Skip to main content

Axonal Damage due to Traumatic Brain Injury

  • Reference work entry
Handbook of Neurochemistry and Molecular Neurobiology

Abstract:

Shearing motions during head injury often result in damage to axons scattered throughout the brain parenchyma. Although diffuse axonal injury (DAI) is thought to be a major contributor to morbidity after traumatic brain injury, no clinically approved treatment strategies are currently available to target dysfunctional or axotomized axons. Here, histological and imaging methods for detecting traumatic axonal injury (TAI) are reviewed, along with experimental models that have been developed to study the relationship between mechanical deformation and axonal injury. Data from clinical and experimental studies are summarized, which describe acute and progressive alterations in the myelin sheath and the axolemma, including modifications of axolemma permeability characteristics and membrane-bound proteins. The cytoskeleton is markedly affected by TAI, as evidenced by disruption of both neurofilament and microtubule networks and impairment of axonal transport. Several studies have demonstrated a role for calpains in posttraumatic axonal damage, while evidence for activity of other proteases is more preliminary. To date, most experimental studies exploring treatment strategies for TAI have focused on either the inhibition of mitochondrial permeability transition or the attenuation of axonal pathology through hypothermia. These studies and other novel approaches are reviewed. In closing, recent developments in methodologies for assessing axonal injury are outlined and opportunities for future investigations are suggested.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 249.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

APP:

β-amyloid precursor protein

CCI:

controlled cortical impact

CNS:

central nervous system

CsA:

cyclosporin A

CT:

computerized tomography

DAI:

diffuse axonal injury

FP:

fluid percussion injury

GCS:

Glasgow Coma Scale

GOS:

Glasgow Outcome Scale

HRP:

horseradish peroxidase

MRI:

magnetic resonance imaging

MRS:

magnetic resonance spectroscopy

NFH:

neurofilament protein heavy subunit

NFL:

neurofilament protein light subunit

NFM:

neurofilament protein medium subunit

TAI:

traumatic axonal injury

TBI:

traumatic brain injury

References

  • Adams JH, Mitchell DE, Graham DI, Doyle D. 1977. Diffuse brain damage of immediate impact type. Its relationship to ‘primary brain-stem damage’ in head injury. Brain 100: 489–502.

    CAS  PubMed  Google Scholar 

  • Adelson PD, Jenkins LW, Hamilton RL, Robichaud P, Tran MP, et al. 2001. Histopathologic response of the immature rat to diffuse traumatic brain injury. J Neurotrauma 18: 967–976.

    CAS  PubMed  Google Scholar 

  • Adelson PD, Robichaud P, Hamilton RL, Kochanek PM. 1996. A model of diffuse traumatic brain injury in the immature rat. J Neurosurg 85: 877–884.

    CAS  PubMed  Google Scholar 

  • Bain AC, Raghupathi R, Meaney DF. 2001. Dynamic stretch correlates to both morphological abnormalities and electrophysiological impairment in a model of traumatic axonal injury. J Neurotrauma 18: 499–511.

    CAS  PubMed  Google Scholar 

  • Baker AJ, Phan N, Moulton RJ, Fehlings MG, Yucel Y, et al. 2002. Attenuation of the electrophysiological function of the corpus callosum after fluid percussion injury in the rat. J Neurotrauma 19: 587–599.

    CAS  PubMed  Google Scholar 

  • Blumbergs PC, Scott G, Manavis J, Wainwright H, Simpson DA, et al. 1994. Staining of amyloid precursor protein to study axonal damage in mild head injury. Lancet 344: 1055–1056.

    CAS  PubMed  Google Scholar 

  • Blumbergs PC, Scott G, Manavis J, Wainwright H, Simpson DA, et al. 1995. Topography of axonal injury as defined by amyloid precursor protein and the sector scoring method in mild and severe closed head injury. J Neurotrauma 12: 565–572.

    CAS  PubMed  Google Scholar 

  • Bramlett HM, Dietrich WD. 2002. Quantitative structural changes in white and gray matter 1 year following traumatic brain injury in rats. Acta Neuropathol (Berl) 103: 607–614.

    Google Scholar 

  • Bramlett HM, Kraydieh S, Green EJ, Dietrich WD. 1997. Temporal and regional patterns of axonal damage following traumatic brain injury: A β-amyloid precursor protein immunocytochemical study in rats. J Neuropathol Exp Neurol 56: 1132–1141.

    CAS  PubMed  Google Scholar 

  • Brooks WM, Friedman SD, Gasparovic C. 2001. Magnetic resonance spectroscopy in traumatic brain injury. J Head Trauma Rehabil 16: 149–164.

