Encyclopedia of Machine Learning

2010 Edition
| Editors: Claude Sammut, Geoffrey I. Webb

Classifier Systems

  • Pier Luca Lanzi
Reference work entry
DOI: https://doi.org/10.1007/978-0-387-30164-8_115

Synonyms

Definition

Classifier systems are rule-based systems that combine  temporal difference learning or  supervised learning with a genetic algorithm to solve classification and  reinforcement learning problems. Classifier systems come in two flavors: Michigan classifier systems, which are designed for online learning, but can also tackle offline problems; and Pittsburgh classifier systems, which can only be applied to offline learning.

In Michigan classifier systems (Holland, 1976), learning is viewed as an online adaptation process to an unknown environment that represents the problem and provides feedback in terms of a numerical reward. Michigan classifier systems maintain a single candidate solution consisting of a set of rules, or a population of classifiers. Michigan systems apply (1) temporal difference learning to distribute the incoming reward to the classifiers that are accountable for it; and (2) a genetic...

This is a preview of subscription content, log in to check access

Recommended Reading

  1. Arthur, B. W., Holland, J. H., LeBaron, B., Palmer, R., & Talyer, P. (1996). Asset pricing under endogenous expectations in an artificial stock market. Technical Report, Santa Fe Institute.Google Scholar
  2. Bacardit i Peñarroya, J. (2004). Pittsburgh genetic-based machine learning in the data mining era: Representations, generalization, and run-time. PhD thesis, Computer Science Department, Enginyeria i Arquitectura La Salle Universitat Ramon Llull, Barcelona.Google Scholar
  3. Barry, A. M., Holmes, J., & Llora, X. (2004). Data mining using learning classifier systems. In L. Bull (Ed.), Applications of learning classifier systems, studies in fuzziness and soft computing (Vol. 150, pp. 15–67). Pagg: Springer.Google Scholar
  4. Bassett, J. K., & de Jong, K. A. (2000). Evolving behaviors for cooperating agents. In Proceedings of the twelfth international symposium on methodologies for intelligent systems, LNAI (Vol. 1932). Berlin: Springer.Google Scholar
  5. Booker, L. B. (1989). Triggered rule discovery in classifier systems. In J. D. Schaffer (Ed.), Proceedings of the 3rd international conference on genetic algorithms (ICGA89). San Francisco: Morgan Kaufmann.Google Scholar
  6. Bull, L. (Ed.). (2004). Applications of learning classifier systems, studies in fuzziness and soft computing (Vol. 150). Berlin: Springer, ISBN 978-3-540-21109-9.Google Scholar
  7. Bull, L., & Kovacs, T. (Eds.). (2005). Foundations of learning classifier systems, studies in fuzziness and soft computing (Vol. 183). Berlin: Springer, ISBN 978-3-540-25073-9.Google Scholar
  8. Butz, M. V. (2002). Anticipatory learning classifier systems. Genetic algorithms and evolutionary computation. Boston, MA: Kluwer Academic Publishers.Google Scholar
  9. Clark, P., & Niblett, T. (1989). The CN2 induction algorithm. Machine Learning, 3(4), 261–283.Google Scholar
  10. de Jong, K. (1988). Learning with genetic algorithms: An overview. Machine Learning, 3(2–3), 121–138.Google Scholar
  11. de Jong, K. A., & Spears, W. M. (1991). Learning concept classification rules using genetic algorithms. In Proceedings of the international joint conference on artificial intelligence (pp. 651–656). San Francisco: Morgan Kaufmann.Google Scholar
  12. Dorigo, M., & Bersini, H. (1994). A comparison of Q-learning and classifier systems. In D. Cliff, P. Husbands, J.-A. Meyer, & S. W. Wilson (Eds.), From animals to animats 3: Proceedings of the third international conference on simulation of adaptive behavior (pp. 248–255). Cambridge, MA: MIT Press.Google Scholar
  13. Dorigo, M., & Colombetti, M. (1998). Robot shaping: An experiment in behavior engineering. Cambridge, MA: MIT Press/Bradford Books.Google Scholar
  14. Goldberg, D. E. (1989). Genetic algorithms in search, optimization, and machine learning. Reading, MA: Addison-Wesley.MATHGoogle Scholar
  15. Grefenstette, J. J., Ramsey, C. L., & Schultz, A. (1990) Learning sequential decision rules using simulation models and competition. Machine Learning, 5(4), 355–381.Google Scholar
  16. Holland, J. (1986) Escaping brittleness: The possibilities of general-purpose learning algorithms applied to parallel rule-based systems. In R. S. Michalski, J. G. Carbonell, & T. M. Mitchell (Eds.), Machine learning, an artificial intelligence approach (Vol. II, Chap. 20) (pp. 593–623). San Francisco: Morgan Kaufmann.Google Scholar
  17. Holland, J. H. (1975). Adaptation in natural and artificial systems. Ann Arbor, MI: University of Michigan Press (Reprinted by the MIT Press in 1992).Google Scholar
