Skip to main content

Phosphoinositide-Specific Phospholipase C: Isoforms and Related Molecules

  • Reference work entry
  • 1359 Accesses

Abstract

Phosphoinositide-specific phospholipase C (PLC) comprises a family of multidomain phosphodiesterases. The family mediates signaling responses including the classically described conversion of PtdIns(4,5)P2 to Ins(1,4,5)P3, a Ca2+-mobilizing second messenger, and diacylglycderol, a protein kinase C-activating second messenger. It also mediates alterations in the intracellular localization and/or activity of a myriad of proteins that harbor phosphoinositide binding domains. Structural study of eukaryotic PLC has revealed that there is a prototypic structure for the enzyme represented by δ-type isoforms. To date, at least 13 PLC isoforms and a few PLC-related molecules have been identified. Presumably, these molecules have evolved from the prototypic enzyme by addition or deletion of functional domains. By analyzing these modified structures, we can learn how efficiently the present isoforms exert diverse but specific physiological functions. This article gives an overview of the structures and roles of PLC isoforms and related molecules.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   299.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

DAG:

diacylglycerol

EGF:

epidermal growth factor

EPAC:

exchange protein activated by cAMP

ERK:

extracellular signal-regulated kinase

EST:

expressed sequence tag

GABARAP:

GABAA receptor associated protein

GPCR:

G protein-coupled receptors

LPA:

lysophosphatidic acid

MAP:

mitogen-activated protein

NES:

nuclear export signal

NGF:

nerve growth factor

RA:

Respiratory acidosis

NLS:

nuclear localizaiton signal

PDGF:

platelet derived growth factor

PH:

pleckstrin homology

PI3K:

phosphatidylinositol 3-kinase

PIKE:

PI3K enhancer

PKC:

protein kinase C

PLC:

phospholipase C

PP1α:

protein phosphatase 1α

PRIP:

PLC-related, but catalytically inactive protein

RGS:

regulator of G protein signaling

RTK:

receptor tyrosin kinase

SH:

src homology

TIM:

triose isomerase

References

  • Ada-Nguema AS, Xenias H, Hofman JM, Wiggins CH, Sheetz MP, et al. 2006. The small GTPase R-Ras regulates organization of actin and drives membrane protrusions through the activity of PLCε. J Cell Sci 119: 1307–1319.

    Article  PubMed  CAS  Google Scholar 

  • Akutagawa A, Fukami K, Banno Y, Takenawa T, Nagano M, et al. 2005. The possible involvement of phospholipase C-δ4 and its isoform in liver regeneration. Seikagaku 77: 895 (Abstract: 878th Annual Meeting of Japanese Biochemical Society).

    Google Scholar 

  • Andoh T, Kato T Jr, Matsui Y, Toh-e A. 1998. Phosphoinositide-specific phospholipase C forms a complex with 14-3-3 proteins and is involved in expression of UV resistance in fission yeast. Mol Gen Genet 258: 139–147.

    Article  PubMed  CAS  Google Scholar 

  • Andoh T, Yoko-o T, Matsui Y, Toh-e EA. 1995. Molecular cloning of the plc1+ gene of schizosaccharomyces pombe, which encodes a putative phosphoinositide-specific phospholipase C. Yeast 11: 179–185.

    Article  PubMed  CAS  Google Scholar 

  • Bae YS, Cantley LG, Chen CS, Kim SR, Kwon KS, et al. 1998. Activation of phospholipase C-γ by phosphatidylinositol 3,4,5-trisphosphate. J Biol Chem 273: 4465–4469.

    Article  PubMed  CAS  Google Scholar 

  • Bahk YY, Lee YH, Lee TG, Seo J, Ryu SH, et al. 1994. Two forms of phospholipase C-β1 generated by alternative splicing. J Biol Chem 269: 8240–8245.

    PubMed  CAS  Google Scholar 

  • Bai Y, Edamatsu H, Maeda S, Saito H, Suzuki N, et al. 2004. Crucial role of phospholipase C ε in chemical carcinogen-induced skin tumor development. Cancer Res 64: 8808–8810.

    Article  PubMed  CAS  Google Scholar 

  • Bunney TD, Harris R, Gandarillas NL, Josephs MB, Roe SM, et al. 2006. Structural and mechanistic insights into ras association domains of phospholipase C ε. Mol Cell 21: 495–507.

    Article  PubMed  CAS  Google Scholar 

  • Bunney TD, Katan M. 2006. Phospholipase C ε: Linking second messengers and small GTPases. Trends Cell Biol 16: 640–648.

    Article  PubMed  CAS  Google Scholar 

  • Camps M, Carozzi A, Schnabel P, Scheer A, Parker PJ, et al. 1992. Isozyme-selective stimulation of phospholipase C-β2 by G protein βγ-subunits. Nature 360: 684–686.

    Article  PubMed  CAS  Google Scholar 

  • Chang JS, Kim SK, Kwon TK, Bae SS, Min do S, et al. 2005. Pleckstrin homology domains of phospholipase C-γ1 directly interact with β-tubulin for activation of phospholipase C-γ1 and reciprocal modulation of β-tubulin function in microtubule assembly. J Biol Chem 280: 6897–6905.

    Article  PubMed  CAS  Google Scholar 

  • Chang JS, Seok H, Kwon TK, Min DS, Ahn BH, et al. 2002. Interaction of elongation factor-1alpha and pleckstrin homology domain of phospholipase C-γ1 with activating its activity. J Biol Chem 277: 19697–19702.

    Article  PubMed  CAS  Google Scholar 

  • Claesson-Welsh L. 1994. Platelet-derived growth factor receptor signals. J Biol Chem 269: 32023–32026.

    PubMed  CAS  Google Scholar 

  • Cockcroft S. 2006. The latest phospholipase C, PLCη, is implicated in neuronal function. Trends Biochem Sci 31: 4–7.