    CAS  PubMed  Google Scholar 

  • Brown A. 2003. Axonal transport of membranous and nonmembranous cargoes: A unified perspective. J Cell Biol 160: 817–821.

    CAS  PubMed  Google Scholar 

  • Buki A, Farkas O, Doczi T, Povlishock JT. 2003. Preinjury administration of the calpain inhibitor MDL-28170 attenuates traumatically induced axonal injury. J Neurotrauma 20: 261–268.

    CAS  PubMed  Google Scholar 

  • Buki A, Koizumi H, Povlishock JT. 1999a. Moderate posttraumatic hypothermia decreases early calpain-mediated proteolysis and concomitant cytoskeletal compromise in traumatic axonal injury. Exp Neurol 159: 319–328.

    CAS  Google Scholar 

  • Buki A, Okonkwo DO, Povlishock JT. 1999b. Postinjury cyclosporin A administration limits axonal damage and disconnection in traumatic brain injury. J Neurotrauma 16: 511–521.

    CAS  Google Scholar 

  • Buki A, Okonkwo DO, Wang KK, Povlishock JT. 2000. Cytochrome c release and caspase activation in traumatic axonal injury. J Neurosci 20: 2825–2834.

    CAS  PubMed  Google Scholar 

  • Buki A, Siman R, Trojanowski JQ, Povlishock JT. 1999c. The role of calpain-mediated spectrin proteolysis in traumatically induced axonal injury. J Neuropathol Exp Neurol 58: 365–375.

    CAS  Google Scholar 

  • Chen XH, Meaney DF, Xu BN, Nonaka M, McIntosh TK, et al. 1999. Evolution of neurofilament subtype accumulation in axons following diffuse brain injury in the pig. J Neuropathol Exp Neurol 58: 588–596.

    CAS  PubMed  Google Scholar 

  • Chen XH, Siman R, Iwata A, Meaney DF, Trojanowski JQ, et al. 2004. Long-term accumulation of amyloid-β, β-secretase, presenilin-1, and caspase-3 in damaged axons following brain trauma. Am J Pathol 165: 357–371.

    CAS  PubMed  Google Scholar 

  • Christman CW, Grady MS, Walker SA, Holloway KL, Povlishock JT. 1994. Ultrastructural studies of diffuse axonal injury in humans. J Neurotrauma 11: 173–186.

    CAS  PubMed  Google Scholar 

  • Christman CW, Salvant JB Jr, Walker SA, Povlishock JT. 1997. Characterization of a prolonged regenerative attempt by diffusely injured axons following traumatic brain injury in adult cat: A light and electron microscopic immunocytochemical study. Acta Neuropathol (Berl) 94: 329–337.

    CAS  Google Scholar 

  • Clifton GL. 2004. Is keeping cool still hot? An update on hypothermia in brain injury. Curr Opin Crit Care 10: 116–119.

    PubMed  Google Scholar 

  • Cyr JL, Brady ST. 1992. Molecular motors in axonal transport. Cellular and molecular biology of kinesin. Mol Neurobiol 6: 137–155.

    CAS  PubMed  Google Scholar 

  • Dixon CE, Clifton GL, Lighthall JW, Yaghmai AA, Hayes RL. 1991. A controlled cortical impact model of traumatic brain injury in the rat. J Neurosci Meth 39: 253–262.

    CAS  Google Scholar 

  • Dunn-Meynell AA, Levin BE. 1997. Histological markers of neuronal, axonal and astrocytic changes after lateral rigid impact traumatic brain injury. Brain Res 761: 25–41.

    CAS  PubMed  Google Scholar 

  • Erb DE, Povlishock JT. 1988. Axonal damage in severe traumatic brain injury: An experimental study in cat. Acta Neuropathol (Berl) 76: 347–358.

    CAS  Google Scholar 

  • Farkas O, Tamas A, Zsombok A, Reglodi D, Pal J, et al. 2004. Effects of pituitary adenylate cyclase activating polypeptide in a rat model of traumatic brain injury. Regul Pept 123: 69–75.

    CAS  PubMed  Google Scholar 

  • Ferrand-Drake M, Zhu C, Gido G, Hansen AJ, Karlsson JO, et al. 2003. Cyclosporin A prevents calpain activation despite increased intracellular calcium concentrations, as well as translocation of apoptosis-inducing factor, cytochrome c and caspase-3 activation in neurons exposed to transient hypoglycemia. J Neurochem 85: 1431–1442.

