Skip to main content

Receptor-Like Protein Tyrosine Phosphatases and Proteoglycans in the Nervous System

  • Reference work entry
  • 1276 Accesses

Abstract

Receptor-like protein tyrosine phosphatases are composed of an extracellular domain, a transmembrane segment and one or two tyrosine phosphatase domains. Their extracellular regions show several domain structures including immunoglobulin-like, fibronectin type III-like, carbonic anhydrase-like, and meprin/A5/μ domains. The regulatory mechanisms of their tyrosine phosphatase activities are still unclear. However, it seems that ligand-induced inactivation or activation and reversible oxidation of catalytic cysteine residue are the major signaling mechanisms. Receptor-like protein tyrosine phosphatases are involved in various cell–cell and cell–extracellular matrix interactions, and accumulating evidence has revealed that they play important roles in the nervous system, such as axon guidance, neurite outgrowth, neuronal migration, and learning processes. Recent studies indicated that proteoglycans are essential components of the signal transduction pathways of several receptor-like protein tyrosine phosphatases. Chondroitin sulfate and heparan sulfate regulate ligand binding to PTPζ and DLAR, respectively, and structural variations of these glycosaminoglycans may be involved in the determination of the binding affinity.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   299.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

ECM:

extracellular matrix

EGFR:

epidermal growth factor receptor

H2O2 :

hydrogen peroxide

MAM:

meprin/A5/μ

PTK:

protein tyrosine kinases

PTP:

protein tyrosine phosphatases

ROS:

reactive oxygen species

RPTP:

receptor-like PTPs

References

  • Alete DE, Weeks ME, Hovanession AG, Hawadle M, Stoker AW. 2006. Cell surface nucleolin on developing muscle is a potential ligand for the axonal receptor protein tyrosine phosphatase-σ. FEBS J 273: 4668–4681.

    Article  CAS  PubMed  Google Scholar 

  • Alonso A, Sasin J, Bottini N, Friedberg I, Friedberg I, et al. 2004. Protein tyrosine phosphatases in the human genome. Cell 117: 699–711.

    Article  CAS  PubMed  Google Scholar 

  • Andersen JN, Mortensen OH, Peters GH, Drake PG, Iversen LF, et al. 2001. Structural and evolutionary relationships among protein tyrosine phophatase domains. Mol Cell Biol 21: 7117–7136.

    Article  CAS  PubMed  Google Scholar 

  • Aricescu AR, McKinnell IW, Halfter W, Stoker AW. 2002. Heparan sulfate proteoglycans are ligands for receptor protein tyrosine phosphatase σ. Mol Cell Biol 22: 1881–1892.

    Article  CAS  PubMed  Google Scholar 

  • Bandtlow CE, Zimmermann DR. 2000. Proteoglycans in the developing brain. Physiol Rev 80: 1267–1290.

    CAS  PubMed  Google Scholar 

  • Bernabeu R, Yang T, Xie Y, Mehta B, Ma SY, et al. 2006.Downregulation of the LAR protein tyrosine phosphatase receptor is associated with increased dentate gyrus neurogenesis and an increased number of granule cell layer neurons. Mol Cell Neurosci 31: 723–738.

    Article  CAS  PubMed  Google Scholar 

  • Bilwes AM, den Hertog J, Hunter T, Noel JP. 1996. Structural basis for inhibition of receptor protein-tyrosine phosphatase-α by dimerization. Nature 382: 555–559.

    Article  CAS  PubMed  Google Scholar 

  • Blanchetot C, Tertoolen LGJ, den Hertog J. 2002. Regulation of receptor protein-tyrosine phosphatase α by oxidative stress. EMBO J 21: 493–503.

    Article  CAS  PubMed  Google Scholar 

  • Brady-Kalnay SM, Tonks NK. 1994. Identification of the homophilic binding site of the receptor protein tyrosine phosphatase PTPμ. J Biol Chem 269: 28472–28477.

    CAS  PubMed  Google Scholar 

  • Braithwaite SP, Adkisson M, Leung J, Nava A, Masterson B, et al. 2006. Regulation of NMDA receptor trafficking and function by striatal-enriched tyrosine phosphatase (STEP). Eur J Neurosci 23: 2847–2856.

