Encyclopedia of Machine Learning

2010 Edition
| Editors: Claude Sammut, Geoffrey I. Webb

Rotation Forests

Reference work entry
DOI: https://doi.org/10.1007/978-0-387-30164-8_736

Rotation Forests is an  ensemble learning technique. It is similar to the  Random Forests approach to building decision tree ensembles. In the first step, the original feature set is split randomly into K disjoint subsets. Next,  principal components analysis is used to extract n principal component dimensions from each of the K subsets. These are then pooled, and the original data projected linearly into this new feature space. A tree is then built from this data in the usual manner. This process is repeated to create an ensemble of trees, each time with a different random split of the original feature set.

As the tree learning algorithm builds the classification regions using hyperplanes parallel to the feature axes, a small rotation of the axes may lead to a very different tree. The effect of rotating the axes is that classification regions of high accuracy can be constructed with far fewer trees than in  Bagging and  Adaboost.

Copyright information

© Springer Science+Business Media, LLC 2011