    CAS  PubMed  Google Scholar 

  • Foda MA, Marmarou A. 1994. A new model of diffuse brain injury in rats. II. Morphological characterization. J Neurosurg 80: 301–313.

    CAS  PubMed  Google Scholar 

  • Gabbita SP, Scheff SW, Menard RM, Roberts K, Fugaccia I, et al. 2005. Cleaved-tau: A biomarker of neuronal damage after traumatic brain injury. J Neurotrauma 22: 83–94.

    PubMed  Google Scholar 

  • Galbraith JA, Thibault LE, Matteson DR. 1993. Mechanical and electrical responses of the squid giant axon to simple elongation. J Biomech Eng 115: 13–22.

    CAS  PubMed  Google Scholar 

  • Gallant PE, Galbraith JA. 1997. Axonal structure and function after axolemmal leakage in the squid giant axon. J Neurotrauma 14: 811–822.

    CAS  PubMed  Google Scholar 

  • Gennarelli TA, Thibault LE, Adams JH, Graham DI, Thompson CJ, et al. 1982. Diffuse axonal injury and traumatic coma in the primate. Ann Neurol 12: 564–574.

    CAS  PubMed  Google Scholar 

  • Gennarelli TA, Thibault LE, Tipperman R, Tomei G, Sergot R, et al. 1989. Axonal injury in the optic nerve: A model simulating diffuse axonal injury in the brain. J Neurosurg 71: 244–253.

    CAS  PubMed  Google Scholar 

  • Gennarelli TA, Tipperman R, Maxwell WL, Graham DI, Adams JH, et al. 1993. Traumatic damage to the nodal axolemma: An early, secondary injury. Acta Neurochir Suppl (Wien) 57: 49–52.

    CAS  Google Scholar 

  • Gentleman SM, Nash MJ, Sweeting CJ, Graham DI, Roberts GW. 1993. β-amyloid precursor protein (β-APP) as a marker for axonal injury after head injury. Neurosci Lett 160: 139–144.

    CAS  PubMed  Google Scholar 

  • Gomez-Vicente V, Donovan M, Cotter TG. 2005. Multiple death pathways in retina-derived 661W cells following growth factor deprivation: Crosstalk between caspases and calpains. Cell Death Differ 12: 796–804.

    CAS  PubMed  Google Scholar 

  • Grady MS, McLaughlin MR, Christman CW, Valadka AB, Fligner CL, et al. 1993. The use of antibodies targeted against the neurofilament subunits for the detection of diffuse axonal injury in humans. J Neuropathol Exp Neurol 52: 143–152.

    CAS  PubMed  Google Scholar 

  • Graham DI, Raghupathi R, Saatman KE, Meaney D, McIntosh TK. 2000. Tissue tears in the white matter after lateral fluid percussion brain injury in the rat: Relevance to human brain injury. Acta Neuropathol (Berl) 99: 117–124.

    CAS  Google Scholar 

  • Gray JA, Ritchie JM. 1954. Effects of stretch on single myelinated nerve fibres. J Physiol 124: 84–99.

    CAS  PubMed  Google Scholar 

  • Gultekin SH, Smith TW. 1994. Diffuse axonal injury in craniocerebral trauma. A comparative histologic and immunohistochemical study. Arch Pathol Lab Med 118: 168–171.

    CAS  PubMed  Google Scholar 

  • Haftek J. 1970. Stretch injury of peripheral nerve. Acute effects of stretching on rabbit nerve. J Bone Joint Surg Br 52: 354–365.

    CAS  PubMed  Google Scholar 

  • Hall ED, Sullivan PG, Gibson TR, Pavel KM, Thompson BM, et al. 2005. Spatial and temporal characteristics of neurodegeneration after controlled cortical impact in mice: More than a focal brain injury. J Neurotrauma 22: 252–265.

    PubMed  Google Scholar 

  • Huisman TA, Schwamm LH, Schaefer PW, Koroshetz WJ, Shetty-Alva N, et al. 2004. Diffusion tensor imaging as potential biomarker of white matter injury in diffuse axonal injury. AJNR Am J Neuroradiol 25: 370–376.

    PubMed  Google Scholar 

  • Hurley RA, McGowan JC, Arfanakis K, Taber KH. 2004. Traumatic axonal injury: Novel insights into evolution and identification. J Neuropsychiatry Clin Neurosci 16: 1–7.