    Article  PubMed  Google Scholar 

  • Burden-Gulley SM, Ensslen SE, Brady-Kalnay SM. 2002. Protein tyrosine phosphatase-μ differentially regulates neurite outgrowth of nasal and temporal neurons in the retina. J Neurosci 22: 3615–3627.

    CAS  PubMed  Google Scholar 

  • Cheng J, Wu K, Armanini M, O’Rourke N, Dowbenko D, et al. 1997. A novel protein-tyrosine phosphatase related to the homotypically adhering κ and μ receptors. J Biol Chem 272: 7264–7277.

    Article  CAS  PubMed  Google Scholar 

  • Chirivi RG, Noordman YE, Zee CE, Hendriks WJ. 2007. Altered MAP kinase phosphorylation and impaired motor coordination in PTPRR deficient mice. J Neurochem 101: 829–840.

    Article  CAS  PubMed  Google Scholar 

  • Clandinin TR, Lee C-H, Herman T, Lee RC, Yang AY, et al. 2001. Drosophila LAR regulates R1-R6 and R7 target specificity in the visual system. Neuron 32: 237–248.

    Article  CAS  PubMed  Google Scholar 

  • Debant A, Serra-Pages C, Seipel K, O’Brien S, Tang M, et al. 1996. The multidomain protein Trio binds the LAR transmembrane tyrosine phosphatase, contains a protein kinase domain, and has separate rac-specific and rho-specific guanine nucleotide exchange factor domain. Proc Natl Acad Sci USA 93: 5466–5471.

    Article  CAS  PubMed  Google Scholar 

  • Desai CJ, Gindhart JG, Goldstein LSB, Zinn K. 1996. Receptor tyrosine phosphatases are required for motor axon guidance in the drosophila embryo. Cell 84: 599–609.

    Article  CAS  PubMed  Google Scholar 

  • Desai CJ, Krueger NX, Saito H, Zinn K. 1997. Competition and cooperation among receptor tyrosine phosphatases control motoneuron growth cone guidance in Drosophila. Development 124: 1941–1952.

    CAS  PubMed  Google Scholar 

  • Drosopoulos NE, Walsh FS, Doherty P. 1999. A soluble version of the receptor-like protein tyrosine phosphatase k stimulates neurite outgrowth via Grb2/MEK1-dependent signaling cascade. Mol Cell Neurosci 13: 441–449.

    Article  CAS  PubMed  Google Scholar 

  • Dunah AW, Hueske E, Wyszynski M, Hoogenraad CC, Jaworski J, et al. 2005. LAR receptor protein tyrosine phosphatases in the development and maintenance of excitatory synapses. Nat Neurosci 8: 458–467.

    CAS  PubMed  Google Scholar 

  • Elchebly M, Wagner J, Kennedy TE, Lanctot C, Michaliszyn E, et al. 1999. Neuroendocrine dysplasia in mice lacking protein tyrosine phosphatase σ. Nat Genet 21: 330–333.

    Article  CAS  PubMed  Google Scholar 

  • Feiken E, van Etten I, Gebbink MFBG, Moolenaar WH, Zondag GCM. 2000. Intramolecular interactions between the juxtamembrane domain and phosphatase domains of receptor protein-tyrosine phosphatase RPTPμ. J Biol Chem 275: 15350–15356.

    Article  CAS  PubMed  Google Scholar 

  • Fox AN, Zinn K. 2005. The heparan sulfate proteoglycan syndecan is an in vivo ligand for the drosophila LAR receptor tyrosine phosphatase. Curr Biol 15: 1701–1711.

    Article  CAS  PubMed  Google Scholar 

  • Fukada M, Fujikawa A, Chow JPH, Ikematsu S, Sakuma S, et al. 2006. Protein tyrosine phosphatase receptor type Z is inactivated by ligand-induced oligomerization. FEBS Lett 580: 4051–4056.

    Article  CAS  PubMed  Google Scholar 

  • Garrity PA, Lee C-H, Salecker I, Robertson HC, Desai CJ, et al. 1999. Retinal axon target selection in drosophila is regulated by a receptor protein tyrosine phosphatase. Neuron 22: 707–717.