    Article  PubMed  CAS  Google Scholar 

  • Cox LJ, Larman MG, Saunders CM, Hashimoto K, Swann K, et al. 2002. Sperm phospholipase Cζ from humans and cynomolgus monkeys triggers Ca2+ oscillations, activation and development of mouse oocytes. Reproduction 124: 611–623.

    Article  PubMed  CAS  Google Scholar 

  • DeLillo N, Romero C, Lin H, Vancura A. 2003. Genetic evidence for a role of phospholipase C at the budding yeast kinetochore. Mol Genet Genomics 269: 261–270.

    PubMed  CAS  Google Scholar 

  • Dumollard R, Marangos P, Fitzharris G, Swann K, Duchen M, et al. 2004. Sperm-triggered [Ca2+] oscillations and Ca2+ homeostasis in the mouse egg have an absolute requirement for mitochondrial ATP production. Development 131: 3057–3067.

    Article  PubMed  CAS  Google Scholar 

  • Ellis MV, Carne A, Katan M. 1993. Structural requirements of phosphatidylinositol-specific phaspholipase Cδ 1 for enzyme activity. Eur J Biochem 213: 339–347.

    Article  PubMed  CAS  Google Scholar 

  • Ellis MV, James SR, Perisic O, Downes CP, Williams RL, et al. 1998. Catalytic domain of phosphoinositide-specific phospholipase C (PLC). Mutational analysis of residues within the active site and hydrophobic ridge of PLCδ1. J Biol Chem 273: 11650–11659.

    Article  PubMed  CAS  Google Scholar 

  • Enomoto H, Nakamura Y, Sakamoto E, Fukami K. 2005. Characterization of phospholipase C δ3 by developing monoclonal antibody. Seikagaku 77: 894 (Abstract: 878th Annual Meeting of Japanese Biochemical Society).

    Google Scholar 

  • Essen LO, Perisic O, Cheung R, Katan M, Williams RL. 1996. Crystal structure of a mammalian phosphoinositide-specific phospholipase Cδ. Nature 380: 595–602.

    Article  PubMed  CAS  Google Scholar 

  • Essen LO, Perisic O, Katan M, Wu YQ, Roberts MF, et al. 1997. Structural mapping of the catalytic mechanism for a mammalian phosphoinositide-specific phospholipase C. Biochemistry 36: 1704–1718.

    Article  PubMed  CAS  Google Scholar 

  • Evellin S, Nolte J, Tysack K, vom Dorp F, Thiel M, et al. 2002. Stimulation of phospholipase C-ε by the M3 muscarinic acetylcholine receptor mediated by cyclic AMP and the GTPase Rap2B. J Biol Chem 277: 16805–16813.

    Article  PubMed  CAS  Google Scholar 

  • Falasca M, Logan SK, Lehto VP, Baccante G, Lemmon MA, et al. 1998. Activation of phospholipase C γ by PI 3-kinase-induced PH domain-mediated membrane targeting. EMBO J 17: 414–422.

    Article  PubMed  CAS  Google Scholar 

  • Ferguson KM, Lemmon MA, Schlessinger J, Sigler PB. 1995. Structure of the high affinity complex of inositoltrisphosphate with a phospholipase C pleckstrin homology domain. Cell 83: 1037–1046.

    Article  PubMed  CAS  Google Scholar 

  • Flick JS, Thorner J. 1993. Genetic and biochemical characterization of a phosphatidylinositol-specific phospholipase C in Saccharomyces cerevisiae. Mol Cell Biol 13: 5861–5876.

    PubMed  CAS  Google Scholar 

  • Flick JS, Thorner J. 1998. An essential function of a phosphoinositide-specific phospholipase C is relieved by inhibition of a cyclin-dependent protein kinase in the yeast Saccharomyces cerevisiae. Genetics 148: 33–47.

    PubMed  CAS  Google Scholar 

  • Fujii M, Ohtsubo M, Ogawa T, Kamata H, Hirata H, et al. 1999. Real-time visualization of PH domain-dependent translocation of phospholipase C-δ1 in renal epithelial cells (MDCK): Response to hypo-osmotic stress. Biochem. Biophys. Res Commun 254: 284–291.

    Article  PubMed  CAS  Google Scholar 

  • Fukami K. 2002. Structure, regulation, and function of phospholipase C isozymes. J Biochem (Tokyo) 131: 293–299.

    CAS  Google Scholar 

  • Fukami K, Yoshida M, Inoue T, Kurokawa M, Fissore RA, et al. 2003. Phospholipase Cδ4 is required for Ca2+ mobilization essential for acrosome reaction in sperm. J Cell Biol 161: 79–88.

    Article  PubMed  CAS  Google Scholar 

  • Garcia P, Gupta R, Shah S, Morris AJ, Rudge SA, et al. 1995. The pleckstrin homology domain of phospholipase C-δ1 binds with high affinity to phosphatidylinositol 4,5-bisphosphate in bilayer membranes. Biochemistry 34: 16228–16234.

    Article  PubMed  CAS  Google Scholar 

  • Grobler JA, Hurley J. 1998. Catalysis by phospholipase C δ1 requires that Ca2+ bind to the catalytic domain, but not the C2 domain. Biochemistry 37: 5020–5028.

    Article  PubMed  CAS  Google Scholar 

  • Hains MD, Wing MR, Maddileti S, Siderovski DP, Harden TK. 2006. Gα12/13- and rho-dependent activation of phospholipase C-ε by lysophosphatidic acid and thrombin receptors. Mol Pharmacol 69: 2068–2075.

    Article  PubMed  CAS  Google Scholar 

  • Harada K, Takeuchi H, Oike M, Matsuda M, Kanematsu T, et al. 2005. Role of PRIP-1, a novel Ins(1,4,5)P3 binding protein, in Ins(1,4,5)P3-mediated Ca2+ signaling. J Cell Physiol 202: 422–433.