    PubMed  Google Scholar 

  • Ingebrigtsen T, Romner B. 2003. Biochemical serum markers for brain damage: A short review with emphasis on clinical utility in mild head injury. Restor Neurol Neurosci 21: 171–176.

    CAS  PubMed  Google Scholar 

  • Iwata A, Stys PK, Wolf JA, Chen XH, Taylor AG, et al. 2004. Traumatic axonal injury induces proteolytic cleavage of the voltage-gated sodium channels modulated by tetrodotoxin and protease inhibitors. J Neurosci 24: 4605–4613.

    CAS  PubMed  Google Scholar 

  • Jafari SS, Maxwell WL, Neilson M, Graham DI. 1997. Axonal cytoskeletal changes after non-disruptive axonal injury. J Neurocytol 26: 207–221.

    CAS  PubMed  Google Scholar 

  • Jafari SS, Nielson M, Graham DI, Maxwell WL. 1998. Axonal cytoskeletal changes after nondisruptive axonal injury. II. Intermediate sized axons. J Neurotrauma 15: 955–966.

    CAS  PubMed  Google Scholar 

  • Jennett B, Adams JH, Murray LS, Graham DI. 2001. Neuropathology in vegetative and severely disabled patients after head injury. Neurology 56: 486–490.

    CAS  PubMed  Google Scholar 

  • Julien JP, Mushynski WE. 1983. The distribution of phosphorylation sites among identified proteolytic fragments of mammalian neurofilaments. J Biol Chem 258: 4019–4025.

    CAS  PubMed  Google Scholar 

  • Koike H. 1987. The extensibility of aplysia nerve and the determination of true axon length. J Physiol 390: 469–487.

    CAS  PubMed  Google Scholar 

  • Koizumi H, Povlishock JT. 1998. Posttraumatic hypothermia in the treatment of axonal damage in an animal model of traumatic axonal injury. J Neurosurg 89: 303–309.

    CAS  PubMed  Google Scholar 

  • Koo EH, Sisodia SS, Archer DR, Martin LJ, Weidemann A, et al. 1990. Precursor of amyloid protein in Alzheimer disease undergoes fast anterograde axonal transport. Proc Natl Acad Sci USA 87: 1561–1565.

    CAS  PubMed  Google Scholar 

  • Kraus JF, McArthur DL, Silverman TA, Jayaraman M. 1996. Epidemiology of brain injury. Neurotrama. Narayan RK, Wilberger JE, Povlishock JT, editors. New York: McGraw-Hill; pp. 13–30.

    Google Scholar 

  • Kupina NC, Detloff MR, Bobrowski WF, Snyder BJ, Hall ED. 2003. Cytoskeletal protein degradation and neurodegeneration evolves differently in males and females following experimental head injury. Exp Neurol 180: 55–73.

    CAS  PubMed  Google Scholar 

  • Lasek RJ, Garner JA, Brady ST. 1984. Axonal transport of the cytoplasmic matrix. J Cell Biol 99: 212s–221s.

    CAS  PubMed  Google Scholar 

  • Lenzlinger PM, Shimizu S, Marklund N, Thompson HJ, Schwab ME, et al. 2005. Delayed inhibition of Nogo-A does not alter injury-induced axonal sprouting but enhances recovery of cognitive function following experimental traumatic brain injury in rats. Neuroscience 134: 1047–1056.

    CAS  PubMed  Google Scholar 

  • Levin HS, Williams DH, Valastro M, Eisenberg HM, Crofford MJ, et al. 1990. Corpus callosal atrophy following closed head injury: Detection with magnetic resonance imaging. J Neurosurg 73: 77–81.

    CAS  PubMed  Google Scholar 

  • Lewen A, Li GL, Olsson Y, Hillered L. 1996. Changes in microtubule-associated protein 2 and amyloid precursor protein immunoreactivity following traumatic brain injury in rat: Influence of MK-801 treatment. Brain Res 719: 161–171.

    CAS  PubMed  Google Scholar 

  • Lighthall JW, Goshgarian HG, Pinderski CR. 1990. Characterization of axonal injury produced by controlled cortical impact. J Neurotrauma 7: 65–76.

    CAS  PubMed  Google Scholar 

  • Marion DW. 2002. Moderate hypothermia in severe head injuries: The present and the future. Curr Opin Crit Care 8: 111–114.

    PubMed  Google Scholar 

  • Marion DW, White MJ. 1996. Treatment of experimental brain injury with moderate hypothermia and 21-aminosteroids. J Neurotrauma 13: 139–147.

