar 

  • Kozak M. 1989. The scanning model for translation: An update. J Cell Biol 108: 229–241.

    Article  CAS  PubMed  Google Scholar 

  • Kozak M. 1991. Structural features in eukaryotic mRNAs that modulate the initiation of translation. J Biol Chem 266: 19867–19870.

    CAS  PubMed  Google Scholar 

  • Kozak M. 1994. Determinants of translational fidelity and efficiency in vertebrate mRNAs. Biochimie 76: 815–821.

    Article  CAS  PubMed  Google Scholar 

  • Kozak M. 1999. Initiation of translation in prokaryotes and eukaryotes. Gene 234: 187–208.

    Article  CAS  PubMed  Google Scholar 

  • Kozak M. 2001. Constraints on reinitiation of translation in mammals. Nucleic Acids Res 29: 5226–5232.

    Article  CAS  PubMed  Google Scholar 

  • Krause GS, Tiffany BR. 1993. Suppression of protein synthesis in the reperfused brain. Stroke 24: 747–756.

    CAS  PubMed  Google Scholar 

  • Krichevsky AM, King KS, Donahue CP, Khrapko K, Kosik K. 2003. A microRNA array reveals extensive regulation of microRNAs during brain development. RNA 9: 1274–1281.

    Article  CAS  PubMed  Google Scholar 

  • Kristián T, Bo K, Siesjö MD. 1998. Calcium in ischemic cell death. Stroke 29: 705–718.

    PubMed  Google Scholar 

  • Kumar R, Azam S, Sullivan JM, Owen C, Cavener DR, et al. 2001. Brain ischemia and reperfusion activates the eukaryotic initiation factor 2α kinase, PERK. J Neurochem 77: 1418–1421.

    Article  CAS  PubMed  Google Scholar 

  • Kumar R, Krause GS, Yoshida H, Mori K, De Gracia DJ. 2003. Dysfunction of the unfolded protein response during global brain ischemia and reperfusion. J Cereb Blood Flow Metab 23: 462–471.

    Article  CAS  PubMed  Google Scholar 

  • Lawrence JC Jr, Brunn GJ. 2001. Insulin signaling and the control of PHAS-I phosphorylation. Prog Mol Subcell Biol 26: 1–31.

    CAS  PubMed  Google Scholar 

  • Lee M-S, Kwon YT, Li M, Peng J, Friedlander RM, et al. 2000. Neurotoxicity induces cleavage of p35 to p25 by calpain. Nature 405: 360–368.

    Article  CAS  PubMed  Google Scholar 

  • Lee JH, PestovaT, ShinB-S, Cao C, ChoiSK, et al. 2002. Initiation factor eIF5B catalyzes second GTP-dependent step in eukaryotic translation initiation. Proc Natl Acad Sci USA 99: 16689–16694.

    Article  CAS  PubMed  Google Scholar 

  • Li PA, Howlett W, He QP, Miyashita H, Siddiqui M, et al. 1998. Postischemic treatment with calpain inhibitor MDL 28170 ameliorates brain damage in a gerbil model of global ischemia. Neurosci Lett 247: 17–20.

    Article  CAS  PubMed  Google Scholar 

  • Lipton P. 1999. Ischemic cell death in brain neurons. Physiol Rev 79: 1431–1568.

    CAS  PubMed  Google Scholar 

  • Liu S, Lau L, Wei J, Zhu DY, Zou S, et al. 2004. Expression of Ca2+-permeable AMPA receptor channels primes cell death in transient forebrain ischemia. Neuron 43: 43–55.

    Article  PubMed  Google Scholar 

  • Lu A, Tang Y, Ron R, Clark JF, Aronov BJ, Sharp FR. 2003. Genomics of periinfartation cortex after foal cerebral ischemia. J Cereb Blood Flow Metab 23: 786–810.

    Article  CAS  PubMed  Google Scholar 

  • Lynch M, Fitzgerald C, Johnston KA, Wang S, Schmidt EV. 2004. Activated eIF4E-binding proteins slows G1 progession and blocks transformation by c-myc without inhibiting cell growth. J Biol Chem 279: 3327–3339.

    Article  CAS  PubMed  Google Scholar 

  • MacManus JP, Graber T, Luebbert C, Preston E, Rasquinha I, et al. 2004. Translation-state analysis of gene expression in mouse brain after focal ischemia. J Cereb Blood Flow Metab 24: 657–667.