    Article  PubMed  CAS  Google Scholar 

  • Harden TK, Sondek J. 2006. Regulation of phospholipase C isozymes by ras superfamily GTPases. Annu Rev Pharmacol Toxicol 46: 355–379.

    Article  PubMed  CAS  Google Scholar 

  • Harris R, Bunney TD, Katan M, Driscoll PC. 2005. Backbone 1H, 13C, and 15N resonance assignments for the two 13 kD Ras associating domains (RA1 and RA2) from phospholipase C ε. J Biomol NMR 33: 138.

    Article  PubMed  CAS  Google Scholar 

  • Hinkes B, Wiggins RC, Gbadegesin R, Vlangos CN, Seelow D, et al. 2006. Positional cloning uncovers mutations in PLCE1 responsible for a nephrotic syndrome variant that may be reversible. Nat Genet 38: 1397–1405.

    Article  PubMed  CAS  Google Scholar 

  • Horstman DA, DeStefano K, Carpenter G. 1996. Enhanced phospholipase C-γ1 activity produced by association of independently expressed X and Y domain polypeptides. Proc Natl Acad Sci USA 93: 7518–7521.

    Article  PubMed  CAS  Google Scholar 

  • Hwang JI, Oh YS, Shin KJ, Kim H, Ryu SH, et al. 2005. Molecular cloning and characterization of a novel phospholipase C, PLC-η. Biochem J 389: 181–186.

    Article  PubMed  CAS  Google Scholar 

  • Hwang KC, Lim S, Kwon HM, Bae YS, Kang SM, et al. 2004. Phospholipase C-δ1 rescues intracellular Ca2+ overload in ischemic heart and hypoxic neonatal cardiomyocytes. J Steroid Biochem Mol Biol 91: 131–138.

    Article  PubMed  CAS  Google Scholar 

  • Ichinohe M, Nakamura Y, Sai K, Nakahara M, Yamaguchi H, et al. 2007. Lack of phospholipase C-δ1 induces skin inflammation. Biochem Biophys Res Commun 356: 912–918.

    Article  PubMed  CAS  Google Scholar 

  • Illenberger D, Walliser C, Strobel J, Gutman O, Niv H, et al. 2003. Rac2 regulation of phospholipase C-β2 activity and mode of membrane interactions in intact cells. J Biol Chem 278: 8645–8652.

    Article  PubMed  CAS  Google Scholar 

  • Irino Y, Cho H, Nakamura Y, Nakahara M, Furutani M, et al. 2004. Phospholipase C δ-type consists of three isozymes: Bovine PLCδ2 is a homologue of human/mouse PLCδ4. Biochem Biophys Res Commun 320: 537–543.

    Article  PubMed  CAS  Google Scholar 

  • Jenco JM, Becker KP, Morris AJ. 1997. Membrane-binding properties of phospholipase C-β1 and phospholipaseC-β2: Role of the C-terminus and effects of polyphosphoinositides, G-proteins and Ca2+. Biochem J 327 (Pt 2): 431–437.

    PubMed  CAS  Google Scholar 

  • Jhon DY, Lee HH, Park D, Lee CW, Lee KH, et al. 1993. Cloning, sequencing, purification, and Gq-dependent activation of phospholipase C-β3. J Biol Chem 268: 6654–6661.

    PubMed  CAS  Google Scholar 

  • Ji QS, Chattopadhyay A, Vecchi M, Carpenter G. 1999. Physiological requirement for both SH2 domains for phospholipase C-γ1 function and interaction with platelet-derived growth factor receptors. Mol Cell Biol 19: 4961–4970.

    PubMed  CAS  Google Scholar 

  • Ji TH, Grossmann M, Ji I. 1998. G protein-coupled receptors. I. Diversity of receptor-ligand interactions. J Biol Chem 273: 17299–17302.

    Article  PubMed  CAS  Google Scholar 

  • Jiang H, Lyubarsky A, Dodd R, Vardi N, Pugh E, et al. 1996. Phospholipase C β4 is involved in modulating the visual response in mice. Proc Natl Acad Sci USA 93: 14598–14601.

    Article  PubMed  CAS  Google Scholar 

  • Jin TG, Satoh T, Liao Y, Song C, Gao X, et al. 2001. Role of the CDC25 homology domain of phospholipase Cε in amplification of Rap1-dependent signaling. J Biol Chem 276: 30301–30307.

    Article  PubMed  CAS  Google Scholar 

  • Kanematsu T, Jang IS, Yamaguchi T, Nagahama H, Yoshimura K, et al. 2002. Role of the PLC-related, catalytically inactive protein p130 in GABA(A) receptor function. EMBO J 21: 1004–1011.

    Article  PubMed  CAS  Google Scholar 

  • Kanematsu T, Misumi Y, Watanabe Y, Ozaki S, Koga T, et al. 1996. A new inositol 1,4,5-trisphosphate binding protein similar to phospholipase C-δ1. Biochem J 313: 319–325.

    PubMed  CAS  Google Scholar 

  • Kanematsu T, Mizokami A, Watanabe K, Hirata M. 2007. Regulation of GABA(A)-receptor surface expression with special reference to the involvement of GABARAP (GABA(A) receptor-associated protein) and PRIP (phospholipase C-related, but catalytically inactive protein). J Pharmacol Sci 104: 285–292.

    Article  PubMed  CAS  Google Scholar 

  • Kanematsu T, Takeuchi H, Terunuma M, Hirata M. 2005. PRIP, a novel Ins(1,4,5)P3 binding protein, functional significance in Ca2+ signaling and extension to neuroscience and beyond. Mol Cells 20: 305–314.

    PubMed  CAS  Google Scholar 

  • Kanematsu T, Takeya H, Watanabe Y, Ozaki S, Yoshida M, et al. 1992. Putative inositol 1,4,5-tris phosphate binding proteins in rat brain cytosol. J Biol Chem 267: 6518–6525.

