Encyclopedia of Machine Learning

2010 Edition
| Editors: Claude Sammut, Geoffrey I. Webb

Graph Clustering

  • Charu C. Aggarwal
Reference work entry
DOI: https://doi.org/10.1007/978-0-387-30164-8_348



Graph clustering refers to  clustering of data in the form of graphs. Two distinct forms of clustering can be performed on graph data. Vertex clustering seeks to cluster the nodes of the graph into groups of densely connected regions based on either edge weights or edge distances. The second form of graph clustering treats the graphs as the objects to be clustered and clusters these objects on the basis of similarity. The second approach is often encountered in the context of structured or XML data.

Motivation and Background

Graph clustering is a form of  graph mining that is useful in a number ofpractical applications including marketing, customer segmentation, congestiondetection, facility location, and XML data integration (Lee, Hsu, Yang, &Yang,  2002). The graph clustering problems are typically defined into twocategories:
  • Node clustering algorithms: Node clustering algorithms...

This is a preview of subscription content, log in to check access.


  1. Abello, J., Resende, M. G., & Sudarsky, S. (2002). Massive quasi-clique detection. In Proceedings of the 5th Latin American symposium on theoretical informatics (LATIN) (pp. 598–612). Berlin: Springer.Google Scholar
  2. Aggarwal, C., Ta, N., Feng, J., Wang, J., & Zaki, M. J. (2007). XProj: A framework for projected structural clustering of XML documents. In KDD conference (pp. 46–55). San Jose, CA.Google Scholar
  3. Ahuja, R., Orlin, J., & Magnanti, T. (1992). Network flows: Theory, algorithms, and applications. Englewood Cliffs, NJ: Prentice-Hall.Google Scholar
  4. Chawathe, S. S. (1999). Comparing hierachical data in external memory. In Very large data bases conference (pp. 90–101). San Francisco: Morgan Kaufmann.Google Scholar
  5. Chung, F. (1997). Spectral graph theory. Washington, DC: Conference Board of the Mathematical Sciences.MATHGoogle Scholar
  6. Dalamagas, T., Cheng, T., Winkel, K., & Sellis, T. (2005). Clustering XML documents using structural summaries. In Information systems. Elsevier, January 2005.Google Scholar
  7. Gibson, D., Kumar, R., & Tomkins, A. ( ). Discovering large dense subgraphs in massive graphs. In VLDB conference (pp. 721-732). http://www.vldb2005.org/program/paper/thu/p721-gibson.pdf
  8. Jain, A., & Dubes, R. (1998). Algorithms for clustering data. Englewood, NJ: Prentice-Hall.Google Scholar
  9. Kernighan, B. W., & Lin, S. (1970). An efficient heuristic procedure for partitioning graphs, Bell System Technical Journal, 49, 291–307.MATHGoogle Scholar
  10. Lee, M., Hsu, W., Yang, L., & Yang, X. (2002). XClust: Clustering XML schemas for effective integration. In ACM conference on information and knowledge management. http://doi.acm.org/10.1145/584792.584841
  11. Lian, W., Cheung, D. W., Mamoulis, N., & Yiu, S. (2004). An efficient and scalable algorithm for clustering XML documents by structure, IEEE Transactions on Knowledge and Data Engineering, 16(1), 82–96.CrossRefGoogle Scholar
  12. Pei, J., Jiang, D., & Zhang, A. (2005). On mining cross-graph quasi-cliques. In ACM KDD conference. Chicago, IL.Google Scholar
  13. Rattigan, M., Maier, M., & Jensen, D. (2007). Graph clustering with network structure indices. Proceedings of the International Conference on Machine Learning (783-790). ACM: New York.Google Scholar
  14. Tsay, A. A., Lovejoy, W. S., & Karger, D. R. (1999). Random sampling in cut, flow, and network design problems. Mathematics of Operations Research, 24(2), 383–413.MathSciNetCrossRefGoogle Scholar
  15. Zeng, Z., Wang, J., Zhou, L., & Karypis, G. (2007). Out-of-core coherent closed quasi-clique mining from large dense graph databases. ACM Transactions on Database Systems, 32(2), 13.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Charu C. Aggarwal
    • 1
  1. 1.IBM T. J. Watson Research CenterHawthorneUSA