    Article  CAS  PubMed  Google Scholar 

  • Mahalingam M, Cooper GM. 2001. Phosphorylation of mammalian eIF4E by Mnk1 and Mnk2: tantalizing prospects for a role in translation. Prog Mol Subcell Biol 27: 131–142.

    CAS  Google Scholar 

  • Majumdar R, Bandyopadhyay A, Deng H, Maitra U. 2002. Phosphorylation of mammalian translation initiation factor 5 (eIF5) in vitro and in vivo. Nucleic Acids Res 30: 1154–1162.

    Article  CAS  PubMed  Google Scholar 

  • Marin P, Nastiuk KL, Daniel N, Girault JA, Czernik AJ, et al. 1997. Glutamate-dependent phosphorylation of elongation factor-2 and inhibition of protein synthesis in neurons. J Neurosci 17: 3445–3454.

    CAS  PubMed  Google Scholar 

  • Martín de la Vega C, Burda J, Nemethova M, Quevedo C, Alcázar A, et al. 2001a. Possible mechanisms involved in the down-regulation of translation during transient global ischemia in the rat brain. Biochem. J. 357: 819–826.

    Article  Google Scholar 

  • Martín de la Vega C, Burda J, Salinas M. 2001b. Ischemia-induced inhibition of the initiation factor 2α phosphatase activity in the rat brain. NeuroReport 12: 1021–1025.

    Article  Google Scholar 

  • Martín ME, Pérez MI, Redondo C, Álvarez MI, Salinas M, et al. 2000a. 4E binding protein 1 expression is inversely correlated to the progression of gastrointestinal cancers. Int J Biochem Cell Biol 32: 633–642.

    Article  Google Scholar 

  • Martín ME, Muñoz F, Salinas M, Fando JL. 2000b. Ischemia induces changes in the association of the binding protein 4E-BP1 and eukaryotic initiation factor (eIF) 4G to eIF4E in differentiated PC12 cells. Biochem J 351: 327–334.

    Article  Google Scholar 

  • Maruno M, Yanagihara T. 1990. Progressive loss of messenger RNA and delayed neuronal death following transient cerebral ischemia in gerbils. Neurosci Lett 115: 155–160.

    Article  CAS  PubMed  Google Scholar 

  • Mathews MB, Sonenberg N, Hershey JWB. 2000. Origins and targets of translational control. Translational control. Sonenberg N, Hershey JWB, Mathews MB, editors. New York: Cold Spring Harbor Laboratory Press; pp. 1–29.

    Google Scholar 

  • McKendrick L, Morley SJ, Pain VM, Jagus R, Joshi B. 2001. Phosphorylation of eukaryotic initiation factor 4E (eIF-4E) at Ser209 is not required for protein synthesis in vitro and in vivo. Eur J Biochem 268: 5375–5385.

    Article  CAS  PubMed  Google Scholar 

  • McLeod LE, Proud CG. 2002. ATP depletion increases phosphorylation of elongation factor eEF2 in adult cardiomyocytes independently of inhibition of mTOR signaling. FEBS Lett 531: 448–452.

    Article  CAS  PubMed  Google Scholar 

  • Meijer HA, Thomas AAM. 2002. Control of eukaryotic protein synthesis by upstream open reading frames in the 5′-untranslated region of an mRNA. Biochem J 367: 1–11.

    Article  CAS  PubMed  Google Scholar 

  • Mendez R, Richter JD. 2001. Translational control by CPEB: A means to the end. Nature Rev Mol Cell Biol 2: 521–529.

    Article  CAS  Google Scholar 

  • Mendez R, Wells D. 2002. Location, location, location: Translational control in development and neurobiology. Trends Cell Biol 12: 407–409.

    Article  PubMed  Google Scholar 

  • Mengesdorf T, Proud CG, Mies G, Paschen W. 2002. Mechanisms underlying suppression of protein synthesis induced by transient focal cerebral ischemia in mouse brain. Exp Neurol 177: 538–546.

    Article  CAS  PubMed  Google Scholar 

  • Merrick WC, Hershey JWB. 1996. The pathway and mechanisms of eukaryotic protein synthesis. N, Translational control of gene expression. Sonenberg Hershey JWB, Mathews MB, editors. New York: Cold Spring Harbor Laboratory Press; pp. 31–69.

    Google Scholar 

  • Merrick WC, Nyborg J. 2000. The protein biosynthesis elongation circle. Translational control of gene expression. Sonenberg N, Hershey JWB, Mathews MB, editors. New York: Cold Spring Harbor Laboratory Press; pp. 89–125.