  18. Holland, J. H. (1976). Adaptation. Progress in Theoretical Biology, 4, 263–293.MathSciNetGoogle Scholar
  19. Holland, J. H., & Reitman, J. S. (1978). Cognitive systems based on adaptive algorithms. In D. A. Waterman & F. Hayes-Roth (Eds.), Pattern-directed inference systems. New York: Academic Press. (Reprinted from Evolutionary computation. The fossil record. D. B. Fogel (Ed.), IEEE Press (1998)).Google Scholar
  20. Janikow, C. Z. (1993). A knowledge-intensive genetic algorithm for supervised learning. Machine Learning, 13(2–3), 189–228.Google Scholar
  21. Lanzi, P. L. (2001). Mining interesting knowledge from data with the XCS classifier system. In L. Spector, E. D. Goodman, A. Wu, W. B. Langdon, H.-M. Voigt, M. Gen, et al. (Eds.), Proceedings of the genetic and evolutionary computation conference(GECCO-2001) (pp. 958–965). San Francisco: Morgan Kaufmann.Google Scholar
  22. Lanzi, P. L. (2005). Learning classifier systems: A reinforcement learning perspective. In L. Bull & T. Kovacs (Eds.), Foundations of learning classifier systems, studies in fuzziness and soft computing (pp. 267–284). Berlin: Springer.Google Scholar
  23. Lanzi, P. L., & Perrucci, A. (1999). Extending the representation of classifier conditions part II: From messy coding to S-expressions. In W. Banzhaf, J. Daida, A. E. Eiben, M. H. Garzon, V. Honavar, M. Jakiela, & R. E. Smith (Eds.), Proceedings of the genetic and evolutionary computation conference (GECCO 99) (pp. 345–352). Orlando, FL: Morgan Kaufmann.Google Scholar
  24. Lanzi, P. L., & Riolo, R. L. (2003). Recent trends in learning classifier systems research. In A. Ghosh & S. Tsutsui (Eds.), Advances in evolutionary computing: Theory and applications (pp. 955–988). Berlin: Springer.Google Scholar
  25. Lanzi, P. L., Stolzmann, W., & Wilson, S. W. (Eds.). (2000). Learning classifier systems: From foundations to applications. Lecture notes in computer science (Vol. 1813). Berlin: Springer.Google Scholar
  26. Llorá, X. (2002). Genetics-based machine learning using fine-grained parallelism for data mining. PhD thesis, Enginyeria i Arquitectura La Salle, Ramon Llull University, Barcelona.Google Scholar
  27. Mellor, D. (2005). A first order logic classifier system. In H. Beyer (Ed.), Proceedings of the 2005 conference on genetic and evolutionary computation (GECCO ’05), (pp. 1819–1826). New York: ACM Press.Google Scholar
  28. Quinlan, J. R., & Cameron-Jones, R. M. (1995). Induction of logic programs: FOIL and related systems. New Generation Computing, 13(3&4), 287–312.Google Scholar
  29. Samuel, A. L. (1959). Some studies in machine learning using the game of checkers. In E. A. Feigenbaum & J. Feldman (Eds.), Computers and thought. New York: McGraw-Hill.Google Scholar
  30. Smith, R. E., Dike, B. A., Niehra, R. K., Ravichandran, B., & El-Fallah, A. (2000). Classifier systems in combat: Two-sided learning of maneuvers for advanced fighter aircraft. Computer Methods in Applied Mechanics and Engineering, 186(2–4), 421–437.MATHGoogle Scholar
  31. Smith, S. F. (1980) A learning system based on genetic adaptive algorithms. Doctoral dissertation, Department of Computer Science, University of Pittsburgh.Google Scholar
  32. Smith, S. F. (1983). Flexible learning of problem solving heuristics through adaptive search. In Proceedings of the eighth international joint conference on artificial intelligence (pp. 421–425). Los Altos, CA: Morgan Kaufmann.Google Scholar
  33. Sutton, R. S. (1988). Learning to predict by the methods of temporal differences. Machine Learning, 3, 9–44.Google Scholar
  34. Sutton, R. S., & Barto, A. G. (1998). Reinforcement learning: An introduction. Cambridge, MA: MIT Press.Google Scholar
  35. Tackett, W. A. (1994). Recombination, selection, and the genetic construction of computer programs. Unpublished doctoral dissertation, University of Southern California.Google Scholar
  36. Watkins, C. (1989). Learning from delayed rewards. PhD thesis, King’s College.Google Scholar
  37. Wilson, S. W. (1995). Classifier fitness based on accuracy. Evolutionary Computation, 3(2), 149–175.Google Scholar
  38. Wilson, S. W. (2002). Classifiers that approximate functions. Natural Computing, 1(2–3), 211–234.MathSciNetMATHGoogle Scholar
  39. Wilson, S. W. (2007). “Three architectures for continuous action” learning classifier systems. International workshops, IWLCS 2003–2005, revised selected papers. In T. Kovacs, X. Llorà, K. Takadama, P. L. Lanzi, W. Stolzmann, & S. W. Wilson (Eds.), Lecture notes in artificial intelligence 4399 Vol. (pp. 239–257). Berlin: Springer.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Pier Luca Lanzi

There are no affiliations available