    PubMed  CAS  Google Scholar 

  • Kanematsu T, Yasunaga A, Mizoguchi Y, Kuratani A, Kittler JT, et al. 2006. Modulation of GABA(A) receptor phosphorylation and membrane trafficking by phospholipase C-related inactive protein/protein phosphatase 1 and 2A signaling complex underlying brain-derived neurotrophic factor-dependent regulation of GABAergic inhibition. J Biol Chem 281: 22180–22189.

    Article  PubMed  CAS  Google Scholar 

  • Kariya K, Kim Bui Y, Gao X, Sternberg PW, Kataoka T. 2004. Phospholipase Cε regulates ovulation in Caenorhabditis elegans. Dev Biol 274: 201–210.

    Article  PubMed  CAS  Google Scholar 

  • Katan M, Williams RL. 1997. Phosphoinositide-specific phospholipase C: Structural basis for catalysis and regulatory interactions. Cell Devel Biol 8: 287–296.

    Article  CAS  Google Scholar 

  • Kavran JM, Klein DE, Lee A, Falasca M, Isakoff SJ, et al. 1998. Specificity and promiscuity in phosphoinositide binding by pleckstrin homology domains. J Biol Chem 273: 30497–30508.

    Article  PubMed  CAS  Google Scholar 

  • Kelley GG, Kaproth-Joslin KA, Reks SE, Smrcka AV, Wojcikiewicz RJ. 2006. G-protein-coupled receptor agonists activate endogenous phospholipase Cε and phospholipase Cβ3 in a temporally distinct manner. J Biol Chem 281: 2639–2648.

    Article  PubMed  CAS  Google Scholar 

  • Kelley GG, Reks SE, Ondrako JM, Smrcka AV. 2001. Phospholipase Cε: A novel Ras effector. EMBO J 20: 743–754.

    Article  PubMed  CAS  Google Scholar 

  • Kelley GG, Reks SE, Smrcka AV. 2004. Hormonal regulation of phospholipase Cε through distinct and overlapping pathways involving G12 and Ras family G-proteins. Biochem J 378: 129–139.

    Article  PubMed  CAS  Google Scholar 

  • Kim CG, Park D, Rhee SG. 1996. The role of carboxyl-terminal basic amino acids in Gqα-dependent activation, particulate association, and nuclear localization of phospholipase C-β1. J Biol Chem 271: 21187–21192.

    Article  PubMed  CAS  Google Scholar 

  • Kim D, Jun KS, Lee SB, Kang NG, Min DS, et al. 1997. Phospholipase C isozymes selectively couple to specific neurotransmitter receptors. Nature 389: 290–293.

    Article  PubMed  CAS  Google Scholar 

  • Kim HK, Kim JW, Zilberstein A, Margolis B, Kim JG, et al. 1991. PDGF stimulation of inositol phospholipid hydrolysis requires PLC-γ1 phosphorylation on tyrosine residues 783 and 1254. Cell 65: 435–441.

    Article  PubMed  CAS  Google Scholar 

  • Kim JW, Sim SS, Kim UH, Nishibe S, Wahl MI, et al. 1990. Tyrosine residues in bovine phospholipase C-γ phosphorylated by the epidermal growth factor receptor in vitro. J Biol Chem 265: 3940–3943.

    PubMed  CAS  Google Scholar 

  • Kim MJ, Chang JS, Park SK, Hwang JI, Ryu SH, et al. 2000. Direct interaction of SOS1 Ras exchange protein with the SH3 domain of phospholipase C-γ1. Biochemistry 39: 8674–8682.

    Article  PubMed  CAS  Google Scholar 

  • Kim SK, Wee SM, Chang JS, Kwon TK, Min DS, et al. 2004. Point mutations in the split PLC-γ1 PH domain modulate phosphoinositide binding. J Biochem Mol Biol 37: 720–725.

    PubMed  CAS  Google Scholar 

  • Kohno T, Otsuka T, Takano H, Yamamoto T, Hamaguchi M, et al. 1995. Identification of a novel phospholipase C family gene at chromosame 2q33 that is homozygously delated in human small cell lung carcinoma. Hum Mol Genetics 4: 667–674.

    Article  CAS  Google Scholar 

  • Kouchi Z, Fukami K, Shikano T, Oda S, Nakamura Y, et al. 2004. Recombinant phospholipase Cζ has high Ca2+ sensitivity and induces Ca2+ oscillations in mouse eggs. J Biol Chem 279: 10408–10412.

    Article  PubMed  CAS  Google Scholar 

  • Kouchi Z, Shikano T, Nakamura Y, Shirakawa H, Fukami K, et al. 2005. The role of EF-hand domains and C2 domain in regulation of enzymatic activity of phospholipase Cζ. J Biol Chem 280: 21015–21021.

    Article  PubMed  CAS  Google Scholar 

  • Koyanagi M, Ono K, Suga H, Iwabe N, Miyata T. 1998. Phospholipase C cDNAs from sponge and hydra: Antiquity of genes involved in the inositol phospholipid signaling pathway. FEBS Lett 439: 66–70.

    Article  PubMed  CAS  Google Scholar 

  • Lad Y, McHugh B, Hodkinson PS, Mackinnon AC, Haslett C, et al. 2006. Phospholipase Cε suppresses integrin activation. J Biol Chem 281: 29501–29512.

    Article  PubMed  CAS  Google Scholar 

  • Larman MG, Saunders CM, Carroll J, Lai FA, Swann K. 2004. Cell cycle-dependent Ca2+ oscillations in mouse embryos are regulated by nuclear targeting of PLCζ J Cell Sci 117: 2513–2521.

    Article  PubMed  CAS  Google Scholar 

  • Lee CW, Lee KH, Rhee SG. 1994. Characterization of phospholipase C isozymes in bovine retina: Purification of phospholipase C-β4. Methods Enzymol 238: 227–237.

    Article  PubMed  CAS  Google Scholar 

  • Lee CW, Park DJ, Lee KH, Kim CG, Rhee SG. 1993. Purification, molecular cloning, and sequencing of phospholipase C-β4. J Biol Chem 268: 21318–21327.