    Google Scholar 

  • Meyuhas O. 2000. Synthesis of the translational apparatus is regulated at the translational level. Eur J Biochem 267: 6321–6330.

    Article  CAS  PubMed  Google Scholar 

  • Meyuhas O, Hornstein E. 2000. Translational control of TOP mRNAs. Translational control of gene expression. Sonenberg N, Hershey JWB, Mathews MB, editors. New York: Cold Spring Harbor Laboratory Press; pp. 671–693.

    Google Scholar 

  • Morimoto K, Brengman J, Yanagihara T. 1978. Further evaluation of polypeptide synthesis in cerebral anoxia, hypoxia, and ischemia. J Neurochem 31: 1277–1282.

    Article  CAS  PubMed  Google Scholar 

  • Morley SJ. 2001. The regulation of eIF4F during cell growth and cell death. Prog Mol Subcell Biol 27: 1–37.

    CAS  PubMed  Google Scholar 

  • Morley SJ, Naegele S. 2002. Phosphorylation of eukaryotic initiation factor (eIF) 4E is not required for de novo protein synthesis following recovery from hypertonic stress in human kidney cells. J Biol Chem 277: 32855–32859.

    Article  CAS  PubMed  Google Scholar 

  • Mothe-Satney I, Yang D, Fadden P, Haystead TAJ, Lawrence JC Jr. 2000. Multiple mechanisms control phosphorylation of PHAS-I in five (S/T)P sites that govern translational repression. Mol Cell Biol 20: 3558–3567.

    Article  CAS  PubMed  Google Scholar 

  • Muñoz F, Martín ME, Manso-Tomico J, Berlanga J, Salinas M, et al. 2000. Ischemia-induced phosphorylation of initiation factor 2 in differentiated PC12 cells. Role for initiation factor 2 phosphatase. J Neurochem 75: 2335–2345.

    Article  PubMed  Google Scholar 

  • Muñoz F, Quevedo C, Martín ME, Alcázar A, Salinas M, et al. 1998. Increased activity of eukaryotic initiation factor 2B in PC12 cells in response to differentiation by nerve growth factor. J Neurochem 71: 1905–1911.

    Article  PubMed  Google Scholar 

  • Myers SJ, Huang Y, Genetta T, Dingledine R. 2004. Inhibition of glutamate receptor 2 translation by a polymorphic repeat sequence in the 5′-untranslated leaders. J Neurosci 24: 3489–3499.

    Article  CAS  PubMed  Google Scholar 

  • Nairn AC, Matsushita M, Nastiuk K, Horiuchi A, Mitsui K-I, et al. 2001. Elongation factor-2 phosphorylation and the regulation of protein synthesis by calcium. Prog Mol Subcell Biol 27: 91–129.

    CAS  PubMed  Google Scholar 

  • Neumar RW, De Gracia DJ, Konkoly LL, Khoury JI, White BC, et al. 1998. Calpain mediates eukaryotic initiation factor 4G degradation during global brain ischemia. J Cereb Blood Flow Metab 18: 876–881.

    Article  CAS  PubMed  Google Scholar 

  • Neumar RW, De Gracia DJ, White BC, McDermott PJ, Evans DR, et al. 1995. Eukaryotic initiation factor 4E degradation during brain ischemia. J Neurochem 65: 1391–1394.

    Article  CAS  PubMed  Google Scholar 

  • Neumar RW, Hagle SM, De Gracia DJ, Krause GS, White BC. 1996. Brain μ-calpain autolysis during global cerebral ischemia. J Neurochem 66: 421–424.

    Article  CAS  PubMed  Google Scholar 

  • Nielsen KH, Szamecz B, Valasek L, Jivotovskaya A, Shin B-S, et al. 2004. Functions of eIF3 downstream of 48S assembly impact AUG recognition and GCN4 translational control. EMBO J 23: 1166–1177.

    Article  CAS  PubMed  Google Scholar 

  • Novoa I, Zeng H, Harding HP, Ron D. 2001. Feedback inhibition of the unfolded protein response by GADD34-mediated dephosphorylation of eIF2α. J Cell Biol 153: 1011–1022.

    Article  CAS  PubMed  Google Scholar 

  • Nowak TS Jr, Fried RL, Lust WD, Passonneau JV. 1985. Changes in brain energy metabolism and protein synthesis following transient bilateral ischemia in the gerbil. J Neurochem 44: 487–494.