    Article  CAS  PubMed  Google Scholar 

  • Groen A, Lameer S, Van der Wijk T, Overvoorde J, Heck AJR, et al. 2005. Differential oxidation of protein-tyrosine phosphatases. J Biol Chem 280: 10298–10304.

    Article  CAS  PubMed  Google Scholar 

  • Harroch S, Furtado GC, Brueck W, Rosenbluth J, Lafaille J, et al. 2002. A critical role for the protein tyrosine phosphatase receptor type Z in functional recovery from demyelinatin lesions. Nat Genet 32: 411–414.

    Article  CAS  PubMed  Google Scholar 

  • Hoffmann KMV, Tonks NK, Barford D. 1997. The crystal structure of domain 1 of receptor protein-tyrosine phosphatase μ. J Biol Chem 272: 27505–27508.

    Article  CAS  PubMed  Google Scholar 

  • Jiang G, den Hertog J, Hunter T. 2000. Receptor-like protein tyrosine phosphatase α homodimerizes on the cell surface. Mol Cell Biol 20: 5917–5929.

    Article  CAS  PubMed  Google Scholar 

  • Jiang G, den Hertog J, Su J, Noel J, Sap J, et al. 1999. Dimerization inhibits the activity of receptor-like protein-tyrosine phosphatase-α. Nature 401: 606–610.

    Article  CAS  PubMed  Google Scholar 

  • Johnson KG, Tenney AP, Ghose A, Duckworth AM, Higashi ME, et al. 2006. The HSPGs syndecan and Dallylike bind the receptor phosphatase LAR and exert distinct effects on synaptic development. Neuron 49: 517–531.

    Article  CAS  PubMed  Google Scholar 

  • Johnson KG, Van Vactor D. 2003. Receptor protein tyrosine phosphatases in nervous system development. Physiol Rev 83: 1–24.

    CAS  PubMed  Google Scholar 

  • Kaufmann N, DeProto J, Ranjan R, Wan H, Van Vactor D. 2002. Drosophila liprin-alpha and the receptor phosphatase Dlar control synapse morphogenesis. Neuron 34: 27–38.

    Article  CAS  PubMed  Google Scholar 

  • Kawachi H, Fujikawa A, Maeda N, Noda M. 2001. Identification of GIT1/Cat-1 as a substrate molecule of protein tyrosine phosphatase ζ/β by the yeast substrate-trapping system. Proc Natl Acad Sci USA 98: 6593–6598.

    Article  CAS  PubMed  Google Scholar 

  • Kolkman MJM, Streijger F, Linkels M, Bloemen M, Heeren DJ, et al. 2004. Mice lacking leukocyte common antigen-related (LAR) protein tyrosine phosphatase domains demonstrate spatial learning impairment in the two-trial water maze and hyperactivity in multiple behavioural tests. Behav Brain Res 154: 171–182.

    Article  CAS  PubMed  Google Scholar 

  • Krueger NX, Van Vactor D, Wan HI, Gelbart WM, Goodman CS, et al. 1996. The transmembrane tyrosine phosphatase DLAR controls motor axon guidance in drosophila. Cell 84: 611–622.

    Article  CAS  PubMed  Google Scholar 

  • Lambeth JD. 2004. NOX enzymes and the biology of reactive oxygen. Nat Rev Immunol 4: 181–189.

    Article  CAS  PubMed  Google Scholar 

  • Lamprianou S, Vacaresse N, Suzuki Y, Meziane H, Buxbaum JD, et al. 2006. Receptor protein tyrosine phosphatase γ is a marker for pyramidal cells and sensory neurons in the nervous system and is not necessary for normal development. Mol Cell Biol 26: 5106–5119.

    Article  CAS  PubMed  Google Scholar 

  • Lu KV, Jong KA, Kim GY, Singh J, Dia EQ, et al. 2005. Differential induction of glioblastoma migration and growth by two forms of pleiotrophin. J Biol Chem 280: 26953–26964.

    Article  CAS  PubMed  Google Scholar 

  • Maeda N. 2007. PTPζ/phosphacan: Multi-functional receptor-type chondroitin sulfate proteoglycan. Neural Proteoglycans. Maeda N., editors. India: Research Signpost; pp. 1-19.

