Encyclopedia of Machine Learning

2010 Edition
| Editors: Claude Sammut, Geoffrey I. Webb

Classification

  • Chris Drummond
Reference work entry
DOI: https://doi.org/10.1007/978-0-387-30164-8_111

Synonyms

Definition

In common usage, the word classification means to put things into categories, group them together in some useful way. If we are screening for a disease, we would group people into those with the disease and those without. We, as humans, usually do this because things in a group, called a  class in machine learning, share common characteristics. If we know the class of something, we know a lot about it. In machine learning, the term classification is most commonly associated with a particular type of learning where examples of one or more classes, labeled with the name of the class, are given to the learning algorithm. The algorithm produces a classifier which maps the properties of these examples, normally expressed as  attribute-value pairs, to the class labels. A new example whose class is unknown is classified when it is given a class label by the classifier based on its properties. In...

This is a preview of subscription content, log in to check access

Recommended Reading

  1. Aha, D. W. (1997). Editorial. Artificial Intelligence Review, 11(1–5), 1–6.Google Scholar
  2. Aha, D. W., Kibler, D., & Albert, M. K. (1991). Instance-based learning algorithms. Machine Learning, 6(1), 37–66.Google Scholar
  3. Aha, D. W., & Riddle, P. J. (Eds.). (1995). Workshop on applying machine learning in practice. In Proceedings of the 12th international conference on machine learning.Google Scholar
  4. Ashby, F. G., & Maddox, W. T. (2005). Human category learning. Annual Review of Psychology, 56, 149–178.Google Scholar
  5. Bishop, C. M. (2007). Pattern recognition and machine learning. New York: Springer.Google Scholar
  6. Brachman, R. J., Khabaza, T., Kloesgen, W., Piatetsky-Shapiro, G., & Simoudis, E. (1996). Mining business databases. Communications of the ACM, 39(11), 42–48.Google Scholar
  7. Breiman, L., Friedman, J. H., Olshen, R. A., & Stone, C. J. (1984). Classification and regression trees. Belmont, CA: Wadsworth.MATHGoogle Scholar
  8. Caruana, R., Niculescu-Mizil, A., Crew, G., & Ksikes, A. (2004). Ensemble selection from libraries of models. In Proceedings of the 21st international conference on machine learning (pp. 137–144).Google Scholar
  9. Clark, P., & Niblett, T. (1989). The CN2 induction algorithm. Machine Learning, 3, 261–284.Google Scholar
  10. Cover, T., & Hart, P. (1967). Nearest neighbor pattern classification. IEEE Transactions on Information Theory, 13, 21–27.MATHGoogle Scholar
  11. Dietterich, T., & Shavlik, J. (Eds.). Readings in machine learning. San Mateo, CA: Morgan Kaufmann.Google Scholar
  12. Engels, R., Evans, B., Herrmann, J., & Verdenius, F. (Eds.). (1997). Workshop on machine learning applications in the real world; methodological aspects and implications. In Proceedings of the 14th international conference on machine learning.Google Scholar
  13. Fayyad, U. M., & Uthurusamy, R. (Eds.). (1995). Proceedings of the first international conference on knowledge discovery and data mining.Google Scholar
  14. Holte, R. C. (1993). Very simple classification rules perform well on most commonly used datasets. Machine Learning, 11(1), 63–91.MathSciNetMATHGoogle Scholar
  15. Kodratoff, Y. (Ed.). (1994). Proceedings of MLNet workshop on industrial application of machine learning.Google Scholar
  16. Kodratoff, Y., & Michalski, R. S. (1990). Machine learning: An artificial intelligence approach, (Vol. 3). San Mateo, CA: Morgan Kaufmann.Google Scholar
  17. Kohavi, R., & Provost, F. (1998). Glossary of terms. Editorial for the special issue on applications of machine learning and the knowledge discovery process. Machine Learning, 30(2/3).Google Scholar
  18. Komorowski, H. J., & Zytkow, J. M. (Eds.). (1997). Proceedings of the first European conference on principles of data mining and knowledge discovery.Google Scholar
  19. Lakoff, G. (1987). Women, fire and dangerous things. Chicago, IL: University of Chicago Press.Google Scholar
  20. Langley, P., & Simon, H. A. (1995). Applications of machine learning and rule induction. Communications of the ACM, 38(11), 54–64.Google Scholar
  21. Michalski, R. S. (1983). A theory and methodology of inductive learning. In R. S. Michalski, T. J. Carbonell, & T. M. Mitchell (Eds.), Machine learning: An artificial intelligence approach (pp. 83–134). Palo Alto, CA: TIOGA Publishing.Google Scholar
  22. Michalski, R. S., Carbonell, J. G., & Mitchell, T. M. (Eds.). (1983). Machine learning: An artificial intelligence approach. Palo Alto, CA: Tioga Publishing Company.Google Scholar
  23. Michalski, R. S., Carbonell, J. G., & Mitchell, T. M. (Eds.). (1986). Machine learning: An artificial intelligence approach, (Vol. 2). San Mateo, CA: Morgan Kaufmann.Google Scholar
  24. Michie, D. (1982). Machine intelligence and related topics. New York: Gordon and Breach Science Publishers.MATHGoogle Scholar
  25. Mitchell, T. M. (1977). Version spaces: A candidate elimination approach to rule learning. In Proceedings of the fifth international joint conferences on artificial intelligence (pp. 305–310).Google Scholar
  26. Mitchell, T. M. (1997). Machine learning. Boston, MA: McGraw-Hill.MATHGoogle Scholar
  27. Quinlan, J. R. (1986). Induction of decision trees. Machine Learning, 1, 81–106.Google Scholar
  28. Quinlan, J. R. (1993). C4.5 programs for machine learning. San Mateo, CA: Morgan Kaufmann.Google Scholar
  29. Rubinstein, Y. D., & Hastie, T. (1997). Discriminative vs informative learning. In Proceedings of the third international conference on knowledge discovery and data mining (pp. 49–53).Google Scholar
  30. Russell, S., & Norvig, P. (2003). Artificial intelligence: A modern approach. Upper Saddle River, NJ: Prentice-Hall.Google Scholar
  31. Schorr, H., & Rappaport, A. (Eds.). (1989). Proceedings of the first conference on innovative applications of artificial intelligence.Google Scholar
  32. Winston, P. H. (1975). Learning structural descriptions from examples. In P. H. Winston (Ed.), The psychology of computer vision (pp. 157–209). New York: McGraw-Hill.Google Scholar
  33. Witten, I. H., & Frank, E. (2005). Data mining: Practical machine learning tools and techniques. San Fransisco: Morgan Kaufmann.MATHGoogle Scholar
  34. Wolpert, D. H., & Macready, W. G. (1997). No free lunch theorems for optimization. IEEE Transactions on Evolutionary Computation, 1(1), 67–82.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Chris Drummond

There are no affiliations available