    Article  CAS  PubMed  Google Scholar 

  • Nowak TS Jr, Kiessling M. 1999. Reprogramming of gene expression after ischemia. Cerebral Ischemia. Molecular and cellular Pathology. Walz W, editor. Totowa, NJ: Humana Press; pp. 145–215.

    Chapter  Google Scholar 

  • O'Loghlen A, González VM, Piñeiro D, Pérez-Morgado MI, Salinas M, et al. 2004. Identification and molecular characterization of Mnk 1b, a splice variant of human MAP kinase-interacting kinase Mnk1. Exp Cell Res 299: 343–355.

    Article  PubMed  CAS  Google Scholar 

  • O'Loghlen A, Pérez-Morgado MI, Salinas M, Martín ME. 2003. Reversible inhibition of protein phosphatase 1 by hydrogen peroxide. Potential regulation of eIF2α phosphorylation in differentiated PC12 cells. Arch Biochem Biophys 417: 194–202.

    Article  PubMed  CAS  Google Scholar 

  • Ochoa S. 1983. Regulation of protein synthesis initiation in eukaryotes. Arch Biochem Biophys 223: 325–349.

    Article  CAS  PubMed  Google Scholar 

  • Ouellette AJ, Watson RK, Billmire K, Dygert MK, Ingwall JS. 1983. Protein synthesis in the cultured fetal mouse heart: effects of deprivation of oxygen and oxidizable substrate. Biochemistry 22: 1201–1207.

    Article  CAS  PubMed  Google Scholar 

  • Pain VM. 1996. Initiation of protein synthesis in eukaryotic cells. Eur J Biochem 236: 747–771.

    Article  CAS  PubMed  Google Scholar 

  • Paradies MA, Steward O. 1997. Multiple subcellular mRNAs distribution patterns in neurons nonisotopic in situ hybridization analysis. J. Neurobiol. 33: 473–493.

    Article  CAS  PubMed  Google Scholar 

  • Paschen W. 2003. Shutdown of translation: Lethal or protective? Unfolded protein response versus apoptosis. J Cereb Blood Flow Metab 23: 773–779.

    Article  PubMed  Google Scholar 

  • Paschen W, Doutheil J. 1999. Disturbances of the functioning of endoplasmic reticulum: a key mechanism underlying neuronal cell injury? J Cereb Blood Flow Metab 19: 1–18.

    Article  CAS  PubMed  Google Scholar 

  • Paschen W, Aufenberg C, Hotop S, Mengesdorf T. 2003. Transient cerebral ischemia activates processing of xbp1 messenger RNA indicative of endoplasmic reticulum stress. J Cereb Blood Flow Metab 23: 449–461.

    Article  CAS  PubMed  Google Scholar 

  • Paschen W, Hayashi T, Saito A, Chan PH. 2004. GADD34 protein levels increase after transient ischemia in the cortex but not in the CA1 subfield: implications for post-ischemic recovery of protein synthesis in ischemia-resistant cells. J Neurochem 90: 694–701.

    Article  CAS  PubMed  Google Scholar 

  • Patrick GN, Zukerberg L, Nikolic M, de la Monte S, Dikkes P, et al. 1999. Conversion of p35 to p25 deregulates Cdk5 activity and promotes neurodegeneration. Nature 402: 615–622.

    Article  CAS  PubMed  Google Scholar 

  • Pause A, Belsham GJ, Gingras AC, Donzé O, Lin TA, et al. 1994. Insulin-dependent stimulation of protein synthesis by phosphorylation of a regulator of 5′-cap function. Nature 371: 762–767.

    Article  CAS  PubMed  Google Scholar 

  • Pelletier J, Sonnerberg N. 1988. Internal initiation of translation eukaryotic mRNA directed by a sequence conserved from poliovirus RNA. Nature 334: 320–325.

    Article  CAS  PubMed  Google Scholar 

  • Pende M, Um SH, Mieulet V, Sticker M, Goss VL, et al. 2004. S6K1−/− /S6K2−/− Mice exhibit perinatal lethality and rapamycin-sensitive 5′-terminal oligopyrimidine mRNA translation and reveal a mitogen-activated protein kinase-dependent S6 kinase pathway. Mol Cell Biol 24: 3112–3124.

    Article  CAS  PubMed  Google Scholar 

  • Pestova TV, Lomakin IB, Lee JH, Choi SK, Dever TE, et al. 2000. The joining of ribosomal subunits in eukaryotes requires eIF5B. Nature 403: 332–335.