    Google Scholar 

  • Maeda N, Fukazawa N, Hata T. 2006. The binding of chondroitin sulfate to pleiotrophin/heparin-binding growth-associated molecule is regulated by chain length and oversulfated structures. J Biol Chem 281: 4894–4902.

    Article  CAS  PubMed  Google Scholar 

  • Maeda N, He J, Yajima Y, Mikami T, Sugahara K, et al. 2003. Heterogeneity of the chondroitin sulfate portion of phosphacan/6B4 proteoglycan regulates its binding affinity for pleiotrophin/heparin binding growth-associated molecule. J Biol Chem 278: 35805–35811.

    Article  CAS  PubMed  Google Scholar 

  • Maeda N, Ichihara-Tanaka K, Kimura T, Kadomatsu K, Muramatsu T, et al. 1999. A receptor-like protein-tyrosine phosphatase PTPζ/RPTPβ binds a heparin-binding growth factor midkine. Involvement of arginine 78 of midkine in the high affinity binding to PTPζ. J Biol Chem 274: 12474–12479.

    Article  CAS  PubMed  Google Scholar 

  • Maeda N, Nishiwaki T, Shintani T, Hamanaka H, Noda M. 1996. 6B4 proteoglycan/phosphacan, an extracellular variant of receptor-like protein-tyrosine phosphatase ζ/RPTPβ, binds pleiotrophin/heparin-binding growth-associated molecule (HB-GAM). J Biol Chem 271: 21446–21452.

    Article  CAS  PubMed  Google Scholar 

  • Maeda N, Noda M. 1998. Involvement of receptor-like protein tyrosine phosphatase ζ/RPTPβ and its ligand pleiotrophin/heparin-binding growth-associated molecule (HB-GAM) in neuronal migration. J Cell Biol 142: 203–216.

    Article  CAS  PubMed  Google Scholar 

  • Majeti R, Bilwes AM, Noel JP, Hunter T, Weiss A. 1998. Dimerization-induced inhibition of receptor protein tyrosine phosphatase function through an inhibitory wedge. Science 279: 88–91.

    Article  CAS  PubMed  Google Scholar 

  • Massa A, Barbieri F, Aiello C, Arena S, Pattarozzi A, et al. 2004. The expression of the phosphotyrosine phosphatase DEP-1/ η dictates the responsivity of glioma cells to somatostatin inhibition of cell proliferation. J Biol Chem 279: 29004–29012.

    Article  CAS  PubMed  Google Scholar 

  • Matozo HC, Santos MAM, Neto MO, Bleicher L, Lima LMTR, et al. 2007. Low-resolution structure and fluorescence anisotropy analysis of protein tyrosine phosphatase η catalytic domain. Biophys J.

    Google Scholar 

  • Meng K, Rodriguez-Pena A, Dimitrov T, Chen W, Yamin M, et al. 2000. Pleiotrophin signals increased tyrosine phosphorylation of β-catenin through inactivation of the intrinsic catalytic activity of the receptor-type protein tyrosine phosphatase β/ζ. Proc Natl Acad Sci USA 97: 2603–2608.

    Article  CAS  PubMed  Google Scholar 

  • Meng T-C, Fukada T, Tonks NK. 2002. Reversible oxidation and inactivation of protein tyrosine phosphatases in vivo. Mol Cell 9: 387–399.

    Article  CAS  PubMed  Google Scholar 

  • Muller S, Kunkel P, Lamszus K, Ulbricht U, Lorente GA, et al. 2003. A role for receptor tyrosine phosphatase ζ in glioma cell migration. Oncogene 22: 6661–6668.

    Article  PubMed  CAS  Google Scholar 

  • Muramatsu T. 2002. Midkine and pleiotrophin: Two related proteins involved in development, survival, inflammation and tumorigenesis. J Biochem (Tokyo) 132: 359–371.

    CAS  Google Scholar 

  • Niisato K, Fujikawa A, Komai S, Shintani T, Watanabe E, et al. 2005. Age-dependent enhancement of hippocampal long-term potentiation and impairment of spatial learning through the rho-associated kinase pathway in protein tyrosine phosphatase receptor type Z-deficient mice. J Neurosci 25: 1081–1088.