    CAS  PubMed  Google Scholar 

  • Marmarou A, Foda MA, van den Brink W, Campbell J, Kita H, et al. 1994. A new model of diffuse brain injury in rats. I. Pathophysiology and biomechanics. J Neurosurg 80: 291–300.

    CAS  PubMed  Google Scholar 

  • Marmarou CR, Walker SA, Davis CL, Povlishock JT. 2005. Quantitative analysis of the relationship between intra-axonal neurofilament compaction and impaired axonal transport following diffuse traumatic brain injury. J Neurotrauma 22: 1066–1080.

    PubMed  Google Scholar 

  • Maxwell WL. 1996. Histopathological changes at central nodes of Ranvier after stretch-injury. Microsc Res Tech 34: 522–535.

    CAS  PubMed  Google Scholar 

  • Maxwell WL, Domleo A, McColl G, Jafari SS, Graham DI. 2003. Post-acute alterations in the axonal cytoskeleton after traumatic axonal injury. J Neurotrauma 20: 151–168.

    PubMed  Google Scholar 

  • Maxwell WL, Graham DI. 1997. Loss of axonal microtubules and neurofilaments after stretch-injury to guinea pig optic nerve fibers. J Neurotrauma 14: 603–614.

    CAS  PubMed  Google Scholar 

  • Maxwell WL, Irvine A, Graham, DI, Adams JH, Gennarelli TA, et al. 1991. Focal axonal injury: The early axonal response to stretch. J Neurocytol 20: 157–164.

    CAS  PubMed  Google Scholar 

  • Maxwell WL, Kansagra AM, Graham DI, Adams JH, Gennarelli TA. 1988. Freeze-fracture studies of reactive myelinated nerve fibres after diffuse axonal injury. Acta Neuropathol (Berl) 76: 395–406.

    CAS  Google Scholar 

  • Maxwell WL, Kosanlavit R, McCreath BJ, Reid O, Graham DI. 1999. Freeze-fracture and cytochemical evidence for structural and functional alteration in the axolemma and myelin sheath of adult guinea pig optic nerve fibers after stretch injury. J Neurotrauma 16: 273–284.

    CAS  PubMed  Google Scholar 

  • Maxwell WL, McCreath BJ, Graham DI, Gennarelli TA. 1995. Cytochemical evidence for redistribution of membrane pump calcium-ATPase and ecto-Ca-ATPase activity, and calcium influx in myelinated nerve fibres of the optic nerve after stretch injury. J Neurocytol 24: 925–942.

    CAS  PubMed  Google Scholar 

  • Maxwell WL, Povlishock JT, Graham DL. 1997. A mechanistic analysis of nondisruptive axonal injury: A review. J Neurotrauma 14: 419–440.

    CAS  PubMed  Google Scholar 

  • Maxwell WL, Watson A, Queen R, Conway B, Russell D, et al. 2005. Slow, medium, or fast re-warming following post-traumatic hypothermia therapy? An ultrastructural perspective. J Neurotrauma 22: 873–884.

    PubMed  Google Scholar 

  • Maxwell WL, Watt C, Graham DI, Gennarelli TA. 1993. Ultrastructural evidence of axonal shearing as a result of lateral acceleration of the head in non-human primates. Acta Neuropathol (Berl) 86: 136–144.

    CAS  Google Scholar 

  • McCracken E, Hunter AJ, Patel S, Graham DI, Dewar D. 1999. Calpain activation and cytoskeletal protein breakdown in the corpus callosum of head-injured patients. J Neurotrauma 16: 749–761.

    CAS  PubMed  Google Scholar 

  • McKenzie KJ, McLellan DR, Gentleman SM, Maxwell WL, Gennarelli TA, et al. 1996. Is β-APP a marker of axonal damage in short-surviving head injury?. Acta Neuropathol (Berl) 92: 608–613.

    CAS  Google Scholar 

  • Meaney DF, Ross DT, Winkelstein BA, Brasko J, Goldstein D, et al. 1994. Modification of the cortical impact model to produce axonal injury in the rat cerebral cortex. J Neurotrauma 11: 599–612.

    CAS  PubMed  Google Scholar 

  • Mittl RL, Grossman RI, Hiehle JF, Hurst RW, Kauder DR, et al. 1994. Prevalence of MR evidence of diffuse axonal injury in patients with mild head injury and normal head CT findings. AJNR Am J Neuroradiol 15: 1583–1589.