    Article  CAS  PubMed  Google Scholar 

  • Pinkstaff JK, Chapell SA, Mauro VO, Edelman GM, Krushel LA. 2001. Internal initiation of translation of five dendritically localized neuronal mRNAs. Proc Natl Acad Sci USA 98: 2770–2775 .

    Article  CAS  PubMed  Google Scholar 

  • Preiss T, Hentze MW. 2003. Starting the protein synthesis machine: eukaryotic translation initiation. BioEssays 25: 1201–1211.

    Article  CAS  PubMed  Google Scholar 

  • Prévôt D, Darlix JL, Ohlmann T. 2003. Conducting the initiation of protein synthesis: The role of eIF4G. Biol Cell 95: 141–156.

    Article  PubMed  CAS  Google Scholar 

  • Proud C. 2000. Control of the elongation phase of protein synthesis. Translational control of gene expression. Sonenberg N, Hershey JWB, Mathews MB, editors. New York: Cold Spring Harbor Laboratory Press; pp. 719–739.

    Google Scholar 

  • Proud CG. 1992. Protein phosphorylation in translational control. Curr Top Cell Regul 32: 243–385.

    CAS  PubMed  Google Scholar 

  • Proud CG. 2001. Regulation of eukaryotic initiation factor eIF2B. Prog Mol Subcell Biol 26: 95–114.

    CAS  PubMed  Google Scholar 

  • Proud CG. 2004. Role of mTOR signaling in the control of translation initiation and elongation by nutrients. Curr Top Microbiol Immunol 279: 215–244.

    CAS  PubMed  Google Scholar 

  • Pyronnet S, Imataka H, Gingras AC, Fukunaga R, Hunter T, et al. 1999. Human eukaryotic translation initiation factor 4G (eIF4G) recruits Mnk1 to phosphorylate eIF4E. EMBO J 18: 270–279.

    Article  CAS  PubMed  Google Scholar 

  • Pyronnet S. 2000. Phosphorylation of the cap-binding protein eIF4E by the MAPK-activated protein kinase Mnk1. Biochem Pharmacol 60: 1237–1243.

    Article  CAS  PubMed  Google Scholar 

  • Qin H, Raught B, Sonenberg N, Goldstein EG, Edelman AM. 2003. Phosphorylation screening identifies translational initiation factor 4GII as an intracellular target of Ca2+/calmodulin-dependent protein kinase I. J Biol Chem 278: 48570–48579.

    Article  CAS  PubMed  Google Scholar 

  • Quevedo C, Alcázar A, Salinas M. 2000. Two different signal transduction pathways are implicated in the regulation of initiation factor 2B activity in insulin-like growth factor-1-stimulated neuronal cells. J Biol Chem 275: 19192–19197.

    Article  CAS  PubMed  Google Scholar 

  • Quevedo C, Salinas M, Alcazar A. 2002. Regulation of cap-dependent translation by insulin-like growth factor-1 in neuronal cells. Biochem Biophys Res Commun 291: 560–566.

    Article  CAS  PubMed  Google Scholar 

  • Quevedo C, Salinas M, Alcázar A. 2003. Initiation factor 2B activity is regulatad by protein phosphatase 1, which is activated by the mitogen-activated protein kinase-dependent pathway in insulin-like growth factor 1-stimulated neuronal cells. J Biol Chem 278: 16579–16586.

    Article  CAS  PubMed  Google Scholar 

  • Raley-Susman KM, Lipton P. 1990a. In vitro ischemia and protein synthesis in the rat hippocampal slice: the role of calcium and NMDA receptor activation. Brain Res 515: 27–38.

    Article  CAS  Google Scholar 

  • Raley-Susman KM, Lipton P. 1990b. NMDA receptor activation accelerates ischemic energy depletion in the hippocampal slice and the demonstration of a threshold for ischemic damage to protein synthesis. Neurosci Lett 110: 118–123.

    Article  Google Scholar 

  • Raley-Susman KM, Murata J. 1995. Time course of protein changes following in vitro ischemia in the rat hippocampal slice. Brain Res 694: 94–102.

    Article  CAS  PubMed  Google Scholar 

  • Rami A. 2003. Ischemic neuronal death in the rat hippocampus: The calpain–calpastatin–caspase hypothesis. Neurobiol Dis 13: 75–88.

    Article  CAS  PubMed  Google Scholar 

  • Rami A, Agarwal R, Botez G, Winckler J. 2000. μ-Calpain activation, DNA fragmentation, and synergistic effects of caspase and calpain inhibitors in protecting hippocampal neurons from ischemic damage. Brain Res 866: 299–312.