    PubMed  CAS  Google Scholar 

  • Lee SB, Rao AK, Lee KH, Yang X, Bae YS, et al. 1996. Decreased expression of phospholipase C-β2 isozyme in human platelets with impaired function. Blood 88: 1684–1691.

    PubMed  CAS  Google Scholar 

  • Lee SB, Rhee SG. 1996. Molecular cloning, splice variants, expression, and purification of phospholipase C-δ4. J Biol Chem 271: 25–31.

    Article  PubMed  CAS  Google Scholar 

  • Lee WK, Kim JK, Seo MS, Cha JH, Lee KJ, et al. 1999. Molecular cloning and expression analysis of a mouse phospholipase C-δ1. Biochem Biophys Res Commun 261: 393–399.

    Article  PubMed  CAS  Google Scholar 

  • Lemmon MA, Ferguson KM, O’Brien R, Sigler PB, Schlessinger J. 1995. Specific and high-affinity binding of inositol phosphates to an isolated pleckstrin homology domain. Proc Natl Acad Sci USA 92: 10472–10476.

    Article  PubMed  CAS  Google Scholar 

  • Li Z, Jiang H, Xie W, Zhang Z, Smrcka AV, et al. 2000. Roles of PLC-β2 and -β3 and PI3Kγ in chemoattractant-mediated signal transduction. Science 287: 1046–1049.

    Article  PubMed  CAS  Google Scholar 

  • Liu N, Fukami K, Yu H, Takenawa T. 1996. A new phospholipase C δ4 is induced at S-phase of the cell cycle and appears in the nucleus. J Biol Chem 271: 355–360.

    Article  PubMed  CAS  Google Scholar 

  • Lomasney JW, Cheng HF, Roffler SR, King K. 1999. Activation of phospholipase C δ1 through C2 domain by a Ca2+-enzyme-phosphatidylserine ternary complex. J Biol Chem 274: 21995–22001.

    Article  PubMed  CAS  Google Scholar 

  • Lomasney JW, Cheng HF, Wang LP, Kuan YS, Liu SM, et al. 1996. Phosphatidylinositol 4,5-bisphosphate binding to the pleckstrin homology domain of phospholipase C-δ1 enhances enzyme activity. J Biol Chem 271: 25316–25326.

    Article  PubMed  CAS  Google Scholar 

  • Lopez I, Mak EC, Ding J, Hamm HE, Lomasney JW. 2001. A novel bifunctional phospholipase C that is regulated by Gα12 and stimulates the Ras/MAP kinase pathway. J Biol Chem 276: 2758–2765.

    Article  PubMed  CAS  Google Scholar 

  • Matsuda M, Paterson HF, Rodriguez R, Fensome AC, Ellis MV, et al. 2001. Real time fluorescence imaging of PLC γ translocation and its interaction with the epidermal growth factor receptor. J Cell Biol 153: 599–612.

    Article  PubMed  CAS  Google Scholar 

  • Min DS, Kim DM, Lee YH, Seo J, Suh PG, et al. 1993. Purification of a novel phospholipase C isozyme from bovine cerebellum. J Biol Chem 268: 12207–12212.

    PubMed  CAS  Google Scholar 

  • Mizokami A, Kanematsu T, Ishibashi H, Yamaguchi T, Tanida I, et al. 2007. Phospholipase C-related inactive protein is involved in trafficking of γ2 subunit-containing GABA(A) receptors to the cell surface. J Neurosci 27: 1692–1701.

    Article  PubMed  CAS  Google Scholar 

  • Nagano K, Fukami K, Minagawa T, Watanabe Y, Ozaki C, et al. 1999. A novel phospholipase C δ4 (PLCδ4) splice variant as a negative regulator of PLC. J Biol Chem 274: 2872–2879.

    Article  PubMed  CAS  Google Scholar 

  • Nakahara M, Shimozawa M, Nakamura Y, Irino Y, Morita M, et al. 2005. A novel phospholipase C, PLCη2, is a neuron-specific isozyme. J Biol Chem 280: 29128–29134.

    Article  PubMed  CAS  Google Scholar 

  • Nakamura Y, Fukami K, Yu H, Takenaka K, Kataoka Y, et al. 2003. Phospholipase Cδ1 is required for skin stem cell lineage commitment. EMBO J 22: 2981–2991.

    Article  PubMed  CAS  Google Scholar 

  • Nakamura Y, Hamada Y, Fujiwara T, Enomoto H, Hiroe T, et al. 2005. Phospholipase C-δ1 and -δ3 are essential in the trophoblast for placental development. Mol Cell Biol 25: 10979–10988.

    Article  PubMed  CAS  Google Scholar 

  • Nakashima S, Banno Y, Watanabe T, Nakamura Y, Mizutani T, et al. 1995. Deletion and site-directed mutagenesis of EF-hand domain of phospholipase C-δ1: Effects on its activity. Biochem Biophys Res Commun 211: 364–369.

    Article  CAS  Google Scholar 

  • Nguyen TL, Ye K, Cho SW, Ahn JY. 2007. Overexpression of phospholipase C-γ1 inhibits NGF-induced neuronal differentiation by proliferative activity of SH3 domain. Int J Biochem Cell Biol 39: 2083–2092.

    Article  CAS  Google Scholar 

  • Nomikos M, Blayney LM, Larman MG, Campbell K, Rossbach A, et al. 2005. Role of phospholipase C-ζ domains in Ca2+-dependent phosphatidylinositol 4,5-bisphosphate hydrolysis and cytoplasmic Ca2+ oscillations. J Biol Chem 280: 31011–31018.

    Article  PubMed  CAS  Google Scholar 

  • Nomikos M, Mulgrew-Nesbitt A, Pallavi P, Mihalyne G, Zaitseva I, et al. 2007. Binding of phosphoinositide-specific phospholipase C-ζ (PLC-ζ) to phospholipid membranes: Potential role of an unstructured cluster of basic residues. J Biol Chem 282: 16644–16653.