    Article  CAS  PubMed  Google Scholar 

  • Nishiwaki T, Maeda N, Noda M. 1998. Characterization and developmental regulation of proteoglycan-type protein tyrosine phosphatase ζ/RPTPβ isoforms. J Biochem 123: 458–467.

    CAS  PubMed  Google Scholar 

  • O’Grady P, Thai TC, Saito H. 1998. The laminin–nidogen complex is a ligand for a specific splice isoform of the transmembrane protein tyrosine phosphatase LAR. J Cell Biol 141: 1675–1684.

    Article  PubMed  Google Scholar 

  • Pariser H, Perez-Pinera P, Ezquerra L, Herradon G, Deuel TF. 2005. Pleiotrophin stimulates tyrosine phosphorylation of β-adducin through inactivation of the transmembrane receptor protein tyrosine phosphatase β/ζ. Biochem Biophys Res Commun 335: 232–239.

    Article  CAS  PubMed  Google Scholar 

  • Paul S, Nairn AC, Wang P, Lombroso PJ. 2003. NMDA-mediated activation of the tyrosine phosphatase STEP regulates the duration of ERK signaling. Nat Neurosci 6: 34–42.

    Article  CAS  PubMed  Google Scholar 

  • Pelkey KA, Askalan R, Paul S, Kalia LV, Nguyen T-H, et al. 2002. Tyrosine phosphatase STEP is a tonic brake on induction of long-term potentiation. Neuron 34: 127–138.

    Article  CAS  PubMed  Google Scholar 

  • Persson C, Sjoblom T, Groen A, Kappert K, Engstrom U, et al. 2004. Preferential oxidation of the second phosphatase domain of receptor-like PTP-α revealed by an antibody against oxidized protein tyrosine phosphatases. Proc Natl Acad Sci USA 101: 1886–1891.

    Article  CAS  PubMed  Google Scholar 

  • Petrone A, Battaglia F, Wang C, Dusa A, Su J, et al. 2003. Receptor protein tyrosine phosphatase α is essential for hippocampal neuronal migration and long-term potentiation. EMBO J 22: 4121–4131.

    Article  CAS  PubMed  Google Scholar 

  • Polykratis A, Katsoris P, Courty J, Papadimitriou E. 2005. Characterization of heparin affin regulatory peptide signaling in human endothelial cell. J Biol Chem 280: 22454–22461.

    Article  CAS  PubMed  Google Scholar 

  • Qi M, Ikematsu S, Maeda N, Ichihara-Tanaka K, Sakuma S, et al. 2001. Haptotactic migration induced by midkine. Involvement of protein-tyrosine phosphatase ζ, mitogen-activated protein kinase, and phosphatidylinositol 3-kinase J Biol Chem 276: 15868–15875.

    CAS  PubMed  Google Scholar 

  • Ratcliffe CF, Qu Y, McCormick KA, Tibbs VC, Dixon JE, et al. 2000. A sodium channel signaling complex: Modulation by associated receptor protein tyrosine phosphatase β. Nat Neurosci 3: 437–444.

    Article  CAS  PubMed  Google Scholar 

  • Sakaguchi N, Muramatsu H, Ichihara-Tanaka K, Maeda N, Noda M, et al. 2003. Receptor-type protein tyrosine phosphatase ζ as a component of the signaling receptor complex for midkine-dependent survival of embryonic neurons. Neurosci Res 45: 219–224.

    Article  CAS  PubMed  Google Scholar 

  • Sap J, Jiang Y-P, Friedlander D, Grumet M, Schlessinger J. 1994. Receptor tyrosine phosphatase R-PTP-k mediates homophilic binding. Mol Cell Biol 14: 1–9.

    CAS  PubMed  Google Scholar 

  • Schindelholz B, Knirr M, Warrior R, Zinn K. 2001. Regulation of CNS and motor axon guidance in Drosophila by the receptor tyrosine phosphatase DPTP52F. Development 128: 4371–4382.

