Skip to main content

Voltage-Gated Calcium Ion Channels and Novel Voltage Sensing Proteins

  • Reference work entry
Book cover Handbook of Neurochemistry and Molecular Neurobiology
  • 1344 Accesses

Abstract

Voltage-gated ion channels are the key membrane proteins in the neural cells that underlie electrical signals, such as generation and propagation of action potentials, transmitter release, and synaptic integration. Voltage-gated ion channels consist of depolarization-activated groups with rigid ion permeabilities to sodium, calcium, and potassium, and hyperpolarization-activated group (HCN channel) that is permeable both to sodium and potassium. Each family of voltage-gated ion channel includes several genes that show distinct patterns of cell-specific expression and distinct subcellular localizations. Voltage-gated ion channels share common structure with six transmembrane segments. The first four transmembrane segments constitute the voltage-sensor domain (VSD) and the C-terminal two transmembrane segments provide pore domain. Recently, two novel voltage-sensor containing proteins were identified. VSP, voltage-sensing phosphatase, has the VSD and the phosphatase domain and shows voltage-dependent phosphoinositide phosphatase activity. VSOP/Hv1, which only consists of the VSD, exhibits activities of the voltage-gated proton channel. These suggest that voltage-evoked signals in the nervous system depend not only on voltage-gated ion channels but also on novel mechanisms that were previously unappreciated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Cav channel:

voltage-gated calcium channel

EAG channel:

Ether-á-go-go channel

HCN channel:

hyperpolarization-activated, cyclic nucleotide-modified channel

Kv channel:

voltage-gated potassium channel

Nav channel:

voltage-gated sodium channel

S4:

segment 4

VSD:

voltage-sensor domain

References

  • Aggarwal SK, MacKinnon R. 1996. Contribution of the S4 segment to gating charge in the Shaker K+ channel. Neuron 16: 1169–1177.

    Article  CAS  PubMed  Google Scholar 

  • Bezanilla F. 2000. The voltage sensor in voltage-dependent ion channels. Physiol Rev 80: 555–592.

    CAS  PubMed  Google Scholar 

  • Clark RA, Leidal KG, Pearson DW, Nauseef WM. 1987. NADPH oxidase of human neutrophils. Subcellular localization and characterization of an arachidonate-activatable superoxide-generating system. J Biol Chem 262: 4065–4074.

    CAS  PubMed  Google Scholar 

  • Cox JJ, Reimann F, Nicholas AK, Thornton G, Roberts E, et al. 2006. An SCN9A channelopathy causes congenital inability to experience pain. Nature 444: 894–898.

    Article  CAS  PubMed  Google Scholar 

  • Decoursey TE. 2003. Voltage-gated proton channels and other proton transfer pathways. Physiol Rev 83: 475–579.

    CAS  PubMed  Google Scholar 

  • DeCoursey TE, Morgan D, Cherny VV. 2003. The voltage dependence of NADPH oxidase reveals why phagocytes need proton channels. Nature 422: 531–534.

    Article  CAS  PubMed  Google Scholar 

  • Grieco TM, Malhotra JD, Chen C, Isom LL, Raman IM. 2005. Open-channel block by the cytoplasmic tail of sodium channel beta4 as a mechanism for resurgent sodium current. Neuron 45: 233–244.

    Article  CAS  PubMed  Google Scholar 

  • Hegle AP, Marble DD, Wilson GF. 2006. A voltage-driven switch for ion-independent signaling by ether-a-go-go K+ channels. Proc Natl Acad Sci USA 103: 2886–2891.

    Article  CAS  PubMed  Google Scholar 

  • Henderson LM, Chappell JB, Jones OT. 1987. The superoxide-generating NADPH oxidase of human neutrophils is electrogenic and associated with an H+ channel. Biochem J 246: 325–329.

    CAS  PubMed  Google Scholar 

  • Hiyama TY, Watanabe E, Ono K, Inenaga K, Tamkun MM, et al. 2002. Na(x) channel involved in CNS sodium-level sensing. Nat Neurosci 5: 511–512.

    Article  CAS  PubMed  Google Scholar 

  • Horn R, Ding S, Gruber HJ. 2000. Immobilizing the moving parts of voltage-gated ion channels. J Gen Physiol 116: 461–476.

    Article  CAS  PubMed  Google Scholar 

  • Huang CL, Feng S, Hilgemann DW. 1998. Direct activation of inward rectifier potassium channels by PIP2 and its stabilization by Gbg. Nature 391: 803–806.

    Article  CAS  PubMed  Google Scholar 

  • Jiang Y, Lee A, Chen J, Ruta V, Cadene M, et al. 2003. X-ray structure of a voltage-dependent K+ channel. Nature 423: 33–41.

    Article  CAS  PubMed  Google Scholar 

  • Long SB, Campbell EB, Mackinnon R. 2005. Crystal structure of a mammalian voltage-dependent Shaker family K+ channel. Science 309: 897–903.

    Article  CAS  PubMed  Google Scholar 

  • Long SB, Tao X, Campbell EB, MacKinnon R. 2007. Atomic structure of a voltage-dependent K+ channel in a lipid membrane-like environment. Nature 450: 376–382.