    Article  PubMed  CAS  Google Scholar 

  • Obermeier A, Halfter H, Wiesmuller KH, Jung G, Schlessinger J, et al. 1993. Tyrosine 785 is a major determinant of Trk-substrate interaction. EMBO J 12: 933–941.

    PubMed  CAS  Google Scholar 

  • Okada M, Fujii M, Yamaga M, Sugimoto H, Sadano H, et al. 2002. Carboxyl-terminal basic amino acids in the X domain are essential for the nuclear import of phospholipase C δ1. Genes Cells 7: 985–996.

    Article  PubMed  CAS  Google Scholar 

  • Otsuki M, Fukami K, Kohno T, Yokota J, Takenawa T. 1999. Identification and characterization of a new phospholipase C-like protein, PLC-L(2). Biochem Biophys Res Commun 266: 97–103.

    Article  PubMed  CAS  Google Scholar 

  • Panchenko MP, Saxena K, Li Y, Charnecki S, Sternweis PM, et al. 1998. Sites important for PLCβ2 activation by the G protein β γ subunit map to the sides of the β propeller structure. J Biol Chem 273: 28298–28304.

    Article  PubMed  CAS  Google Scholar 

  • Park D, Jhon DY, Lee CW, Ryu SH, Rhee SG. 1993. Removal of the carboxyl-terminal region of phospholipase C-β1 by calpain abolishes activation by Gαq. J Biol Chem 268: 3710–3714.

    PubMed  CAS  Google Scholar 

  • Pawelczyk T, Matecki A. 1998. Localization of phospholipase C δ3 in the cell and regulation of its activity by phospholipids and calcium. Eur J Biochem 257: 169–177.

    Article  PubMed  CAS  Google Scholar 

  • Pawelczyk T, Matecki A. 1999. Phospholipase C-δ3 binds with high specificity to phosphatidylinositol 4,5-bisphosphate and phosphatidic acid in bilayer membranes. Eur J Biochem 262: 291–298.

    Article  PubMed  CAS  Google Scholar 

  • Payne WE, Fitzgerald HM. 1993. A mutation in PLC1, a candidate phosphoinositide-specific phospholipase C gene from Saccharomyces cerevisiae, causes aberrant mitotic chromosome segregation. Mol Cell Biol 13: 4351–4364.

    PubMed  CAS  Google Scholar 

  • Ponting CP, Benjamin DR. 1996. A novel family of Ras-binding domains. Trends Biochem Sci 21: 422–425.

    Article  PubMed  CAS  Google Scholar 

  • Poulin B, Sekiya F, Rhee SG. 2000. Differential roles of the Src homology 2 domains of phospholipase C-γ1 (PLC-γ1) in platelet-derived growth factor-induced activation of PLC-γ1 in intact cells. J Biol Chem 275: 6411–6416.

    Article  PubMed  CAS  Google Scholar 

  • Rameh LE, Rhee SG, Spokes K, Kazlauskas A, Cantley LC, et al. 1998. Phosphoinositide 3-kinase regulates phospholipase Cγ-mediated calcium signaling. J Biol Chem 273: 23750–23757.

    Article  PubMed  CAS  Google Scholar 

  • Razzini G, Brancaccio A, Lemmon MA, Guarnieri S, Falasca M. 2000. The role of the pleckstrin homology domain in membrane targeting and activation of phospholipase Cβ1. J Biol Chem 275: 14873–14881.

    Article  PubMed  CAS  Google Scholar 

  • Rebecchi MJ, Pentyala SN. 2000. Structure, function, and control of phosphoinositide-specific phospholipase C. Physiol Rev 80: 1291–1335.

    PubMed  CAS  Google Scholar 

  • Rhee SG. 2001. Regulation of phosphoinositide-specific phospholipase C. Annu Rev Biochem 70: 281–312.

    Article  PubMed  CAS  Google Scholar 

  • Rhee SG, Bae YS. 1997. Regulation of phosphoinositide-specific phospholipase C isozymes. J Biol Chem 272: 15045–15048.

    Article  PubMed  CAS  Google Scholar 

  • Rogers NT, Hobson E, Pickering S, Lai FA, Braude P, et al. 2004. Phospholipase Cζ causes Ca2+ oscillations and parthenogenetic activation of human oocytes. Reproduction 128: 697–702.

    Article  PubMed  CAS  Google Scholar 

  • Rohacs T, Lopes CM, Michailidis I, Logothetis DE. 2005. PI(4,5)P2 regulates the activation and desensitization of TRPM8 channels through the TRP domain. Nat Neurosci 8: 626–634.

    Article  PubMed  CAS  Google Scholar 

  • Ross CA, MacCumber MW, Glatt CE, Snyder SH. 1989. Brain phospholipase C isozymes: Differential mRNA localizations by in situ hybridization. Proc Natl Acad Sci USA 86: 2923–2927.

    Article  PubMed  CAS  Google Scholar 

  • Runnels LW, Jenco J, Morris A, Scarlata S. 1996. Membrane binding of phospholipases C-β1 and C-β2 is independent of phosphatidylinositol 4,5-bisphosphate and the α and βγ subunits of G proteins. Biochemistry 35: 16824–16832.

    Article  PubMed  CAS  Google Scholar 

  • Sankaran B, Osterhout J, Wu D, Smrcka AV. 1998. Identification of a structural element in phospholipase C β2 that interacts with G protein βγ subunits. J Biol Chem 273: 7148–7154.

    Article  PubMed  CAS  Google Scholar 

  • Saunders CM, Larman MG, Parrington J, Cox LJ, Royse J, et al. 2002. PLC ζ: A sperm-specific trigger of Ca2+ oscillations in eggs and embryo development. Development 129: 3533–3544.