    CAS  PubMed  Google Scholar 

  • Nixon RA, Paskevich PA, Sihag RK, Thayer CY. 1994. Phosphorylation on carboxyl terminus domains of neurofilament proteins in retinal ganglion cell neurons in vivo: Influences on regional neurofilament accumulation, interneurofilament spacing, and axon caliber. J Cell Biol 126: 1031–1046.

    CAS  PubMed  Google Scholar 

  • Oehmichen M, Meissner C, Schmidt V, Pedal I, Konig HG, et al. 1998. Axonal injury – a diagnostic tool in forensic neuropathology? A review. Forensic Sci Int 95: 67–83.

    CAS  PubMed  Google Scholar 

  • Ogata M, Tsuganezawa O. 1999. Neuron-specific enolase as an effective immunohistochemical marker for injured axons after fatal brain injury. Int J Legal Med 113: 19–25.

    CAS  PubMed  Google Scholar 

  • Okonkwo DO, Melon DE, Pellicane AJ, Mutlu LK, Rubin DG, et al. 2003. Dose–response of cyclosporin A in attenuating traumatic axonal injury in rat. Neuroreport 14: 463–466.

    CAS  PubMed  Google Scholar 

  • Okonkwo DO, Pettus EH, Moroi J, Povlishock JT. 1998. Alteration of the neurofilament sidearm and its relation to neurofilament compaction occurring with traumatic axonal injury. Brain Res 784: 1–6.

    CAS  PubMed  Google Scholar 

  • Okonkwo DO, Povlishock JT. 1999. An intrathecal bolus of cyclosporin A before injury preserves mitochondrial integrity and attenuates axonal disruption in traumatic brain injury. J Cereb Blood Flow Metab 19: 443–451.

    CAS  PubMed  Google Scholar 

  • Paterakis K, Karantanas AH, Komnos A, Volikas Z. 2000. Outcome of patients with diffuse axonal injury: The significance and prognostic value of MRI in the acute phase. J Trauma 49: 1071–1075.

    CAS  PubMed  Google Scholar 

  • Pettus EH, Christman CW, Giebel ML, Povlishock JT. 1994. Traumatically induced altered membrane permeability: Its relationship to traumatically induced reactive axonal change. J Neurotrauma 11: 507–522.

    CAS  PubMed  Google Scholar 

  • Pettus EH, Povlishock JT. 1996. Characterization of a distinct set of intra-axonal ultrastructural changes associated with traumatically induced alteration in axolemmal permeability. Brain Res 722: 1–11.

    CAS  PubMed  Google Scholar 

  • Pfister KK. 1999. Cytoplasmic dynein and microtubule transport in the axon: The action connection. Mol Neurobiol 20: 81–91.

    CAS  PubMed  Google Scholar 

  • Pierce JE, Smith DH, Trojanowski JQ, McIntosh TK. 1998. Enduring cognitive, neurobehavioral and histopathological changes persist for up to one year following severe experimental brain injury in rats. Neuroscience 87: 359–369.

    CAS  PubMed  Google Scholar 

  • Pierce JE, Trojanowski JQ, Graham DI, Smith DH, McIntosh TK. 1996. Immunohistochemical characterization of alterations in the distribution of amyloid precursor proteins and β-amyloid peptide after experimental brain injury in the rat. J Neurosci 16: 1083–1090.

    CAS  PubMed  Google Scholar 

  • Pineda JA, Wang KK, Hayes RL. 2004. Biomarkers of proteolytic damage following traumatic brain injury. Brain Pathol 14: 202–209.

    CAS  PubMed  Google Scholar 

  • Povlishock JT, Becker DP, Cheng CL, Vaughan GW. 1983. Axonal change in minor head injury. J Neuropathol Exp Neurol 42: 225–242.

    CAS  PubMed  Google Scholar 

  • Povlishock JT, Marmarou A, McIntosh T, Trojanowski JQ, Moroi J. 1997. Impact acceleration injury in the rat: Evidence for focal axolemmal change and related neurofilament sidearm alteration. J Neuropathol Exp Neurol 56: 347–359.

    CAS  PubMed  Google Scholar 

  • Povlishock JT, Pettus EH. 1996. Traumatically induced axonal damage: Evidence for enduring changes in axolemmal permeability with associated cytoskeletal change. Acta Neurochir Suppl 66: 81–86.

    CAS  PubMed  Google Scholar 

  • Raghupathi R, Margulies SS. 2002. Traumatic axonal injury after closed head injury in the neonatal pig. J Neurotrauma 19: 843–853.

    PubMed  Google Scholar 

  • Reeves TM, Phillips LL, Povlishock JT. 2005. Myelinated and unmyelinated axons of the corpus callosum differ in vulnerability and functional recovery following traumatic brain injury. Exp Neurol 196: 126–137.