    Article  CAS  PubMed  Google Scholar 

  • Raught B, Gingras AC, Gygi SP, Imataka H, Morino S, et al. 2000. Serum-stimulated, rapamycin-sensitive phosphorylation sites in the eukaryotic translation initiation factor 4GI. EMBO J 19: 434–444.

    Article  CAS  PubMed  Google Scholar 

  • Raught B, Peiretti F, Gingras, A-C, Livingstone M, Shahbazian D, et al. 2004. Phosphorylation of eukaryotic translation initiation factor 4B Ser422 is modulated by S6 kinases. EMBO J 23: 1761–1769.

    Article  CAS  PubMed  Google Scholar 

  • Raught B, Gingras AC. 1999. eIF4E activity is regulated at multiple levels. Int J Biochem Cell Biol 31: 43–57.

    Article  CAS  PubMed  Google Scholar 

  • Read SJ, Parsons AA, Harrison DC, Philpott K, Kabnick K, et al. 2001. Stroke genomics: Approaches to identify, validate, and understand ischemic stroke gene expression. J Cereb Blood Flow Metab 21: 755–778.

    Article  CAS  PubMed  Google Scholar 

  • Richter JD, Theurkauf WE. 2001. The message is in the translation. Science 293: 60–62.

    Article  CAS  PubMed  Google Scholar 

  • Ritcher JD, Lorenz LJ. 2002. Selective translation of mRNAs at synapses. Curr Opin Neurobiol. 12: 300–304.

    Article  Google Scholar 

  • Roads RE. 1999. Signal transduction pathways that regulate eukaryotic protein synthesis. J Biol Chem 274: 30337–30340.

    Article  Google Scholar 

  • Ron D, Harding HP. 2000. PERK and translational control by stress in the endoplasmic reticulum. Translational control of gene expression. Sonenberg N, Hershey JWB, Mathews MB, editors. New York: Cold Spring Harbor Laboratory Press; pp. 547–560.

    Google Scholar 

  • Rook MS, Lu M, Kosik KS. 2000. CaMKIIalpha 3′-untranslated region-directed mRNA translocation in living neurons: Visualization by GFP linkage. J Neurosci 20: 6385–6393.

    CAS  PubMed  Google Scholar 

  • Rosenwald IB. 2004. The role of translation in neoplastic transformation from a pathologist's point of view. Oncogene 23: 3230–3247.

    Article  CAS  PubMed  Google Scholar 

  • Rouault TA, Harford JB. 2000. Translational control of ferritin synthesis. Translational control of gene expression. Sonenberg N, Hershey JWB, Mathews MB, editors. New York: Cold Spring Harbor Laboratory Press; pp. 655–670.

    Google Scholar 

  • Rutkowski DT, Kaufman RJ. 2004. A trip to the ER: Coping with stress. Trends Cell Biol 14: 20–28.

    Article  CAS  PubMed  Google Scholar 

  • Sachs A. 2000. Physical and functional interactions between the mRNA cap structure and the poly(A) tail. Translational control of gene expression. Sonenberg N, Hershey JWB, Mathews MB, editors. New York: Cold Spring Harbor Laboratory Press; pp. 447–466.

    Google Scholar 

  • Sarkissian M, Mendez R, Richter JD. 2004. Progesterone and insulin stimulation of CPEB-dependent polyadenylation is regulated by Aurora A and glycogen synthase-3. Genes Dev 18: 48–61.

    Article  CAS  PubMed  Google Scholar 

  • Scheetz AJ, Nairn AC, Constantine-Paton M. 2000. NMDA receptor-mediated control of protein synthesis at developing synapses. Nat Neurosci 3: 211–216.

    Article  CAS  PubMed  Google Scholar 

  • Schmelzle T, Hall MN. 2000. TOR, a central controller of cell growth. Cell 103: 253–262.

    Article  CAS  PubMed  Google Scholar 

  • Schneider RJ. 2000. Translational control during heat shock. Translational control of gene expression. Sonenberg N, Hershey JWB, Mathews MB, editors. New York: Cold Spring Harbor Laboratory Press; pp. 581–593.

    Google Scholar 

  • Sharp FR, Aigang L, Yang T, Millhorn DE. 2000. Multiple molecular penumbras after focal cerebral ischemia. J Cereb Blood Flow Metab 20: 1011–1032.