    CAS  PubMed  Google Scholar 

  • Shimazaki Y, Nagata I, Ishii M, Tanaka M, Marunouchi T, et al. 2005. Developmental change and function of chondroitin sulfate deposited around cerebellar Purkinje cells. J Neurosci Res 82: 172–183.

    Article  CAS  PubMed  Google Scholar 

  • Skelton MR, Ponniah S, Wang DZ-M, Doetschman T, Vorhees CV, et al. 2003. Protein tyrosine phosphatase alpha (PTPα) knockout mice show deficits in Morris water maze learning, decreased locomotor activity, and decreases in anxiety. Brain Res 984: 1–10.

    Article  CAS  PubMed  Google Scholar 

  • Sorby M, Sandstrom J, Ostman A. 2001. An extracellular ligand increases the specific activity of the receptor-like protein tyrosine phosphatase DEP-1. Oncogene 20: 5219–5224.

    Article  CAS  PubMed  Google Scholar 

  • Stepanek L, Stoker AW, Stoeckli E, Bixby JL. 2005. Receptor tyrosine phosphatase guide vertebrate motor axons during development. J Neurosci 25: 3813–3823.

    Article  CAS  PubMed  Google Scholar 

  • Stepanek L, Sun QL, Wang J, Wang C, Bixby JL. 2001. CRYP-2/cPTPRO is a neurite inhibitory repulsive guidance cue for retinal neurons in vitro. J Cell Biol 154: 867–878.

    Article  CAS  PubMed  Google Scholar 

  • Streuli M, Krueger NX, Thai T, Tang M, Saito H. 1990. Distinct functional roles of the two intracellular phosphatase like domains of the receptor-linked protein tyrosine phosphatases LCA and LAR. EMBO J 9: 2399–2407.

    CAS  PubMed  Google Scholar 

  • Sun Q, Bahri S, Schmid A, Chia W, Zinn K. 2000. Receptor tyrosine phosphatases regulate axon guidance across the midline of the Drosophila embryo. Development 127: 801–812.

    CAS  PubMed  Google Scholar 

  • Tan J, Town T, Mori T, Wu Y, Saxe M, et al. 2000. CD45 opposes β-amyloid peptide-induced microglial activation via inhibition of p44/42 mitogen-activated protein kinase. J Neurosci 20: 7587–7594.

    CAS  PubMed  Google Scholar 

  • Tanaka M, Maeda N, Noda M, Marunouchi T. 2003. A chondroitin sulfate proteoglycan PTPζ/RPTPβ regulates the morphogenesis of Purkinje cell dendrites in the developing cerebellum. J Neurosci 23: 2804–2814.

    CAS  PubMed  Google Scholar 

  • Terada LS. 2006. Specificity in reactive oxidant signaling: Think globally, act locally. J Cell Biol 174: 615–623.

    Article  CAS  PubMed  Google Scholar 

  • Tiganis T, Bennett AM. 2007. Protein tyrosine phosphatase function: The substrate perspective. Biochem J 402: 1–15.

    Article  CAS  PubMed  Google Scholar 

  • Tiran Z, Peretz A, Sines T, Shinder V, Sap J, et al. 2006. Tyrosine phosphatases ε and α perform specific and overlapping functions in regulation of voltage-gated potassium channels in Schwann cells. Mol Biol Cell 17: 4330–4342.

    Article  CAS  PubMed  Google Scholar 

  • Tonks NK. 2005. Redox redux: Revisiting PTPs and the control of cell signaling. Cell 121: 667–670.

    Article  CAS  PubMed  Google Scholar 

  • Tonks NK. 2006. Protein tyrosine phosphatases: From genes, to function, to disease. Nat Rev Mol Cell Biol 7: 833–846.

    Article  CAS  PubMed  Google Scholar 

  • Toyoda H, Kinoshita-Toyoda A, Selleck SB. 2000. Structural analysis of glycosaminoglycans in Drosophila and Caenorhabditis elegans and demonstration that tout-velu, a Drosophila gene related to EXT tumor suppressors, affects heparan sulfate in vivo. J Biol Chem 275: 2269–2275.

    Article  CAS  PubMed  Google Scholar 

  • Uetani N, Chagnon MJ, Kennedy TE, Iwakura Y, Tremblay ML. 2006. Mammalian motoneuron axon targeting requires receptor protein tyrosine phosphatase σ and δ. J Neurosci 26: 5872–5880.