    PubMed  CAS  Google Scholar 

  • Schmidt M, Evellin S, Weernink PA, von Dorp F, Rehmann H, et al. 2001. A new phospholipase-C-calcium signalling pathway mediated by cyclic AMP and a Rap GTPase. Nat Cell Biol 3: 1020–1024.

    Article  PubMed  CAS  Google Scholar 

  • Seeley ES, Kato M, Margolis N, Wickner W, Eitzen G. 2002. Genomic analysis of homotypic vacuole fusion. Mol Biol Cell 13: 782–794.

    Article  PubMed  CAS  Google Scholar 

  • Seifert JP, Wing MR, Snyder JT, Gershburg S, Sondek J, et al. 2004. RhoA activates purified phospholipase C-ε by a guanine nucleotide-dependent mechanism. J Biol Chem 279: 47992–47997.

    Article  PubMed  CAS  Google Scholar 

  • Shibatohge M, Kariya K, Liao Y, Hu CD, Watari Y, et al. 1998. Identification of PLC210, a Caenorhabditis elegans phospholipase C, as a putative effector of Ras. J Biol Chem 273: 6218–6222.

    Article  PubMed  CAS  Google Scholar 

  • Sidhu RS, Clough RR, Bhullar RP. 2005. Regulation of phospholipase C-δ1 through direct interactions with the small GTPase Ral and calmodulin. J Biol Chem 280: 21933–21941.

    Article  PubMed  CAS  Google Scholar 

  • Singh SM, Murray D. 2003. Molecular modeling of the membrane targeting of phospholipase C pleckstrin homology domains. Protein Sci 12: 1934–1953.

    Article  PubMed  CAS  Google Scholar 

  • Song C, Hu CD, Masago M, Kariyai K, Yamawaki-Kataoka Y, et al. 2001. Regulation of a novel human phospholipase C, PLCε, through membrane targeting by Ras. J Biol Chem 276: 2752–2757.

    Article  PubMed  CAS  Google Scholar 

  • Song C, Satoh T, Edamatsu H, Wu D, Tadano M, et al. 2002. Differential roles of Ras and Rap1 in growth factor-dependent activation of phospholipase Cε. Oncogene 21: 8105–8113.

    Article  PubMed  CAS  Google Scholar 

  • Sorli SC, Bunney TD, Sugden PH, Paterson HF, Katan M. 2005. Signaling properties and expression in normal and tumor tissues of two phospholipase Cε splice variants. Oncogene 24: 90–100.

    Article  PubMed  CAS  Google Scholar 

  • Swann K, Larman MG, Saunders CM, Lai FA. 2004. The cytosolic sperm factor that triggers Ca2+ oscillations and egg activation in mammals is a novel phospholipase C: PLCζ. Reproduction 127: 431–439.

    Article  PubMed  CAS  Google Scholar 

  • Swann K, Saunders CM, Rogers NT, Lai FA. 2006. PLCζ: A sperm protein that triggers Ca2+ oscillations and egg activation in mammals. Semin Cell Dev Biol 17: 264–273.

    Article  PubMed  CAS  Google Scholar 

  • Tadano M, Edamatsu H, Minamisawa S, Yokoyama U, Ishikawa Y, et al. 2005. Congenital semilunar valvulogenesis defect in mice deficient in phospholipase Cε. Mol Cell Biol 25: 2191–2199.

    Article  PubMed  CAS  Google Scholar 

  • Takeuchi H, Kanematsu T, Misumi Y, Yaakob HB, Yagisawa H, et al. 1996. Localization of a high-affinity inositol 1,4,5-trisphosphate/inositol 1,4,5,6-tetrakisphosphate binding domain to the pleckstrin homology module of a new 130 kDa protein: Characterization of the determinants of structural specificity. Biochem J 318: 561–568.

    PubMed  CAS  Google Scholar 

  • Takeuchi H, Oike M, Paterson HF, Allen V, Kanematsu T, et al. 2000. Inhibition of Ca2+ signalling by p130, a phospholipase-C-related catalytically inactive protein: Critical role of the p130 pleckstrin homology domain. Biochem J 349: 357–368.

    Article  PubMed  CAS  Google Scholar 

  • Tall E, Dorman G, Garcia P, Runnels L, Shah S, et al. 1997. Phosphoinositide binding specificity among phospholipase C isozymes as determined by photo-cross-linking to novel substrate and product analogs. Biochemistry 36: 7239–7248.

    Article  PubMed  CAS  Google Scholar 

  • Tanaka O, Kondo H. 1994. Localization of mRNAs for three novel members (β3, β4 and γ2) of phospholipase C family in mature rat brain. Neurosci Lett 182: 17–20.

    Article  PubMed  CAS  Google Scholar 

  • Terunuma M, Jang IS, Ha SH, Kittler JT, Kanematsu T, et al. 2004. GABAA receptor phospho-dependent modulation is regulated by phospholipase C-related inactive protein type 1, a novel protein phosphatase 1 anchoring protein. J Neurosci 24: 7074–7084.

    Article  PubMed  CAS  Google Scholar 

  • Tuzi S, Uekama N, Okada M, Yamaguchi S, Saito H, et al. 2003. Structure and dynamics of the phospholipase C-δ1 pleckstrin homology domain located at the lipid bilayer surface. J Biol Chem 278: 28019–28025.

    Article  PubMed  CAS  Google Scholar 

  • Uekama N, Sugita T, Okada M, Yagisawa H, Tuzi S. 2007. Phosphatidylserine induces functional and structural alterations of the membrane-associated pleckstrin homology domain of phospholipase C-δ1. FEBS J 274: 177–187.

    Article  PubMed  CAS  Google Scholar 

  • Varnai P, Lin X, Lee SB, Tuymetova G, Bondeva T, et al. 2002. Inositol lipid binding and membrane localization of isolated pleckstrin homology (PH) domains. Studies on the PH domains of phospholipase C δ1 and p130. J Biol Chem 277: 27412–27422.