    PubMed  Google Scholar 

  • Rodriguez-Paez AC, Brunschwig JP, Bramlett HM. 2005. Light and electron microscopic assessment of progressive atrophy following moderate traumatic brain injury in the rat. Acta Neuropathol (Berl) 109: 603–616.

    Google Scholar 

  • Saatman KE, Abai B, Grosvenor A, Vorwerk CK, Smith DH, et al. 2003. Traumatic axonal injury results in biphasic calpain activation and retrograde transport impairment in mice. J Cereb Blood Flow Metab 23: 34–42.

    CAS  PubMed  Google Scholar 

  • Saatman KE, Bozyczko-Coyne D, Marcy V, Siman R, McIntosh TK. 1996. Prolonged calpain-mediated spectrin breakdown occurs regionally following experimental brain injury in the rat. J Neuropathol Exp Neurol 55: 850–860.

    CAS  PubMed  Google Scholar 

  • Saatman KE, Graham DI, McIntosh TK. 1998. The neuronal cytoskeleton is at risk after mild and moderate brain injury. J Neurotrauma 15: 1047–1058.

    CAS  PubMed  Google Scholar 

  • Scheid R, Preul C, Gruber O, Wiggins C, von Cramon DY. 2003. Diffuse axonal injury associated with chronic traumatic brain injury: Evidence from T2*-weighted gradient-echo imaging at 3 T. AJNR Am J Neuroradiol 24: 1049–1056.

    PubMed  Google Scholar 

  • Shah JV, Cleveland DW. 2002. Slow axonal transport: Fast motors in the slow lane. Curr Opin Cell Biol 14: 58–62.

    CAS  PubMed  Google Scholar 

  • Sharma AK, Rohrer B. 2004. Calcium-induced calpain mediates apoptosis via caspase-3 in a mouse photoreceptor cell line. J Biol Chem 279: 35564–35572.

    CAS  PubMed  Google Scholar 

  • Shaw G, Yang C, Ellis R, Anderson K, Parker MJ, et al. 2005. Hyperphosphorylated neurofilament NF-H is a serum biomarker of axonal injury. Biochem Biophys Res Commun 336: 1268–1277.

    CAS  PubMed  Google Scholar 

  • Shea TB. 2000. Microtubule motors, phosphorylation and axonal transport of neurofilaments. J Neurocytol 29: 873–887.

    CAS  PubMed  Google Scholar 

  • Sherriff FE, Bridges LR, Gentleman SM, Sivaloganathan S, Wilson S. 1994a. Markers of axonal injury in post mortem human brain. Acta Neuropathol (Berl) 88: 433–439.

    CAS  Google Scholar 

  • Sherriff FE, Bridges LR, Sivaloganathan S. 1994b. Early detection of axonal injury after human head trauma using immunocytochemistry for β-amyloid precursor protein. Acta Neuropathol (Berl) 87: 55–62.

    CAS  Google Scholar 

  • Singleton RH, Stone JR, Okonkwo DO, Pellicane AJ, Povlishock JT. 2001. The immunophilin ligand FK506 attenuates axonal injury in an impact-acceleration model of traumatic brain injury. J Neurotrauma 18: 607–614.

    CAS  PubMed  Google Scholar 

  • Singleton RH, Zhu J, Stone JR, Povlishock JT. 2002. Traumatically induced axotomy adjacent to the soma does not result in acute neuronal death. J Neurosci 22: 791–802.

    CAS  PubMed  Google Scholar 

  • Smith DH, Cecil KM, Meaney DF, Chen XH, McIntosh TK, et al. 1998. Magnetic resonance spectroscopy of diffuse brain trauma in the pig. J Neurotrauma 15: 665–674.

    CAS  PubMed  Google Scholar 

  • Smith DH, Chen XH, Xu BN, McIntosh TK, Gennarelli TA, et al. 1997. Characterization of diffuse axonal pathology and selective hippocampal damage following inertial brain trauma in the pig. J Neuropathol Exp Neurol 56: 822–834.

    CAS  PubMed  Google Scholar 

  • Smith DH, Nonaka M, Miller R, Leoni M, Chen XH, et al. 2000. Immediate coma following inertial brain injury dependent on axonal damage in the brainstem. J Neurosurg 93: 315–322.

    CAS  PubMed  Google Scholar 

  • Smith DH, Wolf JA, Lusardi TA, Lee VM, Meaney DF. 1999. High tolerance and delayed elastic response of cultured axons to dynamic stretch injury. J Neurosci 19: 4263–4269.