    Article  CAS  PubMed  Google Scholar 

  • Shelton SB, Johnson GW. 2004. Cyclin-dependent kinase-5 in neurodegeneration. J Neurohem 88: 1313–1326.

    Article  CAS  Google Scholar 

  • Shi Y, Vattem KM, Sood R, An J, Liang J, et al. 1998. Identification and characterization of pancreatic eukaryotic initiation factor 2α-subunit kinase, PEK, involved in translational control. Mol Cell Biol 18: 7499–7509.

    CAS  PubMed  Google Scholar 

  • Siesjö BK, Elmér E, Janelidze S, Keep M, Kristián T, et al. 1998. Role and mechanisms of secondary mitochondrial failure. Acta Neurochir Suppl (Wien) 73: 7–13.

    Google Scholar 

  • Stebbins-Boaz B, Cao Q, de Moor CH, Mendez R, Richter JD. 1999. Maskin is a CPEB-associated factor that transiently interacts with eIF4E. Mol Cell Biol 4: 1017–1027.

    CAS  Google Scholar 

  • Steward O, Schuman EM. 2001. Protein synthesis at synaptic sites on dendrites. Annu Rev Neurosci 24: 299–325.

    Article  CAS  PubMed  Google Scholar 

  • Steward O, Schuman EM. 2003. Compartmentalized synthesis and degradation of proteins in neurons. Neuron 40: 347–359.

    Article  CAS  PubMed  Google Scholar 

  • Stolovich M, Tang H, Hornstein E, Levy G, Cohen R, et al. 2002. Transduction of growth or mitogenic signals into translational activation of TOP mRNAs is fully reliant on the phosphatidylinositol-3-kinase-mediated pathway but requires neither S6K1 nor rpS6 phosphorylation. Mol Cell Biol 22: 8101–8113.

    Article  CAS  PubMed  Google Scholar 

  • Tanaka H, Grooms SY, Bennett VL, Zukin RS. 2000. The AMPAR subunit GluR2: still front and center-stage. Brain Res 886: 190–207.

    Article  CAS  PubMed  Google Scholar 

  • Tang SJ, Reis G, Kang H, Gingras AC, Sonenberg N, et al. 2002. A rapamycin-sensitive signaling pathway contributes to long-term synaptic plasticity in the hippocampus. Proc Natl Acad Sci USA 99: 467–472.

    Article  CAS  PubMed  Google Scholar 

  • Theurl I, Zoller H, Pbrist P, Datz C, Bachmann F, et al. 2004. Iron stimulates hepatitis C virus translation via stimulation of expression of translation initiation factor 3. J Infect Dis 190: 819–825.

    Article  CAS  PubMed  Google Scholar 

  • Thilmann R, Xie Y, Kleihues P, Kiessling M. 1986. Persistent inhibition of protein synthesis precedes delayed neuronal death in postischemic gerbil hippocampus. Acta Neuropathol 71: 88–93.

    Article  CAS  PubMed  Google Scholar 

  • Traugh JA. 2001. Insulin, phorbol ester, and serum regulate the elongation phase of protein synthesis. Prog Mol Subcell Biol 26: 33–48.

    CAS  PubMed  Google Scholar 

  • Tsai L-H, Delalle I, Caviness VS Jr, Chae T, Harlow E. 1994. p35 is a neural-specific regulatory subunit of cyclin-dependent kinase 5. Nature 371: 419–426.

    Article  CAS  PubMed  Google Scholar 

  • Ueda T, Watanabe-Fukunaga R, Fukuyama H, Nagata S, Fukunaga R. 2004. Mnk2 and Mnk1 are essential for constitutive and inducible phosphorylation of eukaryotic initiation factor 4E but not for cell growth or development. Mol Cell Biol 24: 6539–6549.

    Article  CAS  PubMed  Google Scholar 

  • Velden van der AW, Thomas AAM. 1999. The role of the 5′-untranslated region of an mRNA in translation regulation during development. Int J Biochem Cell Biol 31: 87–106.

    Article  PubMed  Google Scholar 

  • Vattem KM, Wek RC. 2004. Reinitiation involving upstream ORFs regulates ATF4 mRNA translation in mammalian cells. Proc Natl Acad Sci USA 101: 11269–11274.

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Iacoangeli A, Popp S, Muslimov IA, Imataka H, et al. 2002. Dendritic BC1 RNA: Functional role in regulation of translation initiation. J Neurosci 22: 10232–10241.