    Article  CAS  PubMed  Google Scholar 

  • Uetani N, Kato K, Ogura H, Mizuno K, Kawano K, et al. 2000. Impaired learning with enhanced hippocampal long-term potentiation in PTPδ-deficient mice. EMBO J 19: 2775–2785.

    Article  CAS  PubMed  Google Scholar 

  • Ulbricht U, Eckerich C, Fillbrandt R, Westphal M, Lamszus K. 2006. RNA interferance targeting protein tyrosine phosphatase ζ/receptor-type protein tyrosine phosphatase β suppresses glioblastoma growth in vitro and in vivo J Neurochem 98: 1497–1506.

    Article  CAS  PubMed  Google Scholar 

  • Van der Sar AM, Zivkovic D, Den Hertog J. 2002. Eye defects in receptor protein-tyrosine phosphatase α knock-down zebrafish. Dev Dyn 223: 291–297.

    Article  CAS  Google Scholar 

  • Van der Wijk T, Overvoorde J, den Hertog J. 2004. H2.O2-induced intermolecular disulfide bond formation between receptor protein-tyrosine phosphatases. J Biol Chem 279: 44355–44361.

    Article  CAS  PubMed  Google Scholar 

  • Van Lieshout EMM, Van der Heijden I, Hendriks WJAJ, Van der Zee CEEM. 2001. A decrease in size and number of basal forebrain cholinergic neurons is paralleled by diminished hippocampal cholinergic innervation in mice lacking leukocyte common antigen-related protein tyrosine phosphatase activity. Neuroscience 102: 833–841.

    Article  CAS  PubMed  Google Scholar 

  • Wallace MJ, Batt J, Fladd CA, Henderson JT, Skarnes W, et al. 1999. Neuronal defects and posterior pituitary hypoplasia in mice lacking the receptor tyrosine phosphatase PTPσ. Nat Genet 21: 334–338.

    Article  CAS  PubMed  Google Scholar 

  • Wallace MJ, Fladd C, Batt J, Rotin D. 1998. The second catalytic domain of protein tyrosine phosphatase δ (PTPδ) binds to and inhibits the first catalytic domain of PTPσ. Mol Cell Biol 18: 2608–2616.

    CAS  PubMed  Google Scholar 

  • Walzel H, Schulz U, Neels P, Brock J. 1999. Galectin-1, a natural ligand for the receptor-type protein tyrosine phosphatase CD45. Immunol Lett 67: 193–202.

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Bixby JL. 1999. Receptor tyrosine phosphatase-δ is a homophilic, neurite-promoting cell adhesion molecule for CNS neurons. Mol Cell Neurosci 14: 370–384.

    Article  CAS  PubMed  Google Scholar 

  • Yang T, Bernabeu R, Xie Y, Zhang JS, Massa SM, et al. 2003. Leukocyte antigen-related protein tyrosine phosphatase receptor: A small ectodomain isoform functions as a homophilic ligand and promotes neurite outgrowth. J Neurosci 23: 3353–3363.

    CAS  PubMed  Google Scholar 

  • Yeo TT, Yang T, Massa SM, Zhang JS, Honkaniemi J, et al. 1997. Deficient LAR expression decreases basal forebrain cholinergic neuronal size and hippocampal cholinergic innervaion. J Neurosci Res 47: 348–360.

    Article  CAS  PubMed  Google Scholar 

  • Zeng L, D’Alessandri L, Kalousek MB, Vaughan L, Pallen CJ. 1999. Protein tyrosine phosphatase α (PTPα) and contactin form a novel neuronal receptor complex linked to the intracellular tyrosine kinase fyn. J Cell Biol 147: 707–713.

    Article  CAS  PubMed  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this entry

Cite this entry

Maeda, N. (2009). Receptor-Like Protein Tyrosine Phosphatases and Proteoglycans in the Nervous System. In: Lajtha, A., Mikoshiba, K. (eds) Handbook of Neurochemistry and Molecular Neurobiology. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-30370-3_11

Download citation

Publish with us

Policies and ethics