    CAS  PubMed  Google Scholar 

  • Stone JR, Okonkwo DO, Dialo AO, Rubin DG, Mutlu LK, et al. 2004. Impaired axonal transport and altered axolemmal permeability occur in distinct populations of damaged axons following traumatic brain injury. Exp Neurol 190: 59–69.

    CAS  PubMed  Google Scholar 

  • Stone JR, Okonkwo DO, Singleton RH, Mutlu LK, Helm GA, et al. 2002. Caspase-3-mediated cleavage of amyloid precursor protein and formation of amyloid β peptide in traumatic axonal injury. J Neurotrauma 19: 601–614.

    PubMed  Google Scholar 

  • Stone JR, Singleton RH, Povlishock JT. 2000. Antibodies to the C-terminus of the β-amyloid precursor protein (APP): A site specific marker for the detection of traumatic axonal injury. Brain Res 871: 288–302.

    CAS  PubMed  Google Scholar 

  • Stone JR, Singleton RH, Povlishock JT. 2001. Intra-axonal neurofilament compaction does not evoke local axonal swelling in all traumatically injured axons. Exp Neurol 172: 320–331.

    CAS  PubMed  Google Scholar 

  • Strich SJ. 1956. Diffuse degeneration of the cerebral white matter in severe dementia following head injury. J Neurol Neurosurg Psychiatry 19: 163–185.

    CAS  PubMed  Google Scholar 

  • Strich SJ. 1961. Shearing of nerve fibers as a cause of brain damage due to head injury: A pathological study of twenty cases. Lancet 2: 443–448.

    Google Scholar 

  • Stys PK. 2005. General mechanisms of axonal damage and its prevention. J Neurol Sci 233: 3–13.

    CAS  PubMed  Google Scholar 

  • Suehiro E, Singleton RH, Stone JR, Povlishock JT. 2001. The immunophilin ligand FK506 attenuates the axonal damage associated with rapid rewarming following posttraumatic hypothermia. Exp Neurol 172: 199–210.

    CAS  PubMed  Google Scholar 

  • Suzuki T, Bramlett HM, Ruenes G, Dietrich WD. 2004. The effects of early post-traumatic hyperthermia in female and ovariectomized rats. J Neurotrauma 21: 842–853.

    PubMed  Google Scholar 

  • Wilkinson AE, Bridges LR, Sivaloganathan S. 1999. Correlation of survival time with size of axonal swellings in diffuse axonal injury. Acta Neuropathol (Berl) 98: 197–202.

    CAS  Google Scholar 

  • Wilson S, Raghupathi R, Saatman KE, MacKinnon MA, McIntosh TK, et al. 2004. Continued in situ DNA fragmentation of microglia/macrophages in white matter weeks and months after traumatic brain injury. J Neurotrauma 21: 239–250.

    PubMed  Google Scholar 

  • Wolf JA, Stys PK, Lusardi T, Meaney D, Smith DH. 2001. Traumatic axonal injury induces calcium influx modulated by tetrodotoxin-sensitive sodium channels. J Neurosci 21: 1923–1930.

    CAS  PubMed  Google Scholar 

  • Xiao-Sheng H, Xiang Z, Zhou F, Luo-An F, Shuang W. 2004. Calcium overloading in traumatic axonal injury by lateral head rotation: A morphological evidence in rat model. J Clin Neurosci 11: 402–407.

    Google Scholar 

  • Yaghmai A, Povlishock J. 1992. Traumatically induced reactive change as visualized through the use of monoclonal antibodies targeted to neurofilament subunits. J Neuropathol Exp Neurol 51: 158–176.

    CAS  PubMed  Google Scholar 

  • Yanagawa Y, Tsushima Y, Tokumaru A, Un-no Y, Sakamoto T, et al. 2000. A quantitative analysis of head injury using T2*-weighted gradient-echo imaging. J Trauma 49: 272–277.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Heather N. Foozer for assistance in manuscript preparation. This work was supported by NIH R01 NS045131, KSCHIRT 6-12, and T32 NS043126.

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this entry

Cite this entry

Saatman, K.E., Serbest, G., Burkhardt, M.F. (2009). Axonal Damage due to Traumatic Brain Injury. In: Lajtha, A., Banik, N., Ray, S.K. (eds) Handbook of Neurochemistry and Molecular Neurobiology. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-30375-8_16

Download citation

Publish with us

Policies and ethics