    CAS  PubMed  Google Scholar 

  • Wang J, Liu S, Fu Y, Wang JH, Lu Y. 2003. Cdk5 activation induces hippocampal CA1 cell death by directly phosphorylating NMDA receptors. Nature Neurosci 6: 1039–1047.

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Paulin FEM, Campbell LE, Gómez E, O'Brien K, et al. 2001a. Eukaryotic initiation factor 2B: Identification of multiple phosphorylation sites in the ε-subunit and their functions in vivo. EMBO J 20: 4349–4359.

    Article  CAS  Google Scholar 

  • Wang S, Lloyd RV, Hutzler MJ, Rosenwald IB, Safran MS, et al. 2001b. Expression of eukaryotic translation initiation factors 4E and 2α correlates with the progression of thyroid carcinoma. Thyroid 11: 1101–1107.

    Article  CAS  Google Scholar 

  • Welch EM, Wang W, Peltz SW. 2000. Translation termination: It's not the end of the story. N, Translational control of gene expression. Sonenberg Hershey JWB, Mathews MB, (eds) editors. New York: Cold Spring Harbor Laboratory Press; pp. 467–485.

    Google Scholar 

  • Widmann R, Kuroiwa T, Bonnekoh P, Hossmann KA. 1991. (14C) Leucine incorporation into brain proteins in gerbils after transient ischemia: Relationship to selective vulnerability of hippocampus. J Neurochem 56: 789–796.

    Article  CAS  PubMed  Google Scholar 

  • Woods YL, Cohen P, Becker W, Jakes R, Goedert M, et al. 2001. The kinase DYRK phosphorylates protein synthesis initiation factor eIF2Bε at Ser 539 and the microtubule-associated protein tau at Thr 212: potential role for DYRK as a glycogen synthase kinase 3-priming kinase. Biochem J 355: 609–615.

    CAS  PubMed  Google Scholar 

  • Wu L, Wells D, Tay J, Mendis D, Abbott MA, et al. 1998. CEBP-mediated cytoplasmic polyadenylation and the regulation of experience-dependent translation of α-CAMKII mRNA at synapses. Neuron 21: 1129–1139.

    Article  CAS  PubMed  Google Scholar 

  • Xie Y, Mies G, Hossmann KA. 1989. Ischemic threshold of brain protein synthesis after unilateral carotid artery occlusion in gerbils. Stroke 20: 620–626.

    CAS  PubMed  Google Scholar 

  • Yaman I, Fernandez J, Liu H, Caprara M, Komar AA, et al. 2003. The zipper model of translational control: A small upstream ORF is the switch that controls structural remodeling of an mRNA leader. Cell 113: 519–531.

    Article  CAS  PubMed  Google Scholar 

  • Yan L, Nairn AC, Palfrey HC, Brady MJ. 2003. Glucose regulates EF-2 phosphorylation and protein translation by a protein phosphatase-2A-dependent mechanism in INS-1-derived 832/13 cells. J Biol Chem 278: 18177–18183.

    Article  CAS  PubMed  Google Scholar 

  • Zalfa F, Giorgi M, Primerano B, Moro A, Di Penta A, et al. 2003. The fragile X syndrome protein FMRP associates with BC1 RNA and regulates the translation of specific mRNAs at synapses. Cell 112: 317–327.

    Article  CAS  PubMed  Google Scholar 

  • Zhang C, Siman R, Xu YA, Mills AM, Frederick JR, c2002. Comparison of calpain and caspase activities in the adult rat brain after transient forebrain ischemia. Neurobiol Dis 10: 289–305.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We apologize to investigators whose work was not cited or discussed in detail due to space limitations. We want to thank our collaborators Alberto Alcázar, Juan L. Fando, M. Elena Martín, and Victor M. González for valuable suggestions and the critical reading of this chapter. We are also indebted to our fellows, Milina Hrehorovská, Lidia García, Cristina Martín de la Vega, Francisco Muñoz, Celia Quevedo, and Ana O'Loghlen, for the excellent work performed in the last years. Work from the authors’ own laboratory was supported by grants FIS 02/0304 and 05/0312 (Ministerio de Sanidad y Consumo) and SK-VEGA 2/3219/23 (Slovak Academy of Sciences).

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science+Business Media, LLC

About this entry

Cite this entry

Salinas, M., Burda, J. (2007). Regulation of Protein Metabolism. In: Lajtha, A., Banik, N. (eds) Handbook of Neurochemistry and Molecular Neurobiology. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-30379-6_1

Download citation

Publish with us

Policies and ethics