    Article  CAS  PubMed  Google Scholar 

  • Maehama T, Taylor GS, Dixon JE. 2001. PTEN and myotubularin: Novel phosphoinositide phosphatases. Annu Rev Biochem 70: 247–279.

    Article  CAS  PubMed  Google Scholar 

  • Mannuzzu LM, Isacoff EY. 2000. Independence and cooperativity in rearrangements of a potassium channel voltage sensor revealed by single subunit fluorescence. J Gen Physiol 115: 257–268.

    Article  CAS  PubMed  Google Scholar 

  • Morgan D, Cherny VV, Murphy R, Katz BZ, DeCoursey TE. 2005. The pH dependence of NADPH oxidase in human eosinophils. J Physiol 569: 419–431.

    Article  CAS  PubMed  Google Scholar 

  • Murata Y, Iwasaki H, Sasaki M, Inaba K, Okamura Y. 2005. Phosphoinositide phosphatase activity coupled to an intrinsic voltage sensor. Nature 435: 1239–1243.

    Article  CAS  PubMed  Google Scholar 

  • Murata Y, Okamura Y. 2007. Depolarization activates the phosphoinositide phosphatase Ci-VSP, as detected in Xenopus oocytes coexpressing sensors of PIP2. J Physiol 583: 875–889.

    Article  CAS  PubMed  Google Scholar 

  • Murphy R, DeCoursey TE. 2006. Charge compensation during the phagocyte respiratory burst. Biochim Biophys Acta 1757: 996–1011.

    Article  CAS  PubMed  Google Scholar 

  • Pan Z, Kao T, Horvath Z, Lemos J, Sul JY, et al. 2006. A common ankyrin-G-based mechanism retains KCNQ and NaV channels at electrically active domains of the axon. J Neurosci 26: 2599–2613.

    Article  CAS  PubMed  Google Scholar 

  • Sasaki M, Takagi M, Okamura Y. 2006. A voltage sensor-domain protein is a voltage-gated proton channel. Science 312: 589–592.

    Article  CAS  PubMed  Google Scholar 

  • Shimizu H, Watanabe E, Hiyama TY, Nagakura A, Fujikawa A, et al. 2007. Glial Nax channels control lactate signaling to neurons for brain [Na+] sensing. Neuron 54: 59–72.

    Article  CAS  PubMed  Google Scholar 

  • Sokolov S, Scheuer T, Catterall WA. 2005. Ion permeation through a voltage-sensitive gating pore in brain sodium channels having voltage sensor mutations. Neuron 47: 183–189.

    Article  CAS  PubMed  Google Scholar 

  • Sokolov S, Scheuer T, Catterall WA. 2007. Gating pore current in an inherited ion channelopathy. Nature 446: 76–78.

    Article  CAS  PubMed  Google Scholar 

  • Starace DM, Bezanilla F. 2001. Histidine scanning mutagenesis of basic residues of the S4 segment of the shaker K+ channel. J Gen Physiol 117: 469–490.

    Article  CAS  PubMed  Google Scholar 

  • Starace DM, Bezanilla F. 2004. A proton pore in a potassium channel voltage sensor reveals a focused electric field. Nature 427: 548–553.

    Article  CAS  PubMed  Google Scholar 

  • Struyk AF, Cannon SC. 2007. A Na+ channel mutation linked to hypokalemic periodic paralysis exposes a proton-selective gating pore. J Gen Physiol 130: 11–20.

    Article  CAS  PubMed  Google Scholar 

  • Tombola F, Pathak MM, Isacoff EY. 2005. Voltage-sensing arginines in a potassium channel permeate and occlude cation-selective pores. Neuron 45: 379–388.

    Article  CAS  PubMed  Google Scholar 

  • Weng J, Cao Y, Moss N, Zhou M. 2006. Modulation of voltage-dependent Shaker family potassium channels by an aldo-keto reductase. J Biol Chem 281: 15194–15200.

    Article  CAS  PubMed  Google Scholar 

  • Yang N, Horn R. 1995. Evidence for voltage-dependent S4 movement in sodium channels. Neuron 15: 213–218.

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Craciun LC, Mirshahi T, Rohacs T, Lopes CM, et al. 2003. PIP2 activates KCNQ channels, and its hydrolysis underlies receptor-mediated inhibition of M currents. Neuron 37: 963–975.

    Article  CAS  PubMed  Google Scholar 

  • Zhou Y, MacKinnon R. 2003. The occupancy of ions in the K+ selectivity filter: Charge balance and coupling of ion binding to a protein conformational change underlie high conduction rates. J Mol Biol 333: 965–975.

    Article  CAS  PubMed  Google Scholar 

  • Zimmermann K, Leffler A, Babes A, Cendan CM, Carr RW, et al. 2007. Sensory neuron sodium channel Nav1.8 is essential for pain at low temperatures. Nature 447: 855–858.

    Article  CAS  PubMed  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this entry

Cite this entry

Okamura, Y. (2009). Voltage-Gated Calcium Ion Channels and Novel Voltage Sensing Proteins. In: Lajtha, A., Mikoshiba, K. (eds) Handbook of Neurochemistry and Molecular Neurobiology. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-30370-3_22

Download citation

Publish with us

Policies and ethics