    Article  PubMed  CAS  Google Scholar 

  • Wang H, Oestreich EA, Maekawa N, Bullard TA, Vikstrom KL, et al. 2005. Phospholipase C ε modulates β-adrenergic receptor-dependent cardiac contraction and inhibits cardiac hypertrophy. Circ Res 97: 1305–1313.

    Article  PubMed  CAS  Google Scholar 

  • Wang T, Dowal L, El-Maghrabi MR, Rebecchi M, Scarlata S. 2000. The pleckstrin homology domain of phospholipase C-β2 links the binding of gbetagamma to activation of the catalytic core. J Biol Chem 275: 7466–7469.

    Article  PubMed  CAS  Google Scholar 

  • Wang T, Pentyala S, Elliott JT, Dowal L, Gupta E, et al. 1999. Selective interaction of the C2 domains of phospholipase C-β1 and -β2 with activated Gαq subunits: An alternative function for C2-signaling modules. Proc Natl Acad Sci USA 96: 7843–7846.

    Article  PubMed  CAS  Google Scholar 

  • Wang Z, Moran MF. 2002. Phospholipase C-γ1: A phospholipase and guanine nucleotide exchange factor. Mol Interv 2: 338, 352–355.

    Article  Google Scholar 

  • Wing MR, Bourdon DM, Harden TK. 2003a. PLC-ε: A shared effector protein in Ras-, Rho-, and G αβγ-mediated signaling. Mol Interv 3: 273–280.

    Article  PubMed  CAS  Google Scholar 

  • Wing MR, Houston D, Kelley GG, Der CJ, Siderovski DP, et al. 2001. Activation of phospholipase C-ε by heterotrimeric G protein betagamma-subunits. J Biol Chem 276: 48257–48261.

    PubMed  CAS  Google Scholar 

  • Wing MR, Snyder JT, Sondek J, Harden TK. 2003b. Direct activation of phospholipase C-ε by Rho. J Biol Chem 278: 41253–41258.

    Article  PubMed  CAS  Google Scholar 

  • Xie W, Samoriski GM, McLaughlin JP, Romoser VA, Smrcka A, et al. 1999. Genetic alteration of phospholipase C β3 expression modulates behavioral and cellular responses to μ opioids. Proc Natl Acad Sci USA 96: 10385–10390.

    Article  PubMed  CAS  Google Scholar 

  • Yagisawa H. 2006. Nucleocytoplasmic shuttling of phospholipase C-δ1: A link to Ca2+. J Cell Biochem 97: 233–243.

    Article  PubMed  CAS  Google Scholar 

  • Yagisawa H, Okada M, Naito Y, Sasaki K, Yamaga M, et al. 2006. Coordinated intracellular translocation of phosphoinositide-specific phospholipase C-δ with the cell cycle. Biochim Biophys Acta 1761: 522–534.

    PubMed  CAS  Google Scholar 

  • Yagisawa H, Sakuma K, Paterson HF, Cheung R, Allen V, et al. 1998. Replacements of single basic amino acids in the pleckstrin homology domain of phospholipase C-δ1 alter the ligand binding, phospholipase activity, and interaction with the plasma membrane. J Biol Chem 273: 417–424.

    Article  PubMed  CAS  Google Scholar 

  • Yamaga M, Fujii M, Kamata H, Hirata H, Yagisawa H. 1999. Phospholipase C-δ1 contains a functional nuclear export signal sequence. J Biol Chem 274: 28537–28541.

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto T, Takeuchi H, Kanematsu T, Allen V, Yagisawa H, et al. 1999. Involvement of EF hand motifs in the Ca2+-dependent binding of the pleckstrin homology domain to phosphoinositides. Eur J Biochem 265: 481–490.

    Article  PubMed  CAS  Google Scholar 

  • Ye K, Aghdasi B, Luo HR, Moriarity JL, Wu FY, et al. 2002. Phospholipase C γ1 is a physiological guanine nucleotide exchange factor for the nuclear GTPase PIKE. Nature 415: 541–544.

    Article  PubMed  CAS  Google Scholar 

  • Ye K, Hurt KJ, Wu FY, Fang M, Luo HR, et al. 2000. Pike. A nuclear gtpase that enhances PI3kinase activity and is regulated by protein 4.1N. Cell 103: 919–930.

    Article  PubMed  CAS  Google Scholar 

  • Yoko-o T, Kato H, Matsui Y, Takenawa T, Toh-e A. 1995. Isolation and characterization of temperature-sensitive plc1 mutants of the yeast Saccharomyces cerevisiae Mol Gen Genet 247: 148–156.

    Article  PubMed  CAS  Google Scholar 

  • Yoko-o T, Matsui Y, Yagisawa H, Nojima H, Uno I, et al. 1993. The putative phosphoinositide-spesific phospholipase C gene, PLC1, of the yeast Saccharomyces cerevisiae is important fpr cell growth. Proc Natl Acad Sci USA 90: 1804–1808.

    Article  PubMed  CAS  Google Scholar 

  • Yoshimura K, Takeuchi H, Sato O, Hidaka K, Doira N, et al. 2001. Interaction of p130 with, and consequent inhibition of, the catalytic subunit of protein phosphatase 1α. J Biol Chem 276: 17908–17913.

    Article  PubMed  CAS  Google Scholar 

  • Zhang W, Neer EJ. 2001. Reassembly of phospholipase C-β2 from separated domains: Analysis of basal and G protein-stimulated activities. J Biol Chem 276: 2503–2508.

    Article  PubMed  CAS  Google Scholar 

  • Zhou Y, Wing MR, Sondek J, Harden TK. 2005. Molecular cloning and characterization of PLC-η2. Biochem J 391: 667–676.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this entry

Cite this entry

Yagisawa, H. (2009). Phosphoinositide-Specific Phospholipase C: Isoforms and Related Molecules. In: Lajtha, A., Mikoshiba, K. (eds) Handbook of Neurochemistry and Molecular Neurobiology. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-30370-3_14

Download citation

Publish with us

Policies and ethics